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Background: The FK506-binding protein (FKBP) is a family of intracellular receptors that
can bind specifically to the immunosuppressant FK506 and rapamycin. Although FKBPs
play crucial roles in biological processes and carcinogenesis, their prognostic value and
molecular mechanism in clear cell renal cell carcinoma (ccRCC) remain unclear.

Methods: Using pan-cancer data from The Cancer Genome Atlas (TCGA) and public
databases, we analyzed the expression and correlation of FKBPs in 33 tumor types.
Survival and Cox regression analyses were employed to explore the prognostic value of
FKBPs. The relationship with tumor microenvironment and stemness indices was taken
into account to evaluate the function of FKBPs. We constructed a risk score model to
predict the prognosis of patients with ccRCC. The receiver operating characteristic (ROC)
curve was performed to further test the prognostic ability of our model. Nomogram, joint
effects analysis, and clinical relevance were performed to assist the clinician. Gene set
enrichment analysis (GSEA) and cell line experiments were performed to investigate the
function and molecular mechanisms of FKBPs in patients with ccRCC. Paired clinical
specimens and multi-omics analysis were used to further validate and explore the factors
affecting gene expression in ccRCC patients.

Results: The expression levels of FKBP10 and FKBP11 were higher in ccRCC tissues
than in normal tissues. The alteration in expression may be because of the degree of DNA
methylation. Increased expression levels of FKBP10 and FKBP11 were associated with
worse overall survival (OS). More importantly, GSEA revealed that FKBP10 is mainly
involved in cell metabolism and autophagy, whereas FKBP11 is mainly associated with
immune-related biological processes and autophagy. Cell Counting Kit 8 (CCK-8) and
Transwell assays revealed that knockdown of FKBP10 and FKBP11 inhibits proliferation,
migration, and invasion of the ccRCC cell line.

Conclusion: FKBP10 and FKBP11 play important roles in ccRCC phenotypes and are
potential prognostic markers as well as new therapeutic targets for patients with ccRCC.
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INTRODUCTION

There is increasing incidence of renal cancer diagnosis
worldwide, and renal cancer is becoming a more prominent
issue in our lives (1). Clear cell renal cell carcinoma (ccRCC) is
the most frequent tumor type, accounting for 70% of all renal
cancers diagnosed (2). Although targeted therapy and novel
immunotherapeutic agents have been widely used, their
efficacy is limited (3, 4). Because of the lack of effective
methods for early diagnosis, patients with ccRCC generally
have a poor prognosis (5). Therefore, valuable prognostic
biomarkers are crucial for patients with ccRCC.

FK506-binding proteins (FKBPs), intracellular receptors that
bind to FK506, are members of the immunophilin family (6–8).
The FKBP gene family, comprising 16 members, can be modulated
by various kinases and cellular factors. Activation of the FKBP gene
family is associated with a range of biological activities, such as T-
cell activation, cell metabolism, cellular homeostasis, tumor
carcinogenesis, and tumor progression (6, 9). The majority of
FKBP genes have peptidylprolyl cis/trans isomerase (PPIase) and
tetratricopeptide repeat (TPR) domains within their protein
structures (10). As the core domain, PPIase participates in cellular
processes, such as transcription and protein formation (11, 12), and
the TPR domain can bind to heat-shock protein 90 c(Hsp90) (13,
14). Increasing evidence suggests that FKBPs regulate cell cycle and
survival and apoptotic signaling pathways and influence
tumorigenesis and the response to chemotherapies and
radiotherapies (6). FKBP1A binds to calcineurin and prevents
NFAT dephosphorylation. T cells were activated to produce
cytokines to regulate cell growth and proliferation via the PI3K
pathway (6, 15–18). FKBP4 acts as a positive regulator of steroid
receptors (19). In breast cancer models, especially in ER-negative
breast cancer, high expression of FKBP4 can activate the PI3K–Akt–
mTOR pathway to promote tumor growth and proliferation (20).
FKBP5 is associated with androgen, glucocorticoid, estrogen, and
mineralocorticoid receptors and acts as a negative regulator, except
in the case of androgen receptors (21, 22). FKBP5, associated with
BECN1, can also enhance autophagy to synergize with
antidepressant action (23). FKBP5 not only influences
physiological processes but also plays a key role in cancer
development. In prostate cancer, FKBP5 can promote tumor
carcinogenesis and progression by regulating androgen
transcription (24). FKBP8 maintains cellular homeostasis via
mediating mitophagy by interacting with LC3A and has been
verified as an endogenous inhibitor of mTOR. The decrease in
FKBP8 expression can induce apoptosis through the regulation of
Bcl-2 (25–27). FKBP10 mediates aggressive phenotypes of stomach
adenocarcinoma by regulating the PI3K signaling pathway (28).
These studies demonstrate that FKBP genes play pivotal roles in
tumorigenesis; however, there is currently no study of FKBPs in
ccRCC, which means that the value of the FKBP family for
predicting prognosis of ccRCC is still unclear and remains to
be elucidated.

Genetics and epigenetics play major roles in the maintenance of
cell identity and control of gene expression (29). Genetic changes
can be divided into two major categories. First, single-nucleotide
polymorphisms (SNPs) are the most common type of genetic
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change (30). Second, structural variation, including copy number
variants (CNVs), refers to all base pairs that differ between
individuals and that are not single-nucleotide variants (31).
Recent studies have shown that genetic factors account for 35%–
40% contribution of disease susceptibility (32, 33). SNPs in the
FKBP5 gene, which cause the high expression of FKBP5, have been
fundamentally linked to stress-related disorders, especially in
psychiatric disorders (34, 35). Epigenetics affects gene expression
without altering the DNA nucleotide sequence. Increasing evidence
has shown that the aberrant epigenetic modifications in nucleic
acids are associated with the occurrence of many diseases, including
cancer, diabetes, Alzheimer’s disease, and many other age-related
diseases (36). A recent study has shown that the different DNA
methylation levels of FKBP5 are associated with varying responses
to environmental influences and may play a role in how well people
respond to psychological treatments (37).

With the development of large available databases and RNA
sequencing techniques, the identification and application of new
cancer biomarkers is becoming increasingly accurate and valuable.
In this study, using pan-cancer analysis, we systematically analyzed
the integral distribution, function, and prognosis of FKBP genes in
humans. Using the data of patients with ccRCC from The Cancer
Genome Atlas (TCGA) and Group on Earth Observations (GEO)
database, we performed Cox regression, survival, and joint effects
analysis and gene set enrichment analysis (GSEA) to screen the
prognostic value and potential mechanism of the FKBP gene family
in ccRCC. We constructed a risk score model and nomogram to
assist clinicians with diagnostic and therapeutic decisions.
Moreover, we preliminarily verified the effects of FKBPs on
ccRCC proliferation and invasion, based on the cell phenotypes
observed using an in vitro ccRCC model. Paired clinical specimens
andmulti-omics analysis were used to further investigate the impact
factors of expression alteration.
MATERIALS AND METHODS

Public Database Mining of FKBP Genes
The Genotype-Tissue Expression (GTEx) database (https://www.
gtexportal.org) was used to analyze the distribution of the FKBP
gene family in human normal organ tissues. The UALCAN
database (http://ualcan.path.uab.edu/analysis.html) was used to
perform survival and difference analysis. We used the Human
Protein Atlas (HPA) database (https://www.proteinatlas.org/) to
observe the protein expression of FKBPs. The Gene Expression
Profiling Interactive Analysis (GEPIA2) database (http://gepia2.
cancer-pku.cn) was used to draw survival maps.

Data Handling
The RNA-seq data, DNA methylation data, copy number
variation (CNV) data, somatic mutation data, and clinical
information of pan-cancer analysis were downloaded from the
TCGA (http://portal.gdc.cancer.gov/) and GEO (https://www.
ncbi.nlm.nih.gov/geo/) database (TCGA-KIRC: The Cancer
Genome Atlas Kidney Renal Clear Cell Carcinoma). The gene
matrix of GSE40435 was downloaded from the GEO database.
The Limma package from Bioconductor was used to perform
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difference analysis. Genes with an average count value >1 were
excluded. p < 0.05 and |log2(FC)| > 1.0 was taken into account.

Correlation Analysis and Construction of
Prognostic Model and Nomogram
The R language corrplot package was used to evaluate
correlations via Pearson correlation coefficient among FKBPs.
Univariate and multiple stepwise Cox regression were performed
by glmnet R packages. The risk score formula of the risk score
model was as follows:

Risk score = a1 ∗ E1 + a2 ∗E2 … +ai ∗Ei

In the formula, a represents the coefficient value. E represents
the expression of FKBPs. The construction and evaluation of the
nomogram used survival ROC and rms R packages. The
screening standard was p ≤ 0.05.

Gene Set Enrichment Analysis
C5 GO and C2 KEGG gene sets were used to perform GSEA
analysis. The screening standard was p < 0.05, FDR < 0.05.

Tumor Microenvironment Analysis
The stromal score and immune score were calculated by
ESTIMATE analysis. R package “corrplot” was used to
visualize the results.

Stemness Indices Analysis
The data of stemness indices was downloaded from UCSC Xena
(http://xena.ucsc.edu/). The Limma package and corrplot
package were used to visualize the results.

Cell Culture
786-O cells were obtained from the Cell Bank of the Chinese Academy
of Sciences (Shanghai, China). Cell lines were routinely tested
mycoplasma free and were authenticated by STR detection. The cell
lines were cultured in RPMI1640 supplemented with 10% FBS.

Cell Viability Assay
Cell proliferation was assessed by the Cell Counting Kit 8 (CCK-
8) assay according to the manufacturer’s instruction (Dojindo
Molecular Technologies, Rockville, MD). Briefly, 786-O (4 × 103

cells/well) cells in 100 ml of medium were seeded in 96-well
plates. After 12 h culture in 5% CO2 at 37°C in a humidified
incubator, the medium was replaced by different concentrations
of siRNA for 48 h. Afterwards, 10 ml of CCK-8 was added to each
well. The cells were induced for another 1–4 h at 37°C according
to the instructions of the manufacturer. Absorbance of each well
was quantified at 450 nm by an enzyme-linked immunosorbent
assay microplate reader (Tecan Trading AG, Switzerland).

Invasion Assay
The in vitro invasive assay was performed using the Transwell
system (24 wells, 8 mm pore size with polycarbonate membrane;
Corning Costar, Lowell, MA, USA), whose upper chambers were
coated with Matrigel (BD Biosciences, San Jose, CA, USA), forming
a reconstituted basement membrane. Then, a total of 4 × 104 786-O
cells, which were pre-transfected with 50 nM siRNA for 48 h,
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suspended in 100 ml of serum-free medium were seeded in the
upper chambers, and 500 ml of medium containing 10% FBS was
added to the lower chamber. After incubation for 24 h, the non-
invaded cells in the upper chamber were gently removed with a
cotton swab whereas the cells attaching to the lower surface were
fixed in 4% paraformaldehyde for 15 min, followed by staining with
0.1% crystal violet for 20 min. The total number of cells invading
and adhering to the lower surface was acquired in six representative
fields using an Olympus light microscope.

Migration Assay
The migration assay was performed in the same way as the invasion
assay above except that the membrane was not coated with
Matrigel. 786-O cells were pre-transfected with 50 nM siRNA for
48 h, and then 4 × 104 786-O cells were added to the upper chamber
just as the invasive assay. After incubation for 24 h at 37°C, the cells
were stained and counted in the same way as in the invasion studies.

siRNA Transfection of Cells
About 2 × 105 cells/well were seeded in six-well plates and
transfected with small-interfering RNA (siRNA) (Santa Cruz,
CA, USA) or a control siRNA using jetPRIME (polyplus-
transfection, Illkirch, France).

Real-Time Quantitative Polymerase
Chain Reaction
Total RNAs were extracted using Trizol reagent according to the
manufacturer’s specifications (TaKaRa Bio, Dalin, China). One
microgram of total RNA from each sample was subjected to cDNA
synthesis using the SuperScript III Reverse Transcriptase Kit (TaKaRa
Bio, Dalin, China), for detection of the indicated genes and the
housekeeping gene ACTIN. Each cDNA sample was amplified using
SYBRGreen (TaKaRa Bio, Dalin, China). The relative expression of the
reported genes was determined using real-time PCR performed using
an Applied Biosystems 7900HT Fast Real-Time PCR system. Fold
change for every gene was calculated by the 2−DDCt method. Primers
used for real-time PCR were as follows: Actin: F: 5’-TGACGTG
GACATCCGCAAAG-3’; R: 5’-CTGGAAGGTGGACAGCGAGG-
3′; FKBP10: F: 5’-GGCAGGGTTACATCATCCCC-3’; R: 5’-
AAGATTAGCACGGCAGAGCC-3′; FKBP11; F: 5’-GTGTG
TGGGAGAGAAGCGAA-3’; R: 5’-TGCAATCAGCTCCA
CGTCAT-3′.

Statistical Analysis
Statistical analyses were performed using GraphPad Prism 8.0
and the R programming language version 3.5.2. Student’s t-test
and one-way ANOVAwere performed to determine significance.
Each experiment was performed thrice, and p-values < 0.05 were
considered significant.
RESULTS

Pan-Cancer Analysis of FKBP Gene Family
We performed a series of pan-cancer analyses using TCGA and
public databases to explore the distribution, function, and
prognosis of FKBP genes in humans. First, we analyzed the
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distribution of FKBP genes in human normal organ tissues in the
GTEx database (Supplementary Figure 1). The results suggested
that, compared with other organ tissues, the expression levels of
FKBP1A-5, 9-11, 14, and 15 were above medium levels in human
kidney tissues. FKBP6–8 showed lower expression levels. Second,
by comparing human tumor tissues with corresponding normal
organ tissues, we explored the expression level of FKBP genes in
common tumor types using the UALCAN database
(Supplementary Figure 2). Specifically, we found that
FKBP1A, 5–11, and 15 were upregulated in kidney tumor
tissues, whereas others were downregulated. Moreover, we
evaluated the average expression level of the FKBP gene family
and drew a heatmap to show the results of differential analysis
using pan-cancer data from TCGA (Figures 1A, B). We found
that the FKBP gene family had a higher overall expression level
in all tumor samples except FKBP6. Most of members were
downregulated in different cancer types except FKBP10.
Moreover, using pan-cancer data from TCGA, we calculated
the Pearson correlation coefficients of the FKBP genes
(Figure 1C). Some genes showed strong correlations: FKBP2
and FKBP8 (r = 0.55, p < 0.05), FKBP7 and FKBP14 (r = 0.53, p <
0.05), FKBP7 and FKBP10 (r = 0.51, p < 0.05), and FKBP15 and
FKBP2 (r = −0.36, p < 0.05). For further exploration, using the
GEPIA2 database, we constructed survival maps between FKBP
genes and common tumors using the Kaplan–Meier (KM) model
(Figure 1D). The results revealed that FKBP2, 6, 10, and 11 were
associated with the survival of patients with ccRCC. Above all,
the expression and survival analysis suggested that FKBP2, 10,
and 11 showed the most promise for further research. Increasing
evidence has shown that cancer stem cells and the tumor
microenvironment (TME) play a key role in the initiation and
progression of tumors. We further validated the relationship
between the FKBP gene family, cancer stem cells, and TME. The
results showed that FKBP5, FKBP11, and FKBP15 were
positively correlated with immune cells, whereas FKBP3 and
FKBP4 were not (Figure 1E). Concurrently, FKBP7, FKBP9, and
FKBP10 were positively correlated with stromal cells.
Interestingly, FKBP3 and FKBP4 were negatively correlated
with stromal cells (Figure 1F). The mRNA expression and
DNA methylation data were used to calculate the stemness
indices and their correlations with the FKBP gene family. The
results suggested that the high expression of FKBP3 and FKBP4
contributed to stemness, and FKBP7, FKBP9, and FKBP10 had
the opposite effects (Figures 1G, H).

The Expression and Correlation Analysis
of the FKBP Gene Family in ccRCC
To precisely determine the expression and clinical significance of
the FKBP gene family in ccRCC patients, we downloaded the data of
ccRCC samples from the TCGA and GEO database (TCGA-KIRC:
72 normal samples and 539 tumor samples; GSE40435: 101 normal
samples and 101 paired tumor samples). R software packages were
used to normalize the data and perform a differential analysis. We
found that the different expression levels of all FKBP genes reached
statistical significance (Figure 2A and Supplementary Figure S3A).
Among them, FKBP1A, 7, 10, 11, and 15 were remarkably
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upregulated, whereas FKBP1B and 4 were considerably
downregulated. Based on the TCGA and GEO database, we
calculated the Pearson correlation coefficients of FKBP genes
(Figure 2B and Supplementary Figure S3B). The results
suggested that FKBP2 and FKBP8 (r = 0.66, p < 0.05), FKBP7
and FKBP1A (r = 0.51, p < 0.05), FKBP7 and FKBP14 (r = 0.57, p <
0.05), and FKBP10 and FKBP11 (r = 0.41, p < 0.05) were markedly
positively correlated, whereas the other genes showed a
weak correlation.

Prognosis-Related FKBP Gene Screening
and the Construction of the Risk Model
To further investigate the role of FKBPs in the prognosis of ccRCC
patients, we performed a univariate Cox regression analysis. The
results revealed that only FKBP10 and FKBP11 were statistically
significant (p < 0.05) (Table 1). Furthermore, we explored the effects
of FKBP10 and FKBP11 on the overall survival (OS) and clinical
outcomes of patients with ccRCC using multiple stepwise Cox
regression analysis. The data in Table 1 suggest that FKBP10 and
FKBP11 were independent predictors in patients with ccRCC. We
randomly divided the patients with ccRCC into a training group
and a test group. In the training group, based on the results of
multiple stepwise Cox regression analysis, we constructed a
prognostic model that included risk score ranking, survival status,
and heat maps of gene expressions (Figure 2C). The following
formula was used to calculate the risk score of each patient:

Risk score = (0:6945 ∗ ExpFKBP11) + (0:4383 ∗ ExpFKBP10)

Receiver operating characteristic (ROC) and KM curves were
used to evaluate our prognostic model. The area under the ROC
curve (AUC) was 0.732, indicating a good prognostic significance.
These results are shown in Figure 2D. Based on the median risk
score, we divided approximately 267 patients with ccRCC into two
subgroups and performed survival analysis. The results revealed that
patients with high risks had a worse OS, whereas the low-risk
subgroup showed improved outcomes (Figure 2E). We also used
the data of the test group to perform the same analysis to evaluate
our risk model. The results were comparable to the training group
(Figures 2F–H), indicating that the prognostic model is reliable.

Setup of a Predictive Nomogram
According to FKBP10, FKBP11, and
Clinical Features
To further determine the relationship between our prognostic
model and clinical features, univariate and multiple stepwise Cox
analyses were performed (Table 2). The results revealed that risk
score, age, tumor grade, and tumor stage are closely related to the
survival time and clinical outcomes of patients with ccRCC and
can be used as independent prognostic factors. Based on FKBP10
and FKBP11 expression and clinical features, we constructed a
predictive nomogram (Figure 3A). By calculating and adding the
score of each factor, we could predict the approximate survival
rates of each patient and make clinical treatment decisions for
ccRCC patients. The calibration plot for the probability of
survival at 3 and 5 years showed promising prediction effects
between nomogram and actual observations (Figures 3B, C).
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FIGURE 1 | Pan-cancer analysis of the FKBP gene family. (A) The average expression level of the FKBP gene family among 33 tumor types in the TCGA database.
(B) Differential expression analysis of the FKBP gene family in different tumor types. Red: upregulate. Green: downregulate. (C) Correlation analysis of the FKBP gene
family by using Spearman correlation coefficient. (D) Survival analysis of the FKBP gene family in different tumor types. Red: positive correlation. Blue: negative
correlation (KIRC: Kidney Renal Clear Cell Carcinoma). (E, F) The correlation of the FKBP gene family and tumor microenvironment. Red: positive correlation. Blue:
negative correlation. (G, H) The correlation of the FKBP gene family and stemness indices. Red: positive correlation. Blue: negative correlation.
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FIGURE 2 | Expression of FKBP genes and risk score model construction based on the TCGA database with ccRCC patients. (A) Expression of FKBP genes
between ccRCC tissues and normal kidney tissues based on the TCGA database. (B) Correlation analysis of the FKBP gene family in ccRCC by using Spearman
correlation coefficient. (C) Risk score, expression heat map, and survival status in the training group. (D) ROC curves for forecasting OS in the training group.
(E) Survival curve for low- and high-risk subgroups in the training group. (F–H) Similar analysis in the test group. *P < 0.05 **P <0.01 ***P < 0.001.
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Validation the Prognostic Value of FKBP10
and FKBP11 and Exploration of
Molecular Mechanism
We further explored a more specific molecular mechanism and
prognostic value of FKBP10 and FKBP11 in ccRCC. First, the
Kaplan–Meier survival curves, using the log-rank test, were used
to compare the relationship between FKBP genes and OS. The
results showed that FKBP10 and FKBP11 are associated with the
OS in patients with ccRCC (Figures 3D, E). The Spearman
correlation coefficient was calculated as R = 0.51, p < 0.01
(Figure 3F). We also explored the joint effects of FKBP10 and
FKBP11. The results showed that the group with low FKBP10
and low FKBP11 expression had the best outcome, whereas
patients with high FKBP10 and FKBP11 expression had the
worst prognosis (Figure 3G), suggesting that the difference in
prognostic value for the combination of FKBP10-FKBP11 was
more meaningful than any single marker. Second, we further
analyzed the relationship between FKBP genes and clinical
features (Figures 4A, B). The results revealed that FKBP10
and FKBP11 were closely related to the grade and stage of
patients with ccRCC, suggesting that FKBP10 and FKBP11 had
excellent prognostic value. Finally, we performed a single-gene
GSEA. The GO enrichment analysis showed that high expression
of FKBP10 is related to some biological processes and cellular
component, such as endoplasmic reticulum lumen,
establishment of protein localization to endoplasmic reticulum,
lipid modification, and regulation of autophagy (Figure 5A). The
KEGG enrichment analysis showed that high expression of
FKBP10 is associated with the p53 signaling pathway,
ribosome, peroxisome, and ubiquitin-mediated proteolysis
(Figure 5B). Moreover, the GO enrichment analysis of the
high expression of FKBP11 showed that FKBP11 is related to
some biological processes, such as cytokine activity, interferon
gamma production, lysosomal transport, and macroautophagy
(Figure 5C). KEGG enrichment analysis showed that high
expression of FKBP11 may take part in cytokine receptor
interaction, fatty acid metabolism, and TGF beta signaling
pathway (Figure 5D).
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Validation of Clinical Specimens and Multi-
Omics Factor Analysis
To further verify our analysis, we downloaded the data of IHCs
in ccRCC patients from the HPA public database
(Supplementary Figure S3C). The differential protein
expression of FKBP genes was similar to that of mRNA
expression. We extracted RNA from 16 paired specimens of
patients that were surgically treated for ccRCC in our hospital.
We performed qRT-PCR to further validate the mRNA
expression level. qRT-PCR results showed that the expression
of FKBP10 and FKBP11 was increased in tumor tissue
(Figures 6A, B). To further explore the reason for the high
expression of FKBP10 and FKBP11, we performed multi-omics
analysis. First, we considered the genetic alterations. By using the
data of CNVs about ccRCC patients from the TCGA database,
we found that the copy number of FKBP10 was barely affected,
while the overall copy number alterations of FKBP11 were visible
(Figures 6C, D). We also analyzed the frequency of somatic
mutations in patients with ccRCC from the TCGA database. The
results suggested that only one sample in each of FKBP11,
FKBP6, and FKBP7 was mutated (Figure 6E). These data
suggested that the high expression of FKBP10 and FKBP11 in
ccRCC patients might not be because of genomic alterations. We
then focused on epigenetic changes and analyzed the alterations
of DNA methylation. The results showed that FKBP10 and
FKBP11 have a low degree of methylation in tumor tissues.
The expression and methylation showed moderate and weak
correlation (Figures 6F, G). These results suggested that the
alteration in expression might be due to epigenetic alterations. It
provides one explanation of expression changes.

Knockdown of FKBP10 and FKBP11
Inhibits Proliferation, Migration, and
Invasion of the ccRCC Cell Line
We further investigated the effects of FKBP10 and FKBP11
expression on cell functions. We performed a CCK-8 assay to
analyze cell viability and Transwell assay to test the motility ability
of 786-O cells. Knockdown efficiency of FKBP10 and FKBP11 was
TABLE 2 | The prognostic value of different clinical features.

Univariate analysis Multivariate analysis

HR 95% CI p-value HR 95% CI p-value

Age 1.03 1.01–1.05 0.003 1.03 1.01–1.05 0.013
Gender 0.75 0.49–1.15 0.185 0.79 0.50–1.25 0.312
Grade 2.38 1.77–3.20 <0.001 1.49 1.07–2.06 <0.001
Stage 1.89 1.58–2.26 <0.001 1.65 1.35–2.03 <0.001
Risk score 1.65 1.35–2.00 <0.001 1.17 0.91–1.49 <0.001
Augus
t 2021 | Volume 11 | Article
TABLE 1 | Prognosis-related FKBP genes identified by Cox regression analysis.

Univariate analysis Multivariate analysis

HR 95% CI p-value coef HR 95% CI p-value

FKBP10 1.60 1.34–1.92 <0.001 0.44 1.55 1.22–1.96 <0.001
FKBP11 1.75 1.43–2.15 <0.001 0.69 2.00 1.47–2.72 <0.001
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FIGURE 3 | Nomogram construction and validation of the prognostic value of FKBP10 and FKBP11. (A) Nomogram for predicting OS of patients with RCC.
(B, C) The calibration plot for the probability of survival at 3 and 5 years based on the TCGA database. (D, E) Survival analysis of FKBP10 and FKBP11 based on
the TCGA database. (F) Correlation analysis by using the Spearman correlation coefficient. (G) Joint effects analysis of FKBP10 and FKBP11.
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examined using qRT-PCR (Supplementary Figure 3D).
Knockdown of FKBP10 and FKBP11 significantly inhibited cell
proliferation, migration, and invasion (Supplementary Figures 3E, F).
The results of our experiments suggested that FKBP10 and FKBP11
might play important roles in the maintenance of the tumor
characteristics of ccRCC.
DISCUSSION

The FKBP gene family is an intracellular receptor that can
interact with other factors in cells by formation of a complex
to regulate many signal pathways involved in many cellular event
Frontiers in Oncology | www.frontiersin.org 9
(6–9, 38). Many evidences have shown that FKBP dysregulation
can be observed in various malignant tumors, indicating that
they may play important roles in occurrence and development of
cancers (39). However, the roles of FKBP in ccRCC are still
unclear. In our study, we systematically analyzed the integral
distribution, function, and prognosis of FKBP genes in humans
by mining public database. We systematically analyzed the
prognosis value of FKBPs and explored the underlying
mechanism in ccRCC. Our data suggested that the high
expression of FKBP10 and FKBP11 is associated with poor
prognosis and can be independent predictors of ccRCC. Our
results indicate that FKBP10 and FKBP11 can act as prognostic
biomarkers for ccRCC.
A

B

FIGURE 4 | Clinical relevance of FKBP10 and FKBP11 in RCC. (A) The expression of FKBP10 in patients with RCC among the various pathologically differentiated
grades and stages. (B) The expression of FKBP11 in patients with RCC among the various pathologically differentiated grades and stages.
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Although many studies have explored the function and
underlying mechanisms of FKBPs, the prognostic value of
FKBPs has rarely been explored, especially in urinary system
tumors. In our study, we first performed pan-cancer analysis to
explore the integral distribution, function, and prognosis of
FKBP genes in humans. We explored the differential
expression of FKBPs in human normal organ tissues and some
common tumors. We also explored the relationship between the
expression of FKBPs and tumor grade, tumor stage, and survival
state. The result revealed that FKBP2, FKBP10, and FKBP11 have
prognostic value. Second, we analyzed ccRCC data from TCGA
database to verify our hypothesis that FKBPs have prognostic
Frontiers in Oncology | www.frontiersin.org 10
values in patients with ccRCC. We analyzed different expression
levels and screened prognosis-related FKBP genes. We found
that only FKBP10 and FKBP11, but not FKBP2, had the most
promise for further research. In addition, we constructed a risk
score model and nomogram based on clinical features and the
expression levels of FKBP10 and FKBP11 to help predict the
prognosis of patients with ccRCC. Through verification
experiments, our model and nomogram appeared to be
significant and sensitive. FKBP10 and FKBP11 are independent
prognostic indicators for ccRCC. Finally, we used paired clinical
specimens and multi-omics analyses to further analyze the
impact factors of expression alteration.
A

C

B

D

FIGURE 5 | Gene set enrichment analysis and functional verification. (A, C) GSEA analysis of FKBP10 and FKBP11 with C5 GO gene sets. (B, D) GSEA analysis of
FKBP10 and FKBP11 with C2 KEGG gene sets.
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Additionally, we performed GSEA to further explore the
specific molecular mechanism, of which FKBP10 and FKBP11
were involved. The results indicated that FKBP11 was related to
immune-related biological processes and autophagy, such as
interferon gamma production, lysosomal transport,
macroautophagy, and TGF beta signaling pathway, whereas
FKBP10 was involved in cell metabolism and autophagy. We
explored the effects of FKBP10 and FKBP11 on ccRCC cell line
via siRNA-mediated knockdown assays in an in vitro model.
CCK8 and Transwell assays revealed that the knockdown of
Frontiers in Oncology | www.frontiersin.org 11
FKBP10 and FKBP11 inhibits proliferation, migration, and
invasion of the ccRCC cell line.

However, our study has several limitations. Firstly, clinical
information of ccRCC patients only came from the TCGA
database and further verification is needed in other databases
and clinical samples. Secondly, our results are only based on
RNA sequencing and are not validated via other omics data
platforms. Thirdly, less clinical information decreases the
accuracy of our results. Finally, we have only demonstrated
that FKBP10 and FKBP11 can affect the ccRCC phenotypes in
A E

F

G

C

B

D

FIGURE 6 | Validation of clinical specimens and multi-omics factor analysis. (A, B) Validation of the expression of FKBP10 and FKBP11 in 16 paired clinical
specimens. (C, D) Copy number variation analysis of the FKBP gene family. (E) Somatic mutation analysis of the FKBP gene family. (F, G) The correlation of FKBP10
and FKBP11 expression and DNA methylation. *P < 0.05 **P < 0.01 ***P < 0.001.
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vitro, and the underlying mechanisms need to be further studied
in both in vivo and in vitro models.
CONCLUSIONS

In summary, our study revealed the abnormal expressions and
prognostic values of the FKBP gene family in ccRCC. We
analyzed the relationship between FKBP expression and
survival state in patients with ccRCC. Furthermore, we
constructed a nomogram to predict the prognosis of patients
with ccRCC. Additionally, we performed GESA analysis and in
vitro experiments involving the ccRCC cell line to determine the
function and underlying mechanism of FKBPs. All these results
suggest that FKBP10 and FKBP11 are potential prognostic
markers and novel therapeutic targets for patients with ccRCC.
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