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Abstract 

Background:  MicroRNAs (miRNAs) have been confirmed to have close relationship with various human complex 
diseases. The identification of disease-related miRNAs provides great insights into the underlying pathogenesis of 
diseases. However, it is still a big challenge to identify which miRNAs are related to diseases. As experimental methods 
are in general expensive and time‐consuming, it is important to develop efficient computational models to discover 
potential miRNA-disease associations.

Methods:  This study presents a novel prediction method called HFHLMDA, which is based on high-dimensionality 
features and hypergraph learning, to reveal the association between diseases and miRNAs. Firstly, the miRNA func‑
tional similarity and the disease semantic similarity are integrated to form an informative high-dimensionality feature 
vector. Then, a hypergraph is constructed by the K-Nearest-Neighbor (KNN) method, in which each miRNA-disease 
pair and its k most relevant neighbors are linked as one hyperedge to represent the complex relationships among 
miRNA-disease pairs. Finally, the hypergraph learning model is designed to learn the projection matrix which is used 
to calculate uncertain miRNA-disease association score.

Result:  Compared with four state-of-the-art computational models, HFHLMDA achieved best results of 92.09% 
and 91.87% in leave-one-out cross validation and fivefold cross validation, respectively. Moreover, in case studies on 
Esophageal neoplasms, Hepatocellular Carcinoma, Breast Neoplasms, 90%, 98%, and 96% of the top 50 predictions 
have been manually confirmed by previous experimental studies.

Conclusion:  MiRNAs have complex connections with many human diseases. In this study, we proposed a novel 
computational model to predict the underlying miRNA-disease associations. All results show that the proposed 
method is effective for miRNA–disease association predication.
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Background
MicroRNAs (miRNAs) are endogenous non-coding sin-
gle-stranded RNA molecules that play important roles 
in eukaryotic gene expression through posttranscrip-
tional regulation [1–3]. Functional studies indicate that 
miRNA plays a significant role in manifold biological 
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processes, such as cell proliferation, stem cell mainte-
nance, immune responses and so on [4–6]. Dysregulation 
of miRNA expression and function is reported in various 
diseases including cancer, metabolic disorders as well as 
neurological disorders [7]. Therefore, identifying disease-
related miRNAs is important to treat, diagnose, and pre-
vent human complex diseases [8, 9].

Generally, researchers use biological experimen-
tal methods such as quantitative reverse transcription, 
microarray analysis, or deep sequencing of small RNAs 
to explore miRNAs that are differentially expressed in 
a disease state. For example, Pan et  al. used microarray 
analysis and found that miR-130a-3p, miR-424-5p, miR-
574-5p, and miR-146a presented significant difference 
between tuberculous meningitis and healthy controls 
[10]. However, experimental identification of disease-
related miRNAs by existing techniques is expensive and 
time-consuming. So, based on vast amount of biological 
data about miRNAs, researchers have developed compu-
tational methods for predicting miRNA-disease associa-
tions [11–21], which can select most promising miRNAs 
for further analysis and hence decrease the number of the 
experiments.

For predicting disease-related miRNAs, many meth-
ods are based on a credible assumption that functionally 
similar miRNAs tend to have associations with pheno-
typically similar diseases and vice versa. Xiao et al. pro-
posed a method called GRNMF, which based on graph 
regularized non-negative matrix factorization from the 
similarity and association perspective of miRNAs and 
diseases to discover potential associations [22]. Liu et al. 
proposed the method for predicting miRNA–disease 
associations by performing random walks on heterogene-
ous omics data [23]. You et  al. presented the prediction 
model of PBMDA by constructing a heterogeneous graph 
consisting of three interlinked sub-graphs, and perform-
ing a depth-first search algorithm on the heterogeneous 
network to infer disease-related miRNAs [24]. PBMDA 
integrated different types of heterogeneous biological 
datasets, so it can be applied to the new diseases/miR-
NAs without known associated miRNAs/diseases. Sub-
sequently, Chen et  al. proposed a novel method based 
on Hybrid Approach for MiRNA-Disease Association 
prediction (HAMDA) [25]. They considered network 
structure, information propagation, and node attribu-
tion, and used the hybrid graph-based recommendation 
algorithm to uncover disease-related miRNAs. In addi-
tion, Chen et  al. devised a computational approach by 
Graphlet Interaction to predict disease-related miRNAs 
(GIMDA) [26]. In this method, graphlet interaction was 
utilized to analyze the complex relationships between 
two nodes in a graph. However, HAMDA and GIMDA 
are not applicable to predicting a new association 

between a new miRNA and a new disease. Furthermore, 
Chen et al. developed a method of Graph Regression for 
MiRNA-Disease Association prediction (GRMDA) [27]. 
The graph regression was synchronously performed in 
three latent spaces, by using Singular Value Decompo-
sition (SVD) and Partial Least-Squares (PLS) to extract 
important related attributes and filter the noise. But it 
is difficulties to choosing parameters in SVD and PLS. 
Lately, Jiang et al. implemented a improved collaborative 
filtering-based method to infer miRNA-disease associa-
tions (ICFMDA) [28]. They improved collaborative fil-
tering algorithm by combining the similarity matrices, 
and defined significance SIG between pairs of diseases 
or miRNAs to predict disease-related miRNAs even new 
diseases without known association.

In addition, several computational models used 
machine learning to uncover the association between 
miRNAs and diseases. Xu et al. introduced an approach 
based on the miRNA target–dysregulated network 
(MTDN) to prioritize novel disease miRNAs [29]. They 
applied Support vector machine classifier to miRNAs in 
the MTDN. However, negative samples required by the 
classifier are difficult to obtain. To overcome this limita-
tion, Chen et  al. introduced a semi-supervised method 
named RLSMDA [30]. It is developed under the frame-
work of regularized least squares and can predict new 
miRNAs for diseases which do not have any known 
related miRNAs. Similarly, Luo et al. developed another 
semi-supervised method named KRLSM based on Kro-
necker regularized least squares [31]. KRLSM integrated 
different omics data, combined the disease and miRNA 
space, and used the semi-supervised classifier of regu-
larized least squares to predict disease-related miRNAs. 
However, this approach involves multiple parameters and 
establishing the optimal parameter values remains a chal-
lenging problem. Chen et al. designed a method based on 
restricted Boltzmann machine for predicting miRNA-
disease associations [32]. This approach can also predict 
association types of miRNA-disease pairs, but can not 
applicable to a new disease with no known associated 
miRNAs. Furthermore, Chen et al. developed an effective 
method called HGIMDA [33]. HGIMDA calculated the 
disease-miRNA association possibility by investigating 
all the 3-length paths in the constructed heterogeneous 
graph. Recently, Chen et  al. utilized Extreme Gradient 
Boosting Machine to uncover disease-related miRNAs 
and named EGBMMDA [34]. In this method, based on 
statistical measures, graph theoretical, and matrix fac-
torization, they constructed an informative feature vec-
tor for each miRNA-disease pair and used a decision tree 
model to predict disease-related miRNAs.

Although existing methods have made great contribu-
tions to uncover disease-related miRNAs, there are still 
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some limitations that could be improved. For example, 
many methods are difficult to extract the deep feature 
representation of the multiple kinds of data. In this study, 
we propose a novel prediction method via hypergraph 
learning based on high-dimensionality features and refer 
to it as HFHLMDA. Hypergraph learning, which can cap-
ture the high-order relationships of samples, has been 
widely used in clustering, classification and information 
retrieval tasks. In a hypergraph, an edge connects more 
than two vertices, thus it can well encode the relation-
ship among more than two vertices. We construct high-
dimensionality feature vectors for all the miRNA-disease 
pairs, and utilize K-Nearest-Neighbor (KNN) method 
to form a hypergraph to predict potential miRNA-dis-
ease association. To demonstrate the effectiveness of 
our method, we apply Leave-one-out cross validation 
(LOOCV) and fivefold cross validation to measure the 
prediction performance. We compare our method with 
four state‐of‐the‐art methods and the results indicate 
that our method can achieve better performance. In addi-
tion, case studies of three common diseases are imple-
mented to further verify the reliability and robustness of 
HFHLMDA.

Methods
Human MiRNA‑disease associations network
The human miRNA-disease associations used in this 
work come from the HMDDv2.0 [35], which contains 

5430 experimentally associations between 495 miRNAs 
and 383 diseases. Technically, we use an adjacency matrix 
A with 495 (nm) rows and 383 (nd) columns to clearly 
describe the relation of each miRNA-disease pairs. The 
element A(m(i), d(j)) is equal to 1 if miRNA m(i) is veri-
fied to be associated with disease d(j), and 0 otherwise. 
Finally, 5430 entries of matrix A are assigned 1, the rest 
ones are assigned 0. Our goal is to confirm the uncertain 
associations between miRNAs and diseases.

MiRNA similarity matrix
Wang et al. developed a method named MISIM for calcu-
lating the function similarity scores of miRNA [36]. Here, 
we directly downloaded the miRNA functional similarity 
scores from http://www.cuila​b.cn/files​/image​s/cuila​b/

misim​.zip. Then, an adjacency matrix SM with 495 rows 
and 495 columns is built to denote the similarity of miR-
NAs, in which the larger the SM(m(i), m(j)) is, the more 
similar m(i) and m(j) are.

However, SM has the problem of sparsity. Sparse matrix 
is difficult to provide more effective information, which 
will seriously affect the prediction performance of the 
computational model. So we calculate the Gaussian inter-
action profile kernel similarity of miRNAs [37]. Specifi-
cally, a binary vector BV(m(i)), i.e. the ith row of matrix 
A, is recorded as the interaction profiles of miRNA m(i) 
for representing the associations between m(i) itself and 
each disease. All known miRNA-disease associations in 
matrix A will be used to calculate similarity, two miRNAs 
would likely have greater similarities if they share more 
disease associations. Thus, the Gaussian interaction pro-
file kernel similarity GKM(m(i), m(j)) of miRNA m(i) and 
miRNA m(j) is defined as

where γm is a parameter used to control the kernel band-
width, which is set as

By integrating SM and GKM, a new complete miRNA 
similarity matrix SM can be obtained as

Disease similarity matrix
The association between different diseases can be repre-
sented by a directed acyclic graph (DAG), which consists 
of some nodes and links. Each node represents a disease 
while a link represents the association of two diseases. 
For a given disease D, DAG = (D, TD, ED), where TD rep-
resents its ancestor nodes and itself while ED is the set of 
corresponding edges. The contribution values of disease 
d(t) to the semantic value of disease d(i) can be calculated 
as follows:
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http://www.cuilab.cn/files/images/cuilab/misim.zip
http://www.cuilab.cn/files/images/cuilab/misim.zip
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where D(d(i)) is the node set in DAG(d(i)) including node 
d(i) itself. Therefore, the semantic similarity between dis-
ease d(i) and d(j) can be defined as follows:

Similarly, we also calculate the Gaussian interaction 
profile kernel similarity GKD for diseases by the follow 
formulas

where BV(d(i)) and BV(d(j)) denote the ith column and 
the j-th column of A. At last, the disease similarity matrix 
SD is obtained by
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HFHLMDA
The HFHLMDA model can be separated into three steps 
(see Fig. 1). First, feature factor construction, in which a 

feature factor x for each miRNA-disease pair consisting 
of corresponding rows of SM and SD. Second, hyper-
graph construction, where a hypergraph G is constructed 
to formulate the relationship between these feature vec-
tors. Third, hypergraph learning, to learn the projection 
matrix P, which map the original feature x to the rele-
vance score S = x.P, and thus it can be used to predict the 
association for the unknown miRNA-disease pair xunk.

Feature factor construction
According to the biological observation that miRNAs 
with more functional similarity tend to be more associ-

ated with similar diseases and vice versa, so the topologic 
information of miRNA/disease similarity network can be 
used to construct feature factor directly.

For each miRNA, there are 495 similarity scores. We 
use similarity scores as features to represent each miRNA 
by a 495-dimensional feature vector. For example, we rep-
resent miRNA m(i) by a feature vector, SM(m(i)) = (m1, 
m2, …, m495), where SM(m(i)) is the ith row vector of SM 
and represents the similarities between m(i) and all the 
miRNAs.

For each disease, we can obtain a 383-dimensonal fea-
ture vector in a similar way to miRNA, SD(d(j)) = (d1, 
d2, …, d383), where SD(d(j)) is the jth row of matrix SD. 
Therefore, each miRNA-disease pair can be described by 
an 878-dimensional vector x = (SM(m(i)), SD(d(j))). Fur-
thermore, we consider (SM(m(i)), SD(d(j))) as a positive 
sample if miRNA m(i) is associated with disease d(j), oth-
erwise as a negative sample. To construct the balanced 
dataset, the training set have 5,430 positive samples, and 
an equal number of samples were randomly selected as 
negative training examples from the pool of unknown 
associations. It is possible to use unconfirmed miRNA-
disease pairs with association as negative samples, from 
the perspective of probability, because the miRNA-dis-
ease pairs we selected as negative samples account for 

Fig. 1  Flowchart of potential miRNA–disease association prediction 
based on HFHLMDA
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only 5430 ÷ (495 × 383) ≈ 2.86% of all miRNA-disease 
pairs, which is negligible [38].

Hypergraph construction
Firstly, we briefly introduce the hypergraph learning 
theory. As a generalization of graph, hypergraph repre-
sents the structure of data via measuring the similarity 
between groups of points. Different from a simple graph, 
an edge in a hypergraph can connect three or more verti-
ces, it can model high-order relations between their ver-
tices by hyperedges, whose influence can be assessed by 
properly estimating their weights. Obviously, modeling 
the high-order relationship among objects can improve 
the predicting performance significantly. Moreover, the 
quality of the hypergraph structure plays an important 
role for data modeling. A well constructed hypergraph 
structure can represent the data correlation accurately, 
and leading to better performance.

A hypergraph is defined as G = (V, E, w), where V is a 
set of vertices, E is a set of hyperedges and each hyper-
edge e is given a positive weight w(e). The hypergraph 
G can be denoted by a |V| ×|E| incidence matrix H, in 
which each entry is defined by

The degree of vertex v ∈ V and hyperedge e ∈ E can be 
respectively represented as:

(10)h(v, e) =
{

1 if v ∈ e
0 if v /∈ e

(11)d(v) =
∑

e∈E
w(e)h(v, e)

(12)δ(e) =
∑

v∈V
h(v, e)

Accordingly, denote Dv and De as two diagonal matri-
ces of the vertex degrees and the hyperedge degrees, 
respectively.

Zhou et  al. proposed a regularization framework on 
hypergraph [39], which is defined as

where f is the to-be-learned function, Ω(f) is a regular-
izer on the hypergraph, Remp(f) is an empirical loss, and 
λ > 0 is the tradeoff parameter. Usually, the empirical loss 
Remp(f) is defined as

where Y is the label matrix of samples. The regularizer on 
the hypergraph is defined by

Let Θ = Dv
−(1/2)HWDe

−1HTDv
−(1/2), the normalized cost 

function can be written as

where Δ = I – Θ, which is a positive semi-definite matrix.
In this study, given a set of training samples {xi |i = 1,…, 

n} ∈ R878, the data matrix X = [x1,..., xi,..., xn]T ∈ Rn×878 
contains n samples in its rows, the corresponding labels 
matrix Y = [y1,..., y2,..., yl] ∈ Rn×l, yi is the label vector 
of the i-th class. A miRNA-disease pairs hypergraph 
G = (V , E ,W) is constructed, and its hyperedge is gener-
ated based on the KNN algorithm. Concretely, for each 
vertex v, we search its corresponding k nearest neighbors, 
and use these nearest neighbors to form a hyperedge 
e(v). We initialize k as 15 here empirically. An illustration 
on the hyperedge generation process is shown in Fig. 2. 
Moreover, the diagonal matrix W denote the weights of 
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Fig. 2  Intuitive illustration of KNN hyperedge generation



Page 6 of 12Wang et al. BMC Med Inform Decis Mak          (2021) 21:133 

the hyperedges. All the hyperedges are initialized with an 
equal weight, e.g., w(e) = 1/ne, where ne is the number of 
hyperedges.

Hypergraph learning
The hypergraph learning targets on learning a regularized 
projection to discriminate different categories. According 
to Zhang et al. introduction [40], the cost function F for 
learning the projection matrix P can be formulated as:

where λ and μ are positive parameters, and we empiri-
cally set them as 101,100 respectively, which can achieve 
the best performance. Specifically, hypergraph Laplacian 
regularizer Ω(P) is calculated as

where function tr(·) returns the trace of matrix. The 
empirical loss term Remp (P) is defined as

Φ(P) is a l2 norm regularizer to avoid over-fitting for P, 
which is defined as:

Consequently, Eq. (17) can be reformed as:

Such problem is a typical Least Square problem which 
can be efficiently solved, its solution is as follows:

where I is an identity matrix. Based on the learned P, the 
relevance score of the unknown miRNA-disease pair xunk 
can be obtained by

Results
Effect of parameters on the performance of HFHLMDA
In this work, we used KNN algorithm to generate hyper-
edge, one parameters k was included, which represent 
the number of nearest neighbors of miRNA or disease. 
In the hypergraph learning section of the Methods, we 

(17)F = {Ω(P)+ �Remp(P)+ µΦ(P)}
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(23)S
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= xunk .P

defined two parameters, namely, λ and μ to balance the 
items in Eq. (17), the values of λ and μ ranged from 10–2, 
10–1, 100, 101 to 102. We conducted a series of experi-
ments on the above parameters to acquire the effects of 
these parameters. The experimental results are shown 
in Figs.  3 and 4. In Fig.  3, we can see that regardless of 
how k change, the AUC of fivefold cross validation keep 
around 0.9187. Thus, for efficiency, we set k = 15. Fur-
thermore, Fig. 4 describes the prediction performances of 
HFHLMDA with different values of λ and μ. We can see 
that HFHLMDA obtains the best prediction performance 
when λ is set to be 101 and μ is set to be 100.

Fig. 3  ROC curve and AUC with different values for parameter k

Fig. 4  AUC with different values for parameters λ and μ 
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Performance evaluation
Based on the known miRNA–disease associations in 
HMDDv2.0 database, two validation schemas were used 
to evaluate the performance of HFHLMDA: LOOCV 
and fivefold cross validation. We selected four classi-
cal computational methods: EGBMMDA [34], ICFMDA 
[28], RLSMDA [30], and SACMDA [41] to compete with 
HFHLMDA in cross validation. Specifically, LOOCV 
selected a known miRNA-disease association in turn as a 
test sample, and the rest of the associations were consid-
ered as training samples. All unknown associations were 
used as candidate samples. Considering that the Gauss-
ian interaction profile kernel similarity depend on known 
miRNA-disease associations, the corresponding value 
of a test sample in matrix A should be set to 0. The pre-
dicted score for the test sample was ranked relative to the 

scores for candidate samples and, each ranking will take 
turns as a threshold in each fold, if test ranking was above 
a given threshold, we obtained a successful prediction 
made by the model. By changing the threshold, we could 
calculate the corresponding true positive rate (TPR) and 
false positive rate (FPR). Furthermore, receiver-operat-
ing characteristics (ROC) curve could be drawn accord-
ing to TPR against FPR. The areas under the ROC curve 
(AUC) was used to evaluate the whole prediction perfor-
mance. Figure  5 shows the global LOOCV ROC curves 
for HFHLMDA and other methods. HFHLMDA, EGB-
MMDA, ICFMDA, RLSMDA and SACMDA obtained 
AUCs of 0.9209, 0.9123, 0.9067, 0.8426 and 0.8770, 
respectively. HFHLMDA achieved the better prediction 
performance.

As for fivefold cross validation, in order to make the 
validation more accurate, we repeated fivefold cross 
validation procedure 100 times. The average AUC val-
ues of the five methods (HFHLMDA, EGBMMDA, 
ICFMDA, RLSMDA, SACMDA) were 0.9187(± 0.0009), 
0.9048(± 0.0012), 0.9045(± 0.0008), 0.8569(± 0.0020) and 
0.8767(± 0.0011), respectively (see Fig.  6). In summary, 
under the same dataset, our model outperformed other 
competitive methods.

Case studies
Case studies were conducted to further verify the capa-
bility of HFHLMDA to predict miRNA-disease asso-
ciations. We implemented three different kinds of case 
studies in this study. In the first case study, we conducted 
HFHLMDA to predict potential disease-miRNA asso-
ciations taking advantages of known diseases-miRNAs 
associations included in HMDD v2.0 database. Sub-
sequently, top 50 miRNAs for the investigated disease 
ranked according to their predicted scores were verified 
using another two well-known miRNA-disease associa-
tion databases of dbDEMC [42] and miR2Disease [43]. In 
the second case study, we simulated the situation where 
HFHLMDA was conducted for disease without known 
miRNA associations. More concretely, we removed 
the known miRNA associations of the disease of inter-
est, after which HFHLMDA was implemented accord-
ing newly obtained association records. The prediction 
results were also verified by other databases. The final 
case study investigated the robustness of HFHLMDA 
prediction performance. We evaluated the model with a 
smaller and earlier version HMDDv1.0 database [44].

Esophageal cancer (EC) is one of the most common 
cancers worldwide, and its 5-year survival rate is about 
20% [45]. Study indicate that miR-130b plays an onco-
genic role in esophageal squamous cell carcinoma cells by 
repressing phosphatase and tensin homolog expression 

Fig. 5  Performance comparisons between HFHLMDA and four 
classical models in terms of ROC curve and AUC based on LOOCV

Fig. 6  Performance comparisons between HFHLMDA and four 
classical models in terms of ROC curve and AUC based on fivefold 
cross validation
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and Akt phosphorylation [46]. Therefore, specific and 
sensitive biomarkers for diagnosis and targeted therapy 
of EC are urgently needed. As the first type of case study, 
10 out of top 10, 28 out of top 30, 45 out of top 50 pre-
dicted esophageal neoplasms related miRNAs were con-
firmed by dbDEMC (See Table 1).

Hepatocellular carcinoma (HC) is a complex polygen-
etic disease ascribed to the interactions between genetic 
predisposition and environmental factors [47]. The dis-
covery of vital target for genetic therapy are of great clini-
cal significance to the improvement of the comprehensive 
effect of HC. For example, miR-122, let-7 family, and 
miR-101 are down-regulated in HC, suggesting that it is a 
potential tumor suppressor of HC. miR-221 and miR-222 
are up-regulated in HCC and may act as oncogenic miR-
NAs in hepatocarcinogenesis [48]. We took hepatocellu-
lar carcinoma as the second kind of case study. Finally, 49 
out of top 50 miRNAs were experimentally confirmed by 
HMDD v2.0, dbDEMC and miR2Disease (See Table 2).

Breast Neoplasms is the most common malignancy in 
women, accounting more than 40,000 deaths each year 

[49]. Data have shown that the number of affected peo-
ple is climbing, and a forecast deemed that there will be 
nearly 3.2 million new patients per year by 2050 [50]. 
In breast cancer, approximately one-fifth of metastatic 
patients survive 5 years [51]. Researchers have found that 
many miRNAs are associated with breast neoplasms by 
clinical experiments, such as mir‐155 and mir‐21, both 
of which can lead to Breast Neoplasms tumorigenesis 
or metastasis [52]. We took breast neoplasms as the last 
kind of case study, in which we got the prediction with 
HFHLMDA using HMDDv1.0 database. Then, we veri-
fied the predicted potential breast neoplasms related 
miRNAs in other databases. At last, 48 out of top 50 
miRNAs were experimentally confirmed by HMDD v2.0, 
dbDEMC and miR2Disease (See Table 3).

The aforementioned case studies indicate that 
HFHLMDA has good prediction performance. 
HFHLMDA can efficiently predict disease-related miR-
NAs based on known miRNA-disease associations, 
disease semantic similarity and miRNA functional simi-
larity, and a disease without known associations also can 
be predicted.

Discussion
In this work, we developed a new computational model 
based on hypergraph learning to predict potential 
miRNA‐disease associations. Several important factors 
contribute to the excellent performance of our model. 
First, high-dimensionality features. Based on a credible 
assumption that functionally similar miRNAs tend to 
have associations with phenotypically similar diseases. 
We use the miRNAs or diseases similarity scores directly 
as a feature factor, with a dimension of up to 878, which 
contains all similar information about miRNAs or dis-
eases. Second, hypergraph is suitable to represent local 
group information and the high-order relationship of 
data, and can completely represent the complex relation-
ships among miRNA-disease pairs. Different from the 
simple-graph learning methods consider only the pair-
wise relationship between two samples, and they ignore 
the relationship in a higher-order, hypergraph learning 
aims to get the relationship between several samples in 
a higher order. Hypergraph learning is a kind of graph 
clustering algorithm, the process of graph clustering is 
actually the optimization of graph partition. The pur-
pose of optimization is to reduce the similarity between 
sub-graphs and increase the similarity within sub-graphs. 
Hypergraph-based models have proven to be beneficial 
for a variety of classification/clustering tasks, and we 
think it can also be applied to different fields of bioinfor-
matics, such as drug-disease associations [53], miRNA–
drug interactions [54].

Table 1  The top 50 predicted miRNAs associated 
with esophageal cancer

The first column records top 1–25 related miRNAs. The third column records the 
top 26–50 related miRNAs

miRNA Evidence miRNA Evidence

hsa-mir-221 dbDEMC hsa-mir-9 dbDEMC

hsa-mir-125b dbDEMC hsa-mir-24 dbDEMC

hsa-mir-29a dbDEMC hsa-mir-132 dbDEMC

hsa-mir-206 dbDEMC hsa-mir-224 dbDEMC

hsa-mir-17 dbDEMC hsa-mir-23a dbDEMC

hsa-mir-16 dbDEMC hsa-let-7d dbDEMC

hsa-mir-29b dbDEMC hsa-mir-195 dbDEMC

hsa-mir-222 dbDEMC hsa-mir-335 dbDEMC

hsa-mir-1 dbDEMC hsa-mir-124 dbDEMC

hsa-mir-146b dbDEMC hsa-mir-93 dbDEMC

hsa-mir-182 dbDEMC hsa-mir-106a dbDEMC

hsa-mir-122 Unconfirmed hsa-mir-140 dbDEMC

hsa-mir-181a dbDEMC hsa-mir-30a dbDEMC

hsa-mir-18a dbDEMC hsa-mir-184 Unconfirmed

hsa-mir-106b dbDEMC hsa-mir-429 dbDEMC

hsa-let-7e dbDEMC hsa-let-7i dbDEMC

hsa-mir-200b dbDEMC hsa-let-7f Unconfirmed

hsa-mir-20b dbDEMC hsa-mir-134 dbDEMC

hsa-mir-19b dbDEMC hsa-mir-27b dbDEMC

hsa-mir-133b dbDEMC hsa-mir-23b dbDEMC

hsa-let-7 g dbDEMC hsa-mir-152 dbDEMC

hsa-mir-181b dbDEMC hsa-mir-96 dbDEMC

hsa-mir-15b dbDEMC hsa-mir-193b dbDEMC

hsa-mir-103a Unconfirmed hsa-mir-138 Unconfirmed

hsa-mir-142 dbDEMC hsa-mir-125a dbDEMC
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Despite the practicability and efficiency of HFHLMDA, 
there still has some limitations. Since our method is 
based on machine learning techniques, negative samples 
are required during the training process. However, exper-
imentally confirmed negative samples are difficult to 
obtain. To resolve this issue, we have randomly selected 
a subset of unknown miRNA–disease associations as 
negative instances. In addition, in our method, after the 
hypergraph has been constructed, it never changes dur-
ing the learning process, leading to a static hypergraph 
structure learning mechanism. However, it is uneasy 
to guarantee that the generated hypergraph structure is 
optimal and suitable for all applications. In future work, 
it is necessary to investigate the hypergraph structure 

optimization, leading to a dynamic hypergraph structure 
learning scheme.

Conclusion
Increasing evidence indicates that aberrant expression of 
miRNAs is closely related to the occurrence and devel-
opment of human complex diseases. Understanding the 
underlying mechanisms of miRNAs in diseases is becom-
ing an urgent problem worldwide. Compared with tra-
ditional methods, the computational model developed 
for processing heterogeneous biological big data is more 
efficient and convenient. To predict potentially disease-
related miRNAs, we proposed a hypergraph learning 

Table 2  The top 50 predicted miRNAs associated with hepatocellular carcinoma

The first column records top 1–25 related miRNAs. The third column records the top 26–50 related miRNAs

miRNA Evidence miRNA Evidence

hsa-mir-21 HMDD; miR2disease hsa-let-7b HMDD; miR2disease

hsa-mir-155 HMDD; miR2disease; dbDEMC hsa-mir-122 HMDD; miR2disease; dbDEMC

hsa-mir-146a HMDD; miR2disease; dbDEMC hsa-mir-18a HMDD; miR2disease; dbDEMC

hsa-mir-221 HMDD; miR2disease; dbDEMC hsa-mir-106b HMDD; miR2disease; dbDEMC

hsa-mir-125b HMDD; miR2disease hsa-mir-200a HMDD; miR2disease; dbDEMC

hsa-mir-145 HMDD; miR2disease; dbDEMC hsa-mir-223 HMDD; miR2disease

hsa-mir-29a HMDD; dbDEMC hsa-mir-150 HMDD; miR2disease; dbDEMC

hsa-mir-206 Unconfirmed hsa-mir-19b HMDD; miR2disease

hsa-mir-17 HMDD; miR2disease hsa-mir-29c HMDD; dbDEMC

hsa-mir-16 HMDD; miR2disease; dbDEMC hsa-mir-143 miR2disease; dbDEMC

hsa-mir-29b HMDD; dbDEMC hsa-let-7g HMDD; miR2disease

hsa-mir-199a HMDD; miR2disease; dbDEMC hsa-mir-200b HMDD; miR2disease

hsa-mir-214 HMDD; miR2disease; dbDEMC hsa-mir-210 HMDD; dbDEMC

hsa-mir-20a HMDD; miR2disease; dbDEMC hsa-mir-126 HMDD; miR2disease; dbDEMC

hsa-mir-92a HMDD; miR2disease hsa-mir-20b HMDD; dbDEMC

hsa-mir-222 HMDD; miR2disease; dbDEMC hsa-let-7c HMDD; miR2disease; dbDEMC

hsa-mir-1 HMDD; miR2disease hsa-mir-34c HMDD

hsa-mir-34a HMDD; miR2disease; dbDEMC hsa-mir-141 HMDD; miR2disease

hsa-mir-15a HMDD; miR2disease; dbDEMC hsa-mir-133b HMDD

hsa-mir-182 HMDD; miR2disease hsa-mir-224 HMDD; miR2disease; dbDEMC

hsa-mir-146b HMDD hsa-mir-15b HMDD; dbDEMC

hsa-mir-181a HMDD; miR2disease; dbDEMC hsa-mir-133a miR2disease

hsa-mir-499a HMDD hsa-mir-181b HMDD; miR2disease; dbDEMC

hsa-let-7e HMDD; miR2disease; dbDEMC hsa-mir-200c HMDD

hsa-let-7a HMDD; miR2disease; dbDEMC hsa-mir-19a HMDD; miR2disease; dbDEMC
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method called HFHLMDA. Both cross-validation and 
case studies had proved the effectiveness of HFHLMDA 
in predicting potential miRNA-disease associations.
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