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To study the dynamic nature of brain activity, functional magnetic resonance imaging

(fMRI) data is useful including some temporal dependencies between the corresponding

neural activity estimates. Recent studies have shown that the functional connectivity

(FC) varies according to time and location which should be incorporated into the

model. Modeling this dynamic FC (DFC) requires time-varying measures of spatial region

of interest (ROI) sets. To know about the DFC, change-point detection in FC is of

particular interest. In this paper, we propose a method of detecting a change-point

based on the maximum of eigenvalues via randommatrix theory (RMT). From covariance

matrices for FC of all ROI’s, the temporal change-point of FC is decided by an RMT

approach. Simulation results show that our proposed method can detect meaningful

FC change-points. We also illustrate the effectiveness of our FC detection approach by

applying our method to epilepsy data where change-points detected are explained by the

changes in memory capacity. Our study shows the possibility of RMT based approach

in DFC change-point problem and in studying the complex dynamic pattern of functional

brain interactions.

Keywords: Tracy-Widom distribution, random matrix theory, fMRI, epilepsy, eigenvalue, dynamic functional

connectivity, covariance, change-point

1. INTRODUCTION

Our brain is a complex network which consists of spatially distributed, but functionally linked
regions that continuously share information with each other. Recent advanced functional
neuroimaging studies have provided new tools to measure and to examine functional interactions
between brain regions. These make the examination of DFC in the human brain and lead
a development of theory associated with the complex FC structures. The fMRI data contains
information about brain activity with complex spatial-temporal correlations. FC in the brain may
be represented by these spatial dependence patterns and may reveal important characteristics of
brain function and individual variations in cognition and behavior. FC is fundamentally a statistical
concept, and is generally defined and assessed using statistical measures such as correlation
(Biswall et al., 1995), and cross-coherence (Sun et al., 2004) in the temporal evolution of neural
activity between distinct brain locations. Hutchison et al. (2013a,b) researched promise, issues, and
interpretations as related with DFC.

Resting-state fMRI measures spontaneous fluctuations in the blood-oxygenation-level-
dependent (BOLD) signal in gray matter regions. The fMRI connectivity approaches estimate
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statistical dependencies between gray matter activity arising from
different regions (Biswall et al., 1995; Sato et al., 2006; Friston,
2011). For example, FC alterations are linked to depression,
schizophrenia, and other illnesses (Mayberg et al., 1999; Jafria
et al., 2008). Koike et al. (2011) provided that the default mode
network (DMN) and subsystems might serve to integrate brain
regions with performing function specific to each level of arousal.

Functional connectivity modelings are addressed with
independent component analysis (ICA) (McKeown et al., 1998;
Calhoun et al., 2001), pairwise correlation analysis (Supekar
et al., 2008), and partial correlation analysis (Salvador et al.,
2005). A key assumption of the aforementioned approaches
is that functional connectivity remains stationary throughout
the scanning session. However, many recent researches provide
evidence of the dynamic nature of the brain’s functional
organization (Hellyer et al., 2014). Functional networks appear
to fluctuate on a time scale and to reorganize under tasks during
the scanning session (Chang and Glover, 2010).

Time-varying and dynamic nature of connectivity is
considered in many recent neuroimaging studies. A well-known
method for exploring time-varying connectivity is applying a
sliding window of pre-specified length. This method calculates
the correlations between distinct locations throughout the
duration of the window at each step. Limitations with this sliding
window approach, that the window length strongly influences
the temporal smoothness or variability observed in the resulting
correlations are discussed (Lindquist et al., 2014).

Identifying change-points is an important subject in
neuroimaging study as it shows properties of brain networks as
they relate to experimental stimuli and disease processes. Many
change-point methods for fMRI signals have been proposed
(Lindquist et al., 2007; Robinsona et al., 2010; Cribben et al.,
2013; Xu and Lindquist, 2015). Xu and Lindquist (2015) assume
that the timing of a subject’s activation onset and duration
are random variables, and their distributions are used to
approximate the probability that a voxel/region is activated as
a function of time with multi-subject change-point modeling.
Bayesian approaches (Cheon and Kim, 2010; Kim and Cheon,
2010) and a non-parametric Fourier functional approach (Kim
and Hart, 2011) are proposed to estimate change-points with
distributional parameter changes which can be extended to the
covariance change-point problems. Shao and Zhang (2010) study
tests for change-point in time series, which is applicable to each
individual fMRI series. Recently change-point detection for the
multivariate covariance matrix are proposed for brain networks
(Kim, 2019; Chenouri et al., 2020).

There have been many studies on testing for distributional
structure changes for a sequence of independent and identically
distributed (IID) random variables, including Csörgő and
Horváth (1997). However test statistics developed for change-
point detection in the IID context may not work with the time
series observed in neuroimaging as they do not take into account
the temporal dependence in the data. Aue et al. (2009) proposed
break detection in covariance based on the vech operator to
summarize information in the covariance matrix. Here vech is
the vectorization operator which converts the matrix into a
column vector. Aue and Horváth (2013) reviewed break points

estimation in covariance structure in time series. Inclán and
Tiao (1994) proposed variance change detection with cumulative
sums for independent series. Petersen and Muller (2016) studied
functional data covariance and applied to Alzheimer fMRI data.
For detecting correlation change, Wied and Krömer (2012)
considered the cumulated sums of empirical correlations to make
a change test.

In the present study, we aim to deal with spatial time series
data to detect FC change-points based on random matrix theory.
Our approach does not make any parametric assumptions. It
is especially designed for detecting one change-point but is
extendable to multiple change-points in FC. In addition, we
applied our developed method to fMRI data of post-surgical
epilepsy patients. Previous studies have shown that activity and
FC of the medial temporal lobe (MTL) during the post-encoding
offline period are closely related to the memory consolidation
(Tambini et al., 2010; Staresina et al., 2013; Tambini and
Davachi, 2013). However, how the brain supports the memory
consolidation process in the absence of one MTL structure has
not been investigated. Here, we applied our developed method
to the post-encoding rest period to evaluate its usefulness in
characterization of memory consolidation networks in MTL
resected brains.

This paper is organized as follows. In section 2, we begin
by looking at the covariance change-point problem with the
proposed statistics. Simulation studies are shown in section 3.
Application of the proposed method to the experimental epilepsy
data is shown in section 4. The paper concludes with a discussion.

2. METHODS

2.1. Statistical Problems for Dynamic
Functional Connectivity
A natural unit of fMRI analysis is multi-voxel regions of the
brain that change their level of activation. The fMRI data can
be widely used to detect and delineate regions of the brain
that change in response to specific stimuli and tasks. We
represent a single scan from a subject as a 3-D rectangular lattice
consisting of volume elements (voxels). From one scanning
session, each voxel contains serial measures of localized brain
activity called blood-oxygen-level dependent (BOLD) fMRI
responses. Through the hemodynamic response (HR) process,
blood releases oxygen to neurons at a greater rate than to
inactive neurons. This causes a change of the relative levels of
oxyhemoglobin and deoxyhemoglobin that is detectable due to
magnetic susceptibility. Since the number of intracranial voxels is
too large to estimate a global spatial correlation matrix including
all voxel pairs, we partition the voxels into mutually exclusive
neuroanatomical regions and select ROIs in order to make the
ROI-level inference.

Let yivt be an observation measured at voxel or region v
from the serial fMRI BOLD responses for an ith subject. Let
i = 1, . . . ,N represent subjects, v = 1, . . . , d voxels (or
ROIs), and t = 1, . . . ,T time points. For the ith subject, d ×
T observed data matrix is obtained. It makes a multivariate
time series for each subject and its covariance change is of
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interest. Tests that assess the structural stability of volatilities or
cross-volatilities for multivariate non-linear time series such as
fMRI data and change-point estimation is of great importance
for understanding the underlying dynamics.

Let’s fix the ith subject for the notational simplicity. Consider
the observed yt is a d × 1 random vector at the time point
t with E[‖yt‖2] < ∞. Here ‖ · ‖ denotes the Euclidean
norm in R

d. Based on the observations of the random vector
y1, . . . , yT , consider a test to identify covariance matrix change
for each subject.

The null hypothesis is

H0 :Cov(y1) = · · · = Cov(yT) (1)

which indicates the constancy of the covariances during
the observational time period. Against this null hypothesis
the alternative hypothesis with at most one change in the
covariance is

HA :Cov(y1) = · · · = Cov(yτ ) 6= Cov(yτ+1) = · · · = Cov(yT)
(2)

where τ is the change-point. Let 6t = Cov(yt).

2.2. Dynamic Functional Connectivity Test
With the Largest Eigenvalues
We summarize the covariance structure using maximum
eigenvalues, defined as the largest eigenvalues of the covariance
matrix as a functional representative measure of the matrix.

Let λ1(t) = max
{

λ1(t), . . . , λd(t)
}

denote the largest
eigenvalues of the matrix 6t . The null hypothesis in (1) can be
considered as that

H0 : λ1(1) = · · · = λ1(T) (3)

which indicates the constancy of the maximum eigenvalues of
covariances during the observation time period. The alternative
hypothesis can be written with the maximum eigenvalue
measure as

HA : λ1(1) = · · · = λ1(τ ) 6= λ1(τ + 1) = · · · = λ1(T) (4)

where τ is denoted as the change-point.
Suppose that the data are from d−dimensional Gaussian

distribution with mean zero and positive definite covariance
matrix 6. The sample covariance matrix (SCM) formed with
these T samples as

ST = 1

T

T
∑

u=1

yuy
′
u (5)

has the (central) Wishart distribution (Goodman, 1963; Raj Rao
et al., 2008).

Estimating the eigenvalues of a population covariance matrix
from a sample covariance matrix is a problem of fundamental
importance in multivariate statistics since the eigenvalues of
covariance matrices play a key role in many widely used
techniques with a suitable theory (Goodman, 1963; Okamoto,

1973; Gupta and Nagar, 1999; Mohsen, 2013). The amount
of variance explained is measured by the eigenvalues of the
population covariance, 6d×d. Random matrix theory predicts
that the eigenvalues of a sample covariance matrix ST are not
good estimators of the eigenvalues of the population covariance
when the sample size T and the number of variables d are
large. El Karoui (2008) proposed a better estimator for the
eigenvalues of large dimensional covariance matrices. Under the
weak assumption that the Marčenko and Pastur (1967) equation
holds, the El Karoui (2008) estimator can be thought as a
shrinkage in a non-linear fashion.

Let λ1 ≥ λ2 ≥ · · · ≥ λd be the eigenvalues of the
population covariance matrix. Accordingly let l1 ≥ l2 ≥
· · · ≥ ld be the eigenvalues of the sample covariance matrix.
Anderson (1963) showed that the case where 6 = Id×d

with all the population eigenvalues one, under some moment
conditions, themaximum eigenvalue is not a consistent estimator
of λ1 and can be extremely biased when T and d are both
large. To de-bias extreme sample eigenvalues, we use population
spectral distribution, a probability measure that characterizes
the population eigenvalues (El Karoui, 2007). The limiting
distribution of the sample eigenvalues are dependent on data
dependency and their covariance matrix. Johnstone (2001)
derived the limiting distribution of the largest sample eigenvalue
with independent Gaussian case and Bai and Silverstein (2010)
dealt with this problem the sub-Gaussian case. In terms of the
spectral decomposition of a covariance matrix, an estimator
is rotation-equivariant if and only if the eigenvectors are the
same as those of the sample covariance matrix (Mohsen, 2013).
Thus, the differences between two such estimators appear only in
their eigenvalues.

2.3. Dynamic Functional Connectivity Test
With Tracy-Widom Distributions
Assume that yu’s are independent from d−dimensional
distribution, u = 1, . . . ,T. Let the sample covariance matrix up
to t and after t be

At =
t

∑

u=1

(yu − ȳt)(yu − ȳt)
′ (6)

Bt =
T

∑

u=t+1

(yu − ȳt∗)(yu − ȳt∗)
′ (7)

where

ȳt =
1

t

t
∑

u=1

yu and ȳt∗ = 1

(T − t)

T
∑

u=t+1

yu (8)

are the sample mean vectors separated by t. If yu’s are
independent from d−dimensional normal distribution, At and
Bt are d× dmatrices following Wishart distributions denoted by
At ∼ Wd(6, t) and Bt ∼ Wd(6,T − t) respectively under H0.

Consider that t, T − t ≥ d. The scale matrix 6 has no effect
on the distribution of the eigenvalues, and so consider the largest
eigenvalue λ1(t) of (At + Bt)

−1At as the greatest root statistic.
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If there exists change and change-point occurs at time point t,
there is change in At and Bt . This change is reflected in the test
statistic Gt .

Under H0 in (3), it holds that λ1(t∗) = · · · = λ1(T − t∗). For
example, we can set t∗ = 30 to have enough degrees of freedom.
We consider the following statistic to provide information about
change and change-points in the covariance matrix.

Gt = max
t

eigen[(At+Bt)
−1At]−max

t
eigen[(At+Bt)

−1Bt]. (9)

Under H0, E[Gt] = 0. Since At and Bt are positive definite,
0 < φ < 1. Equivalently φ is the largest root of the
determinantal equation

det[At − φ(At + Bt)] = 0. (10)

Johnstone (2009) provided the appropriate centering and scaling,
and the logit transform Wt = logit(φ) = log(φ/(1 − φ)) is
approximately Tracy-Widom distributed:

Wt − µt

σt
⇒ Z1 ∼ F1. (11)

The distribution F1 was found by Tracy andWidom (1996) as the
limiting law of the largest eigenvalue of d×dGaussian symmetric
matrix. The centering and scaling parameters are given by

µt = 2 log tan

(

ϕ + γ

2

)

,

σ 3
t = 16

(t + (T − t)− 1)2
· 1

sin2(ϕ + γ ) sinϕ sin γ
(12)

where the angle parameters ϕ = ϕt , γ = γt are defined by

sin
(γ

2

)

= min(d, t)− 1/2

t + (T − t)− 1
,

sin
(ϕ

2

)

= max(d, t)− 1/2

t + (T − t)− 1
. (13)

We apply Tracy and Widom scaling and centering for each
maximum eigenvalues of (At+Bt)

−1At and thenmax eigen[(At+
Bt)

−1Bt] respectively.
Therefore our test is modified by Tracy andWidom correction

to de-bias of the eigenvalues as follows

Gt = max eigenTW[(At+Bt)
−1At]−max eigenTW[(At+Bt)

−1Bt].
(14)

Here max eigenTW denotes that the maximum eigenvalue is
modified by Tracy and Widom correction. We propose the test
statistic for change as

3T = max
1<t<T

G2
t (15)

which rejects H0 if3T is large. Accordingly the proposed change-
point estimator is

τ̂ = arg max
1<t<T

G2
t . (16)

Permutation tests have the flexible class of tests for both
non-parametric and parametric (model-based). The proposed
statistics can be used regardless of the data distributions
using this permutation approach. The threshold calculation
based on block permutation can be applied for testing for
change-points (Strasser and Weber, 1999; Hus̆ková, 2004).
Exchangeability of the errors might be too strong of an
assumption for time series applications due to the dependence
structure of the observations. Block permutation is an applicable
alternative. Block permutation principles are suitable for testing
autoregressive series and they are refined (Kirch and Steinebach,
2006; Kirch, 2007; Zeileis and Hothorn, 2013). Approximations
of critical values of the change test statistics can be obtained
through block permutation methods (Hus̆ková, 2004; Luger,
2006; Kirch, 2007).

To do our testing procedure, the approximate critical values
are required. For each subject with dependent time series
data, each critical value can be obtained according to the
block permutation tests. This block permutation tests provide
asymptotically valid results in the presence of dependency.

3. SIMULATIONS

3.1. Simulation Study
In this section we set up the simulation in order to assess and
compare the performance of the proposed estimator for change-
point estimation. The simulation study is focused on change-
point estimation with multi-subject data from the multivariate
vector autoregressive (MVAR) models. The objective of each
simulation is to detect the functional connectivity change-point.

Before change-point estimation, testing for change is done.
Since it is not possible to obtain the exact distribution of the test
statistic 3T analytically, it is determined by simulation. The data
are synthetically generated frommultivariate normal distribution
N(0,6d) for the null distribution with the given dimension d as
the number of ROIs, and the number of time points T. Several
types of 6d are designed. For the comparison we also consider
the Aue et al. (2009) method.

Aue et al. (2009) proposed the test for covariance change
based on

St,A = 1√
T





t
∑

j=1

vech[yjyj
′]− t

T

T
∑

j=1

vech[yjyj
′]



 ,

t = 1, . . . ,T. (17)

Their change test statistic is

3A = max
1<t<T

S′t,A6̂−1
T St,A with 6̂T = Ĉov(vech[yjyj

′]) (18)

where 6̂T is a consistent covariance estimator. Aue et al. (2009)
change-point estimator is

τ̂A = arg max
1<t<T

|S′t,A6̂−1
T St,A|. (19)

We use 6̂T as the sampled version of the moment estimator. The
asymptotic critical values of the test statistics are computed from
the block permutation based empirical distribution.
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We simulate data according to MVAR(1) and MVAR(2)
models. with the regional dimension d = 5 and T = 200
time points in 1,000 repetitions. Since the brain network is high-
dimensional, we also consider d = 20. The empirical critical
values under the null distribution are obtained from no change-
point model using block permutations for each subject. The
fraction of one change-point is considered as θ = τ/T = 0.5 and
0.7 in the simulated data. We calculate the performance measure
such as mean, median, square root of MSE (mean squared error),
and the proportion around the true change-point as p5 = P̂(|τ̂ −
τ | < 5) with 95 % confidence level.

Data are generated from the following model, yu ∼
MVAR(p) as

yu =
p

∑

k=1

Bkyu−k + ǫu, (20)

where Bk is kth parameter coefficient matrix of MVAR(p), k =
1, . . . , p. And 61 and 62 are covariance matrix of ǫu’s before
and after the change-point respectively. We consider MVAR(1)
models in cases (i) and (ii), andMVAR(2) models in (iii) and (iv)
in the followings.

I. MVAR(1) with coefficient matrix B1

B1 =
{

91 = [(0.2)1, 0, · · · , 0], u ≤ τ

92 = 91 + (0.1)I, u > τ .
(21)

where I is the identity matrix and J is a matrix whose
components are all 1’s.

(i) MVAR(1) with |61| < |62|
{

61 = (0.5)I, u ≤ τ

62 = (1.0)I+ (0.1)J− (0.1)I, u > τ .
(22)

(ii) MVAR(1) with |61| > |62|
{

61 = (1.0)I+ (0.1)J− (0.1)I, u ≤ τ

62 = (0.5)I, u > τ .
(23)

II. MVAR(2) with coefficient matrices B1 and B2

B1 =
{

911 = [(0.2)1, 0, · · · , 0], u ≤ τ

912 = 911 + (0.1)I, u > τ ,

B2 =
{

921 = [(0.1)1, 0, · · · , 0], u ≤ τ

922 = 921 + (0.1)I, u > τ .
(24)

(iii) MVAR(2) with |61| < |62|
{

61 = (0.5)I+ (0.01)J− (0.01)I, u ≤ τ

62 = (1.0)I+ (0.1)J− (0.1)I, u > τ ,
(25)

(iv) MVAR(2) with |61| > |62|
{

61 = (1.0)I+ (0.1)J− (0.1)I, u ≤ τ

62 = (0.5)I+ (0.01)J− (0.01)I, u > τ .
(26)

To illustrate the potential to detect multiple change-points, we
can apply the procedure with the subsegment after the change-
point. Each time we reject H0, we re-apply the method to the
subsamples splitted by the proposed change-point.

We considered MVAR(1) and MVAR(2) cases with the
different covariance structure after the change-point at θ =
0.5, 0.7. Tables 1, 2 provide MVAR(1) cases in which our
estimators have smaller MSE’s and higher matching proportions
than Aue estimators. Tables 3, 4 give the change-point
estimation results in MVAR(2) cases. Our method performs
better than the Aue method in Tables 3, 4. Aue method depends
on the covariance estimator 6̂T in the statistic in (19), and
the change-point estimation results depend on the covariance
structure accordingly. But our change-point estimator gives
stable simulation results in the performance based upon mean
and MSE. Overall in this simulation the proposed estimator
performs very well.

4. APPLICATION TO THE EPILEPSY fMRI
DATA

4.1. Epilepsy fMRI Data
The same subjects from our previous study are used in this
study except for one patient who showed a severe movement
artifact (Jeong et al., 2019). Patients who underwent unilateral
MTL resection (MTLR) to treat medically intractable temporal
lobe epilepsy at Seoul National University Hospital at least 1
year before recruitment and were between 19 and 50 years of
age are retrospectively recruited. We only include subjects who
showed at least a low average or a higher level (scores> 80)
of memory capacity and general intelligence evaluated by the
standard neuropsychological test. A total of 34 patients (16 left
and 18 right; median age = 32.5 years) and 24 age- and education-
year-matched healthy controls (HC, median age = 32 years) are
included in the present study. All subjects provided informed
consent. This study was approved by the Institutional Review
Board of Seoul National University Hospital.

The MR images were acquired on a research-dedicated 3T
Magnetom Trio Tim Syngo (Siemens, Erlangen, Germany) using
a 32-channel head coil. Five minutes of resting-state functional
data (eyes open, fixation cross) were acquired both before (pre-
encoding baseline) and after performing the in-scanner memory
encoding paradigm of words and figures (post-encoding) using a
T2∗-weighted gradient echo planar imaging sequence (36 axial
slices, slice thickness = 3.4 mm, no gap, TR = 2,000 ms, TE
= 30 ms, FOV the change-point 220 × 220 mm, flip angel
= 80◦, voxel size = 3.4 × 3.4 × 3.4mm3, and interleaved).
Whole-brain high-resolution anatomic T1-weighted images were
obtained with the 3D TFL sequence (TR = 1,670 ms, TE =
1.89 ms, FOV = 250 × 250H mm, flip angle = 9◦, voxel size =
1.0×1.0×1.0mm3). The resting-state functional data underwent
a number of preprocessing steps including motion correction,
slice time correction, co-registration, spatial normalization, and
spatial smoothing (AFNI, version: 16.0.00, https://afni.nimh.nih.
gov/afni/). More details about the memory encoding paradigm
and data preprocessing have been described elsewhere (Jeong
et al., 2018, 2019).
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TABLE 1 | Change-point estimation results of the proposed θ̂ and Aue estimator θ̂A in case (i) MVAR(1) with T = 200 in 1,000 repetitions.

d = 5 d = 20

True θ= 0.5 θ= 0.7 θ= 0.5 θ= 0.7

Statistics θ̂ θ̂A θ̂ θ̂A θ̂ θ̂A θ̂ θ̂A

Mean 0.495 0.666 0.692 0.730 0.499 0.683 0.690 0.753

Median 0.500 0.670 0.700 0.750 0.500 0.680 0.695 0.750
√
MSE 0.052 0.194 0.062 0.109 0.048 0.194 0.052 0.065

p5 0.648 0.069 0.642 0.197 0.616 0.001 0.607 0.269

TABLE 2 | Change-point estimation results of the proposed θ̂ and Aue estimator θ̂A in case (ii) MVAR(1) with T = 200 in 1,000 repetitions.

d = 5 d = 20

True θ= 0.5 θ= 0.7 θ= 0.5 θ= 0.7

Statistics θ̂ θ̂A θ̂ θ̂A θ̂ θ̂A θ̂ θ̂A

Mean 0.509 0.419 0.689 0.734 0.503 0.327 0.691 0.756

Median 0.500 0.390 0.700 0.752 0.500 0.330 0.700 0.755
√
MSE 0.062 0.207 0.063 0.104 0.052 0.182 0.052 0.068

p5 0.607 0.076 0.633 0.203 0.599 0.002 0.615 0.252

TABLE 3 | Change-point estimation results of the proposed θ̂ and Aue estimator θ̂A in case (iii) MVAR(2) with T = 200 in 1,000 repetitions.

d = 5 d = 20

True θ= 0.5 θ= 0.7 θ= 0.5 θ= 0.7

Statistics θ̂ θ̂A θ̂ θ̂A θ̂ θ̂A θ̂ θ̂A

Mean 0.500 0.624 0.689 0.735 0.498 0.621 0.691 0.736

Median 0.500 0.615 0.695 0.730 0.500 0.615 0.695 0.725
√
MSE 0.052 0.148 0.054 0.053 0.051 0.146 0.049 0.054

p5 0.580 0.132 0.586 0.463 0.630 0.143 0.618 0.477

TABLE 4 | Change-point estimation results of the proposed θ̂ and Aue estimator θ̂A (iv) MVAR(2) with T = 200 in 1,000 repetitions.

d = 5 d = 20

True θ= 0.5 θ= 0.7 θ= 0.5 θ= 0.7

Statistics θ̂ θ̂A θ̂ θ̂A θ̂ θ̂A θ̂ θ̂A

Mean 0.502 0.554 0.699 0.622 0.505 0.574 0.694 0.629

Median 0.500 0.475 0.700 0.640 0.500 0.480 0.700 0.645
√
MSE 0.056 0.193 0.048 0.110 0.059 0.209 0.057 0.104

p5 0.600 0.171 0.599 0.251 0.566 0.140 0.608 0.243

Since previous studies have shown that FC during the post-
encoding resting-state is related to the memory performance
(Tambini et al., 2010; Staresina et al., 2013; Tambini and Davachi,
2013), we thought that data that showed evident FC changes of
memory related areas rather than entire data of post-encoding
resting-state may possibly provide the additional information of
the memory consolidation network. In order to find the point
that showed evident FC changes, we used change-point analysis.

For change-point estimation analysis, we select 20 ROIs
within DMN, which is a well-known network that subserves
memory function (Andrews-Hanna et al., 2010; Jeong et al.,
2015). Table 5 shows the details of selected ROIs. In both pre-
and post-encoding rest data, BOLD signals were extracted within
each selected ROI (8 mm radius). For patients, one ROI, left
hippocampus for left MTLR (LMTLR) and right hippocampus
for right MTLR (RMTLR), was excluded from BOLD time
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TABLE 5 | Regions of Interest.

ROI No Region Abbreviation MNI Coordinates

Left Right x y z

1 Dorsal medial prefrontal cortex dMPFC 0 52 26

2 11 Anterior medial prefrontal cortex aMPFC –6 52 –2

3 12 Hippocampal formation HF –22 –20 –26

4 13 Lateral temporal cortex LTC –60 –24 –18

5 14 Posterior cingulate cortex PCC –8 –56 26

6 15 Parahippoampal cortex PHC –28 –40 –12

7 16 Posterior inferior parietal lobule pIPL –44 –74 32

8 17 Retrosplenial cortex Rsp –14 –52 8

9 18 Temporal pole TempP –50 14 –40

10 19 Temporal parietal junction TPJ –54 –54 28

20 Ventral medial prefrontal cortex vMPFC 0 26 –18

TABLE 6 | Change-point estimation results for post-encoding rest of epilepsy

data set.

Change-point mean SD

HC 215.87 25.64

LMTLR 235.56 17.35

RMTLR 215.67 23.53

HC, healthy controls; LMTLR, patients with left medial temporal lobe resection;

RMTLR, patients with right medial temporal lobe resection.

series extraction. The extracted time series are then used for
change-point estimation of post-encoding rest data to detect
changes of FC after memory encoding. Next, pair-wise Pearson
correlation coefficients between each pair of ROIs are calculated
and averaged for each ROI, separately for time series after
change-point and pre-encoding. FC is additionally calculated
for the whole-segment of post-encoding time series in order to
evaluate the usefulness of the change-point estimation method in
the detection of memory encoding-related FC changes.

4.2. Change Analysis for Epilepsy Data
Change analysis starts with an individual test for existence
of change. Under the significance of change, change-point
estimation can be accomplished for its identification. With the
epilepsy data, we performed the block permutation method to
obtain the critical values. For dependent data like fMRI data,
block permutation is preferable and useful (Kirch and Steinebach,
2006; Kirch, 2007; Adolf et al., 2011). This block permutation
procedure is done individually because the change-point should
be estimated subject-wise. The block permutation critical values
are obtained with the block sizeK = 5 in 1,000 repetitions. At the
significance level α = 0.05 we reject the null hypothesis for each
individual subject except hc22 and lt16 (significant at α = 0.10).
Since we focus on detectable change-point estimation, we get
and use the change-points for all subjects. The change-point is
estimable and informative for change, so we include these two
subjects for the analysis. Therefore, we identify one change-point
for each subject.

Table 6 shows a summary of change-point estimation and
Figure 1 shows the change-points of individual subjects. The
experiments are conducted during the two resting states. Change-
point estimation is done during the second state because the
first resting state is considered the baseline. Change-points are
significantly different among groups [F(2,55) = 4.29, p < 0.05,
ANOVA]. Bonferroni post-hoc tests reveal that the LMTLR group
shows significantly higher change-point values than the HC (p <

0.05) and RMTLR groups (p < 0.05). There is no significant
differences between the HC and RMTLR groups (p > 0.10).

Changes of FC after change-point and pre-encoding baseline
are compared within each subject group by using the Wilcoxon
signed rank test (Figure 2). FC without considering change-point
estimation (whole-segment of post-encoding period) are also
compared with baseline FC. FC values in areas that survived
are presented in Table 7. In the HC group, the FC of the right
parahippocampal cortex (PHC) shows a tendency to increase
after the change-point (p = 0.067) and significantly increased
in whole-segment of post-encoding rest (p < 0.05). In RMTLR
group, none of ROIs shows significant FC differences. In the
LMTLR group, although not statistically significant, the FC
of the right temporal pole (TempP) shows a tendency to
decrease after change-point (p = 0.088). In this ROI, whole-
segment comparisons shows significant difference (p < 0.05).
Interestingly, the FC of the right posterior inferior parietal
lobule (pIPL) is significantly decreased after the change-point
(p < 0.05) but shows no differences with the whole-segment
of post-encoding rest (p = 0.642). Moreover, the FC difference
(after change-point – baseline) in the right pIPL is negatively
correlated with verbal immediate memory scores of the standard
neuropsychological Rey-Kimmemory test in LMTLR group (r =
−0.548, p = 0.028; Spearman’s correlation; Figure 2. There are
no other significant clinical correlations of FC, to memory scores
in either after-change point or whole-segment comparisons.

The relationships between the behavioral accuracy (d-prime)
of the in-scanner memory task and the FC values of post-
encoding rest after change-point are also analyzed. Our previous
study describes behavioral accuracy in detail (Jeong et al., 2019).
Figure 3 shows the significant correlations. The FC of the ventral
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FIGURE 1 | Change process G2
t according t and change-point estimation for each subject during post-encoding rest in HC (Upper), LMTLR (Middle), and RMTLR

(Lower) groups.
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FIGURE 2 | Changes of functional connectivity during pre- and post-encoding (after change-point) resting. Red color indicates increased FC and blue indicates

decreased FC during post-encoding (Post-encoding minus Pre-encoding baseline). Size of circle indicates relative magnitude of FC changes in all ROIs in HC (healthy

controls), LMTLR (left medial temporal lobe), and RMTLR (right MTLR). We displayed functional connections with gray line only in ROIs that showed significant

(p < 0.05) or trend (p < 0.1) of changes. (A,C,E) Top view. (B,D,F) Front view. (G) Relationships of FC differences to memory capacity. *Significant at 0.05 level.

TABLE 7 | Functional connectivity during pre– and post–encoding rest.

ROI Pre-encoding Post-encoding Post-encoding

baseline (after change-point) (whole-segment)

HC Right parahippocampal cortex 0.209 (0.1308) 0.280 (0.1482)† 0.280 (0.1290)

LMTLR Right posterior inferior parietal lobule 0.238 (0.1065) 0.171 (0.1451)* 0.238 (0.0897)

Right temporal pole 0.211 (0.0800) 0.140 (0.1567)† 0.170 (0.0873)*

Data presented as mean (SD). Pre– vs. Post–encoding differences (
†
p < 0.01, *p < 0.05).

medial prefrontal cortex (vMPFC) is positively correlated with
word accuracy in LMTLR (r = 0.563, p < 0.05). In RMTLR,
word accuracy is positively correlated with the FC of the dorsal
medial prefrontal cortex (dMPFC; r = 0.556), left and right
posterior cingulate cortex (PCC; r = 0.684, r = 0.552), and left
and right temporal parietal junction (TPJ; r = 0.577, r = 0.608)
(p < 0.05 for all). Figure accuracy is positively correlated with the
FC of the right PCC in the RMTLR group (r = 0.497, p < 0.05).

5. DISCUSSION

In this paper we develop a new procedure that can be
used to determine a change-point in a individual FC system,
using a function of maximum eigenvalues of suitably scaled
covariance matrices. The proposed method is applicable to

either resting-state or task fMRI studies providing individualized
change-point estimation. The method yields individualized
change-point estimation results, but it permits to group-level
estimation. Our change-point estimation method generally
works well in simulations and shows improved performance over
the previous approach. Our work avoids the use of a sliding
window usually applied to correlation measures, and reinforces
the notion that time-varying techniques are required to study
FC. Our results stress the importance of taking the change-point
into account to characterize dynamic FC in order to describe how
“information” is integrated and changed over time.

In this study, we applied change-point estimation analysis
to post-encoding rest fMRI data of MTLR patients in order
to evaluate the applicability and usefulness of the proposed
method. We found that both segment after change-point and
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FIGURE 3 | Relationships between the behavioral accuracy of in-scanner memory task (words, figures) and the FC values of post-encoding resting after

change-point. *Significant at 0.05 level.

whole-segment of resting-state data after memory encoding
detect similar FC changes. In HC, the MTL area (PHC) shows
increased FC after memory encoding which is consistent with
previous findings of memory consolidation studies (Tambini
et al., 2010; Staresina et al., 2013). In LMTLR patients, the FC
of the right pIPL and TempP decreased after memory encoding.
Importantly, right pIPL is only detected when we use post-
encoding data after the change-point, but not detected with the
whole-segment of data. Moreover, the magnitude of FC changes
in the right pIPL is associated with verbal memory capacity of
LMTLR patients. Patients who displayed more reduction in FC
values have better verbal memory. Recent studies suggest that
the posterior parietal cortex contributes tomemory consolidation
(Brodt et al., 2016, 2018). Therefore, we speculate that DMN areas

other than damaged MTL, especially the right pIPL, may play a
compensatory role for the verbal memory function of resected

left MTL. In summary, by applying change-point analysis, we

can reveal additional information on the memory consolidation
network in an MTL resected brain. Further studies with other

data sets are warranted to ensure the general use of this change-
point estimation analysis of fMRI data.

The other notable contribution of our work is that we

develop a generalized multivariate extension to use an eigenvalue
system based on RMT. While previous approaches have

largely targeted univariate approaches examining a single time
series or a single measure of association, our method use
full information of connectivity via the eigenvalue system.
Another interesting aspect of our change-point detection is the
quantitative comparison before and after change-point. It reveals

some properties of FC after change occurs. Different analytic
approaches provides different perspective information on fMRI
data, which necessitates integrating knowledge gained through
the variety of models for the understanding of dynamic FC.

One limitation of the method is that the simulation results
depend on the underlying covariance structure. When there
are more change-points, simultaneous multiple change-points
estimation procedure should be used. Further study with this
extension is expected when there are multiple change-points
in FC.

DATA AVAILABILITY STATEMENT

The datasets generated for this article are not readily available
because: it can be available only if requested to the third author.
Requests to access the datasets should be directed to Chun Kee
Chung, chungc@snu.ac.kr.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Institutional Review Board of Seoul National
University Hospital. The patients/participants provided their
written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

Statistical method was developed and simulation work was
done by JK. Epilepsy data were collected by CC. Epilepsy data

Frontiers in Neuroscience | www.frontiersin.org 10 May 2021 | Volume 15 | Article 565029

mailto:chungc@snu.ac.kr
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Kim et al. Dynamic Functional Connectivity Change-Point Detection

analyses and interpretations were conducted by WJ. All authors
contributed to the article and approved the submitted version.

FUNDING

This research was supported by Mid-career Science Research
Program through the National Research Foundation of Korea

(NRF) funded by the Ministry of Education, Science and
Technology (2018R1A2B6001664).

ACKNOWLEDGMENTS

We thank Hyeongrae Lee for helping with preprocessing of
resting-state functional data.

REFERENCES

Adolf, D., Baecke, S., Kahle, W., Bernarding, J., and Kropf, S. (2011). Applying

multivariate techniques to high-dimensional temporally correlated fMRI data.

J. Stat. Plan. Inform. 141, 3760–3770. doi: 10.1016/j.jspi.2011.06.012

Anderson, T. W. (1963). Asymptotic theory for principal component analysis.

Ann. Math. Stat. 34, 122–148. doi: 10.1214/aoms/1177704248

Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R., and Buckner, R.

L. (2010). Functional-anatomic fractionation of the brain’s default network.

Neuron 65, 550–562. doi: 10.1016/j.neuron.2010.02.005

Aue, A., Hörmann, S., Horváth, L., and Reimherr, M. (2009). Break detection

in the covariance structure of multivariate time series models. Ann. Stat. 37,

4046–4087. doi: 10.1214/09-AOS707

Aue, A., and Horváth, L. (2013). Structural breaks in time series. J. Time Ser. Anal.

34, 1–16. doi: 10.1111/j.1467-9892.2012.00819.x

Bai, Z., and Silverstein, J. (2010). Spectral Analysis of Large Dimensional Random

Matrices. New York, NY: Springer.

Biswall, B., Yetkin, F., Haughton, V. M., and Hyde, J. S. (1995). Functional

connectivity in the motor cortex of resting human brain using echo-planar

MRI.Magn. Reson. Med. 34, 537–541. doi: 10.1002/mrm.1910340409

Brodt, S., Gais, S., Beck, J., Erb, M., Scheffler, K., and Schönauer, M. (2018). Fast

track to the neocortex: a memory engram in the posterior parietal cortex.

Science 362:1045. doi: 10.1126/science.aau2528

Brodt, S., Pöhlchen, D., Flanagin, V. L., Glasauer, S., Gais, S., and Schönauer, M.

(2016). Rapid and independent memory formation in the parietal cortex. Proc.

Natl. Acad. Sci. U.S.A. 113, 13251–13256. doi: 10.1073/pnas.1605719113

Calhoun, V., Adali, T., Pearlson, G., and Pekar, J. (2001). A method for making

group inferences from functional MRI data using independent component

analysis. Hum. Brain Mapp. 14, 140–151. doi: 10.1002/hbm.1048

Chang, C., and Glover, G.H. (2010). Time-frequency dynamics of resting-

state brain connectivity measured with fMRI. Neuroimage 50, 81–98.

doi: 10.1016/j.neuroimage.2009.12.011

Chenouri, S., Mozaffari, A., and Rice, G. (2020). Robust multivariate change point

analysis based on data depth. Can. J. Stat. 48, 417–446. doi: 10.1002/cjs.11541

Cheon, S., and Kim, J. (2010). Multiple change-point detection of multivariate

mean vectors with the Bayesian approach. Comput. Stat. Data Anal. 54,

406–415. doi: 10.1016/j.csda.2009.09.003

Cribben, I., Wager, T. D., and Lindquist, M. A. (2013). Detecting functional

connectivity changepoints for single-subject fMRI data. Front. Comput.

Neurosci. 7:143. doi: 10.3389/fncom.2013.00143
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