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Abstract

Discovering new long non-coding RNAs (lncRNAs) has been a fundamental step in lncRNA-related research. Nowadays,
many machine learning-based tools have been developed for lncRNA identification. However, many methods predict
lncRNAs using sequence-derived features alone, which tend to display unstable performances on different species.
Moreover, the majority of tools cannot be re-trained or tailored by users and neither can the features be customized or inte-
grated to meet researchers’ requirements. In this study, features extracted from sequence-intrinsic composition, secondary
structure and physicochemical property are comprehensively reviewed and evaluated. An integrated platform named
LncFinder is also developed to enhance the performance and promote the research of lncRNA identification. LncFinder
includes a novel lncRNA predictor using the heterologous features we designed. Experimental results show that our method
outperforms several state-of-the-art tools on multiple species with more robust and satisfactory results. Researchers can
additionally employ LncFinder to extract various classic features, build classifier with numerous machine learning algo-
rithms and evaluate classifier performance effectively and efficiently. LncFinder can reveal the properties of lncRNA and
mRNA from various perspectives and further inspire lncRNA–protein interaction prediction and lncRNA evolution analysis.
It is anticipated that LncFinder can significantly facilitate lncRNA-related research, especially for the poorly explored spe-
cies. LncFinder is released as R package (https://CRAN.R-project.org/package¼LncFinder). A web server (http://bmbl.sdstate.
edu/lncfinder/) is also developed to maximize its availability.
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Introduction

Long non-coding RNAs (lncRNAs), one kind of transcripts that
are longer than 200 nucleotides and unable to encode proteins
in the intracellular space, have been at the forefront in recent
years [1–3]. Several studies indicate that more than 80% of the
human genome has biochemical functions, whereas only less
than 2% of the genome can be translated into proteins [4, 5].
Furthermore, up to 70% of the non-coding sequences are tran-
scribed into lncRNAs [6]. All these figures suggest that lncRNAs
embrace lots of valuable information awaiting our exploration.
Only a small fraction of lncRNAs have been studied, but scien-
tists have discovered a wide range of biological processes that
lncRNAs involved, such as epigenetic regulation, metabolic
processes, chromosome dynamics and cell differentiation [7–
12]. Lots of evidence have indicated that lncRNAs are highly
relevant to various complex human diseases [13] such as lung
cancer [14] Alzheimer diseases [15] and cardiovascular diseases
[16]. Database LncRNADisease [17] and Lnc2Cancer [18] have
collected thousands of experimentally verified relations be-
tween lncRNAs and diseases, which have also confirmed the in-
timate connections between lncRNAs and diseases.

Nowadays, next-generation sequencing technologies have
furnished us thousands and thousands of unclassified tran-
scripts, demanding prompt studies. From identification to an-
notation, many platforms and databases have been developed
to facilitate research on lncRNAs [19, 20]. LncRNA identification
is the fundamental step of lncRNA research. Many methods and
tools have been developed using machine learning techniques.
CPC (Coding Potential Calculator) [21] aligns sequences against
reference protein database, which is highly representative of
the alignment-based tools. As an extremely powerful tool for
coding potential assessment, CPC is not tailored for lncRNA
identification, but it can predict lncRNAs according to the open
reading frame (ORF) information and alignment results of
BLASTX [22]: transcripts with great coding potential tend to pos-
sess HITs and ORFs with relatively high quality and thus being
classified as protein-coding RNAs. Nonetheless, several major
limitations can hardly be avoided because of CPC’s great
reliance upon reference protein databases. First, lncRNAs are
less conserved than mRNAs. A high proportion of lncRNAs dis-
play many features similar to protein-coding sequences [23],
which may mislead CPC and make it incorrectly categorize
lncRNAs as mRNAs. Second, CPC requires a high-quality and ra-
ther comprehensive database, but many species have only in-
sufficient annotations. Moreover, CPC relies heavily on the
outputs of BLASTX, but multiple-sequence alignment tools can-
not guarantee optimal alignments [24]. Finally, the extremely
time-consuming process of alignment makes the use of CPC on
massive-scale data difficult. Apart from BLASTX, other types of
alignment are also employed to identify lncRNAs. PhyloCSF [25]
is based on multiple alignments and phylogenetic model com-
parison; COME [26] uses features from BLASTX and phastCons
score [27]; lncRNA-ID [28] and lncRScan-SVM [29] employ
profile-hidden Markov model-based alignment [30] and
PhastCons score, respectively.

Owing to the restrictions of CPC, several alignment-free
approaches are developed afterward. CPAT (Coding Potential
Assessment Tool) [24], CNCI (Coding-Non-Coding Index) [31]
and PLEK (predictor of long noncoding RNAs and messenger

RNAs based on an improved k-mer scheme) [32] are the typical
examples of this category. The main advantage of alignment-
free tools is high efficacy without loss of accuracy. CPAT calcu-
lates Fickett TESTCODE score [33, 34] and hexamer score on ORF
region to measure the differences of nucleotide position and
codon usage between non-coding transcripts and protein-
coding transcripts. The features of CNCI are based on adjoining
nucleotide triplets (ANTs) matrix and unequal distribution of
codons (codon bias). PLEK employs improved k-mer scheme to
classify the sequences. COME selects Infernal result [48], expres-
sion data [49, 50] and histone modification [4] as features. To
overcome the drawbacks of CPC, a new lncRNA identification
tool named CPC2 [35] was developed recently. Unlike CPC, CPC2
is an alignment-free tool and is based on only sequence-intrin-
sic features. Compared with CPC, CPC2 displays substantial im-
provement in accuracy and efficiency. In addition to several
classic features such as ORF information and Fickett TESTCODE
score, CPC2 also utilizes isoelectric point (pI) [36, 37] to calculate
coding potential and thus predicts lncRNAs. Alignment-free
lncRNA identification tools also include DeepLNC [38], lncScore
[39] and FEElnc [40]. All these popular lncRNA identification
methods are summarized in Table 1. From Table 1, it can be
observed that features of many methods are based upon adjoin-
ing nucleotide frequencies, directly or indirectly. The essence of
these kinds of features is to evaluate the differences in intrinsic
composition between lncRNAs and mRNAs. However, the prob-
lem is the sequence compositions varies from species to species,
and thus these methods provide very unstable performances on
different species [41]. One possible way to cushion this negative
effect is re-training the machine learning model for different
species, although only CPAT and PLEK can be re-trained by
users. However, the limitation of this remedy includes insuffi-
cient sequences of many species that makes it impossible to tai-
lor the model specifically for every species. Thus, the pre-built
model should be well qualified for various species.

Different tools also select different machine learning algo-
rithms to construct a classifier: CPC, CNCI, PLEK, lncRScan-SVM
and CPC2 use support vector machine (SVM); CPAT and
lncScore employ logistic regression, whereas lncRNA-ID, COME
and FEElnc are based on random forest or balanced random for-
est [46, 47]. It is also worth mentioning that DeepLNC is con-
structed using deep learning algorithm, deep neural network
(DNN).

All these approaches can conduct lncRNA identification, but
it is difficult for users to customize the tools for non-model or-
ganism transcriptomes or analyze sequences with specific fea-
tures. In addition, different tools employ different machine
learning algorithms. But to what extent will different machine
learning algorithms alter the classifiers’ performances? In this
study, we establish an integrated lncRNA identification package
LncFinder, which could help users extract features from differ-
ent feature categories, construct classifiers with various ma-
chine learning algorithms and evaluate the performances of
different feature combinations or machine learning algorithms.
Besides, methods based on k-mer frequencies often have a large
number of features and demonstrate unstable results on differ-
ent species. LncFinder includes two schemes to refine the fea-
tures and enhance the stability. Experimental results show that
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the schemes we proposed achieve satisfactory accuracy and
stability. Apart from sequence composition features used by
existing tools, we are also wondering whether there are any
other kinds of critical information embodied in a sequence that
can be explored to predict lncRNA. Thus, features from second-
ary structure and physicochemical property are explored and
introduced to conduct lncRNA identification. In light of the
comprehensive feature exploration and selection, a novel
lncRNA identification method is also developed. Benchmarked
against several state-of-the-art tools, our method presents the
most satisfactory overall result on multiple species.

Hexamer score [24], as the most discriminating feature of
CPAT, is an ingenious method to streamline the features of the
k-mer scheme. In this article, we defined two measurements
Euclidean-distance and Logarithm-distance to capture the dif-
ferences of sequence-intrinsic composition between lncRNA
and protein-coding RNA. Having been evaluated on the human
data set, the Euclidean-distance scheme achieved an accuracy of
0.8484 and Logarithm-distance achieved 0.8521, while the hex-
amer score of CPAT obtained an accuracy of 0.6416. We next
investigated other kinds of features from the perspective of sec-
ondary structure and physicochemical property. In the second-
ary structure-derived feature group, multi-scale structural
information was introduced. Furthermore, electron–ion inter-
action pseudo-potential (EIIP) [51] was employed to calculate
physicochemical features. These two feature groups were eval-
uated comprehensively using recursive feature elimination (RFE)
and the feature selection algorithm we designed. Tested on the
same data set as sequence-derived features, feature combina-
tions from multi-scale secondary structure category obtained an
accuracy of 0.8525, while EIIP-based physicochemical features
obtained an accuracy of 0.8853. Together with sequence-intrin-
sic composition features, three feature groups were incorporated
into five different machine learning classifiers constructed with
logistic regression, SVM, random forest, extreme learning ma-
chine (ELM) and deep learning algorithms to assess to what de-
gree can different machine learning algorithms affect the
performance of these features. The novel lncRNA identification
method we proposed was developed using the optimal feature
combination and machine learning algorithm. We finally com-
pared this new method with several widely used tools on the
data sets of human (Homo sapiens), mouse (Mus musculus), wheat
(Triticum aestivum), zebrafish (Danio rerio), and chicken (Gallus gal-
lus). On the one hand, we expect our method can show improve-
ments in accuracy and efficiency, and on the other hand, we
intend to evaluate each tool’s stability on different species.

LncFinder is an integrated package that can be used to pre-
dict lncRNA and analyze the properties of lncRNA. LncFinder
aims to offer new perspectives to capture the differences be-
tween lncRNAs and mRNA. Compared with existing lncRNA
identification tools, LncFinder has the following merits:

i. LncFinder includes an innovative algorithm predicting
lncRNAs using heterologous features from three different
categories: intrinsic composition of sequence, multi-scale
structural information and physicochemical property based
on EIIP and fast Fourier transform (FFT). This novel method
outperforms several widely used tools on multiple species
with more robust and reliable performances.

ii. The machine learning model used by LncFinder is determined
with comprehensive comparisons. Five classifiers, logistic re-
gression, SVM, random forest, ELM and deep learning are
evaluated with parameter tuning. The classifier is constructed
with the algorithm that obtains the highest accuracy.

iii. LncFinder is highly flexible and remarkably user-friendly.
Almost all classic alignment-free features proposed by
other methods can be extracted with LncFinder. As a one-
stop platform, LncFinder can complete feature extraction,
feature selection, classifier construction and performance
evaluation easily and efficiently. LncFinder’s customization
of features and machine learning algorithm will effectively
facilitate research on poorly explored species and lncRNA
properties analysis. The support of parallel computing will
also greatly accelerate the process of feature selection and
classifier construction.

iv. LncFinder is readily accessible and convenient to use.
Virtually all lncRNA identification tools require UNIX/Linux
operating system (OS) and several hundred megabytes
(MB), even several gigabytes (GB), of storage space to com-
pute the sequences locally, whereas LncFinder is released
as R package and is compatible with almost all widely used
OS platforms, such as Windows, UNIX/Linux and Mac OS X.
Accepted by Comprehensive R Archive Network (CRAN),
LncFinder can be installed conveniently in R with only one
command, and the size of LncFinder is only 2.7 MB. In add-
ition, a web server is also developed to provide a practical
and effective alternative for lncRNA identification. The web
server can classify lncRNAs of multiple species and calcu-
late sequence coding potential. Informative lncRNA-related
tools, databases and research progress are also summarized
on our web server for users’ reference. The summaries have
revised some outdated details and are updated regularly.

Feature exploration

In this article, we discuss the discriminating power of three
kinds of feature categories, especially secondary structural and
physicochemical features. Classical features employed by exist-
ing tools are reviewed, and new features are also designed to
offer a new perspective on lncRNA identification. The frame-
work of this research is displayed in Figure 1.

Features are evaluated using the data sets of multiple spe-
cies. Data sets of human and mouse used in our experiments
are the same as those of Achawanantakun et al., 2015 [28],
which are collected from GENCODE [2, 52] and experimentally
verified data [3]. Data sets of wheat, chicken and zebrafish are
collected from Ensembl [53]. In these data sets, only one tran-
script from each gene is used. Detailed information has been
summarized in Table S1 (Supplementary File 1 - Methods). All
data sets can be downloaded from our web server.

Features of sequence intrinsic composition

Several studies have demonstrated that the distribution of
adjoining bases is different in non-coding RNAs (ncRNAs) and
protein-coding transcripts [24, 31]. The most general method to
capture the distribution differences is k-mer scheme, which is
employed by CNCI (k¼ 3), PLEK (k¼ 1–5), DeepLNC (k¼ 2, 3, 5)
and some other tools. Nevertheless, the feature number rises
dramatically with the increase of k. Considering that protein-
coding transcripts are finally translated into amino acid
sequences, the combination of two adjoining amino acids
should have some patterns, hence a biased usage of these
nucleotides (A, C, G and T). We can therefore distinguish
lncRNAs from protein-coding transcripts by measuring hex-
amer usage. However, there will be 46 hexamer features if we
extract features utilizing k-mer scheme. Too many features will
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Figure 1. Framework of this study. Data sets used in our experiments are collected from GENCODE and Ensembl. Only one transcript from each gene is used. In addition

to sequence-intrinsic composition, features are also extracted from multi-scale secondary structure and EIIP-based physicochemical property using two feature selec-

tion schemes. Evaluated with 10-fold CV and ROC curve, the optimal feature combination and machine learning algorithm are obtained to develop a new method for

lncRNA identification. This method is benchmarked against five popular tools on five species, and it is finally included in LncFinder, which is a highly flexible package

for lncRNA identification and analysis. LncFinder is published as R package as well as web server.
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lead to extremely cumbersome processes of classification and
classifier construction.

Hexamer score [24] of CPAT is a useful way to measure hex-
amer frequencies without a large number of features, but this
method only computes the average hexamer frequencies of the
training data sets. For any unknown transcript, the hexamer
patterns are scanned, but their frequencies are abandoned.
Here, we propose the following two new measurements to
quantify the usage bias of hexamer: Euclidean-distance and
Logarithm-distance. Each scheme has three features: distance
to lncRNA (Dist.LNC), distance to protein-coding transcript
(Dist.PCT) and distance ratio (Dist.Ratio). We define these fea-
tures as follows:

EucDist:LNC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ðfreq:seqðiÞ � freq:lncðiÞÞ2

q
;

log Dist:LNC ¼ 1
n

X
ln

freq:seqðiÞ
freq:lncðiÞ ; i ¼ 1; 2; 3; . . . ;4k;

EucDist:Ratio ¼ EucDist:LNC
EucDist:PCT

; log Dist:Ratio ¼ log Dist:LNC
log Dist:PCT

;

where freq.seq are the k-adjoining base(s) frequencies of one
unevaluated sequence; freq.lnc denotes the average frequencies
of lncRNAs’ k-adjoining base(s); i denotes the different types of
k-adjoining base(s), and n is the total number of the k-adjoining
base(s) in one sequence. Based on first two equations,
EucDist.LNC and LogDist.LNC can be computed. EucDist.PCT and
LogDist.PCT can be obtained similarly. The main idea underlying
the proposed measurements is to estimate the unevaluated se-
quence is ‘close to’ lncRNA or protein-coding sequence. The two
measurements and hexamer score will be evaluated in our
experiments with 10-fold cross validation (10-fold CV). Because
both the hexamer frequencies in training set and unevaluated

sequences are considered by our measurements, we expect
they can display more stable performances than hexamer score
on multiple species.

For protein-coding transcripts, the longest ORF closely
resembles coding sequence (CDS), which is the region that can
be translated to amino acids. Although lncRNAs are non-coding
transcripts, the longest ORF can also be regarded as the most
potential region for encoding amino acids. Because the hexam-
ers in CDS encode amino acids for some purposes, we expect
that calculating hexamer frequencies on the longest ORF region
is more sensible than on full sequence. Thus, we will evaluate
the performances of three schemes (Euclidean-distance,
Logarithm-distance and hexamer score) on the full sequence as
well as on the longest ORF region. The sliding window will slide
1 nt each step on full sequence but slide 3 nt each step on the
longest ORF region to simulate the translation process.

Features of secondary structural information

The secondary structure plays important roles in multiple bio-
logical functions and is considered more conserved than pri-
mary sequence [54, 55]. But seldom has structural information
been employed to predict lncRNA. To explore the discriminating
power of this category, we here introduce multi-scale secondary
structural features that portray the structural information of
one RNA sequence from the following three levels: stability, sec-
ondary structure elements (SSEs) combined with pairing condi-
tion and structure-nucleotide sequences. RNA secondary
structures can be obtained from program RNAfold of
ViennaRNA Package [56], which calculates secondary structures
using the minimum free energy (MFE)-based algorithm.

MFE is a basic structural outline displaying the stability of
the RNA structure and is thus being selected as the low-scale
feature. Although only few lncRNAs are unstable, lncRNAs are,
on average, less stable than mRNAs [57]. The box plots of the
MFE of lncRNAs and mRNAs are displayed in Figure S1-1 (a),
which show that mRNAs generally tend to possess lower MFE.

Figure 2. Illustration of multi-scale secondary structure-derived sequences. As a low-scale feature, MFE is a basic structural outline presenting one RNA sequence’s sta-

bility. Medium-scale sequences briefly sketch RNA information and can be obtained from dot-bracket notation sequence alone without using sequence nucleotide

composition. High-scale sequences can be viewed as a high-resolution panorama displaying the integration of sequence and structural information.
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To extract features from higher levels, we first design six
multi-scale secondary structure-derived sequences. Let seq[n]
be an RNA sequence of length N, and the nucleotides are
denoted in lowercase ðseq½n� 2 fa; c; g;ugÞ. Let SS[n] be the sec-
ondary structure sequence of seq[n], and SS[n] is defined using
dot-bracket notation

�
SS½n� 2 f : ; ð ; Þ g

�
. SSEs can depict one

RNA’s basic components, and here we employ the following
four SSEs: stem (s), bulge (b), loop (l) and hairpin (h). Figure 2
illustrates how six multi-scale secondary structural sequences
are obtained from seq[n] and SS[n]. Replacing nucleotides of
seq[n] with corresponding SSEs, we can obtain the first second-
ary structure-derived sequence—SSE full sequence (SSE.Full
Seq). Regarding the continuous identical SSE as one SSE, another
sequence—SSE abbreviated sequence (SSE.Abbr Seq)—is
obtained. In the dot-bracket notation, a dot ‘.’ means unpaired
base and brackets ‘(‘or’)’ represent paired base (also the SSE
stem). Thus, SS[n] can be converted to Paired-Unpaired Seq using
the following formula:

Paired� Unpaired Seq½n� ¼
(

U; SS½n� ¼ �

P; SS½n� 6¼ �
:

These three sequences can sketch basic RNA information
and be viewed as medium-scale structural information that is
converted from SS[n] alone without using the nucleotide com-
position of seq[n].

Just like observing an object using different magnifiers, we
can perceive more details with a high-power magnifier. On a
high-scale level, three secondary structure-derived sequences,
namely, acgu-Dot Sequence (acguD Seq), acgu-Stem Sequence
(acguS Seq) and acgu-ACGU Seq, can be obtained by combining
secondary structure sequence SS[n] and primary sequence
seq[n]:

acguD Seq n½ � ¼
(

D; SS n½ � ¼ �

seq n½ �; SS n½ � 6¼ �
;

acguS Seq n½ � ¼
(

seq n½ �; SS n½ � ¼ �

S; SS n½ � 6¼ �
;

acgu�ACGU Seq n½ � ¼

A; seq n½ � ¼ a ^ SS n½ � 6¼ �

C; seq n½ � ¼ c ^ SS n½ � 6¼ �

G; seq n½ � ¼ g ^ SS n½ � 6¼ �

U; seq n½ � ¼ u ^ SS n½ � 6¼ �

seq n½ �; SS n½ � ¼ �

8>>>>>>>><
>>>>>>>>:

:

In acguD Seq, unpaired nucleotides are replaced with charac-
ter ‘D’, thus acguD Seq can be regarded as a portrait describing
the percentage of the unpaired base and the intrinsic compos-
ition of the SSE stem. Similarly, acguS Seq can be viewed as a
portrait serving the complementary roles. The third sequence
acgu-ACGU Seq is obtained by converting nucleotides of seq[n]
into uppercase if they are paired bases. The combination of
these three sequences can be considered a high-resolution
panorama presenting the integration of sequence and structural
information.

In our study, two strategies, improved k-mer scheme [58]
and Logarithm-distance of k-adjoining bases, are employed to

extract features from six multi-scale secondary structural
sequences. The optimal k will be determined by 10-fold CV.

Features of EIIP-derived physicochemical features

CPC2 uses pI values to reveal the physicochemical differences
between lncRNAs and protein-coding transcripts. CPC2
attempts to theoretically translate RNA sequence into protein
sequence and applies pI values to the new obtained protein se-
quence. In this article, we explore the physicochemical property
from another viewpoint, namely, EIIP values. EIIP was initially
used to locate exons. Each nucleotide (a, c, g and t) has one EIIP
value, and these values indicate the energy of delocalized elec-
tions in nucleotides [51]. For any DNA sequence, nucleotides
can be replaced with the following EIIP values:
fa! 0:1260; c! 0:1340; g! 0:0806; t! 0:1335g. Compared with
pI values, EIIP values are directly applied to RNA sequences,
which can avoid the potential bias caused by the speculated
translation process.

Let Xe[n] be the EIIP indicator sequence of Seq[n]. Using FFT
on Xe[n], we can get the corresponding power spectrum
fSe k½ �g k ¼ 0; 1; 2; . . . ;N� 1ð Þ:

Xe k½ � ¼
XN�1

n¼0

Xe n½ �e�j2pkn
N ; Se k½ � ¼ jXe k½ �j2:

For protein-coding transcripts, an obvious peak usually
appears at the N=3 position, but no such peak can be found in
non-coding transcripts [59] (see Figure S1-2 for example).
Moreover, the power of the protein-coding transcript is general-
ly higher than that of lncRNA. Thus, we can capture these dif-
ferences with the following features: the signal at 1/3 position
(Se

N
3

� �
), average power (�E) and signal-to-noise ratio (SNR). �E and

SNR are defined as follows:

�E ¼
PN�1

k¼0 Se k½ �
N

; SNR ¼
Se

N
3

� �
�E

:

From the box plots in Figure S1-1 (b, c, d), it can be noted that
most of lncRNAs possess lower Se

N
3

� �
; �E and SNR values.

We additionally sort the power spectrum in descending
order and calculate the quantiles statistics (Q1, Q2, Q3, mini-
mum and maximum values) of power values on different
ranges. The ranges are designed with two different ways. The
ranges in the first group varies from the top 10 to top 100 of the
sorted power spectrum, and the ranges are also from the top
10% to 100% of the sorted power spectrum. As the signals of
mRNAs are generally stronger than those of lncRNAs, protein-
coding transcripts should tend to have higher values of quan-
tiles statistics than lncRNAs. EIIP-based features embody the
physicochemical as well as 3-base periodicity properties of
protein-coding sequences [60, 61], and we anticipate that fea-
tures from this category can present robust results on non-
model data sets.

Feature selection and model validation

Feature selection is conducted with 10-fold CV to determine the
optimal feature extraction scheme as well as to evaluate the per-
formance of different feature groups. The performances are eval-
uated with the following five standard metrics: sensitivity,
specificity, accuracy, F-measure and Cohen’s kappa coefficient [62].
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Sensitivity ¼ TP
TPþ FN

; Specificity ¼ TN
TNþ FP

;

Accuracy ¼ TPþ TN
Pþ N

; Kappa ¼ Pr oð Þ � Pr eð Þ
1� Pr eð Þ ;

F�Measure ¼ 2� TP
2� TPþ FPþ FN

:

In Cohen’s kappa coefficient, Pr(o) denotes the proportion of
units in which the judges agreed, and Pr(e) is the proportion of
units for which agreement is expected by chance. In our evalu-
ation, lncRNAs are labeled as positive class, and protein-coding
transcripts are labeled as negative class. Based on the results of
RFE and our feature selection algorithm (see Algorithm S3), we
can finally obtain the optimal feature combination, which
comprises 19 features (see Table 2).

We integrated these features into the models built with sev-
eral widely used machine learning algorithms to assess the per-
formance of the features as well as the machine learning
algorithms. Logistic regression [63], SVM [64, 65], random forest
[66], ELM [67, 68] and deep learning [69] were evaluated with 10-
fold CV in our experiments. According to the results, SVM was
superior to other models, but the differences in the performan-
ces were quite subtle (see Result Section).

Result analysis

Feature selection and model validation are conducted using
human data set A with 10-fold CV. The selected features and
classic alignment-free features are evaluated on human data
set B. After determining the optimal feature combination and
machine learning algorithm, we actually obtain a novel lncRNA
identification method. Our method is benchmarked against five
popular machine learning-based lncRNA identification tools,
namely, CPC, CPAT, CNCI, PLEK and CPC2, on human data set B,
as well as data sets mouse, wheat, zebrafish and chicken to as-
sess each tool’s performances and stabilities.

Feature selection

Features discussed in this article can be divided into the fol-
lowing three groups: sequence-intrinsic composition, second-
ary structural information and EIIP-based physicochemical
property. For the sequence-derived features, features of
Logarithm-distance on ORF region achieved an accuracy of
0.9598, while features of Euclidean-distance on ORF region
obtained 0.9596. On the whole sequence, Logarithm-distance
features obtained an accuracy of 0.8521 and Euclidean-
distance features obtained 0.8484. The difference between the
two measurements’ performances was minor, though
Logarithm-distance had higher accuracy and F-measure (see
Figure S2-1, Supplementary File 1 for detailed information). As
the most discriminating feature of CPAT, the hexamer score
had an accuracy of 0.8458 and 0.6416 on ORF region and the
whole sequence, respectively. Measurements of Logarithm-
distance and Euclidean-distance greatly outperform CPAT’s
hexamer score. We further combined Logarithm-distance fea-
tures with the following two classic ORF-related features: the
length and coverage of the longest ORF. The RFE results are
displayed in Table S2-1 (Supplementary File 1). None of the
five features is redundant. High importance scores of
Logarithm-distance features (see Table S2-2) indicate that
these three features are of critical importance in the lncRNA
identification. Only five features, Logarithm-distance of hex-
amer on ORF region (consists of three features, namely,
LogDist.LNC, LogDist.PCT and LogDist.Ratio), the length and
coverage of the longest ORF, can highly represent the se-
quence-intrinsic information of one RNA sequence. Five
sequence-derived features presented an accuracy of 0.9630
and an F-measure of 0.9628 on human data set A (Table 3).

Figures S2-2 to S2-4 show the performances of k-mer fea-
tures extracted from multi-scale secondary structure-derived
sequences. It seems that features based on the k-mer scheme
displayed a passable result. Nonetheless, the accuracy dropped
when secondary structure-based features were combined with
sequence feature group (see Table S2-3). Figures S2-5 and S2-6
display the performances of multi-scale secondary structural
features extracting with Logarithm-distance measurement.
Except for subgroup SSE.Abbr Seq, the performances showed no
major difference with those of k-mer features, but the features
are refined, and the feature number of each subgroup is reduced
to 3. Moreover, Logarithm-distance features of subgroups acguD
Seq, acguS Seq and acgu-ACGU Seq boosted the accuracy of
sequence-derived features (Table S2-4), which confirmed the
discriminating power of secondary structure and the feasibility
of Logarithm-distance measurement. Hence, we selected
scheme Logarithm-distance to extract features of these three
subgroups. Although subgroups SSE.Full Seq, SSE.Abbr Seq and
Paired-Unpaired Seq, regardless of calculating k-mer frequencies
or Logarithm-distance, cannot improve the performance fur-
ther, some useful information can still be extracted. According

Table 2. Features selected from three feature groups

Sequence-intrinsic composition Multi-scale structural information EIIP-based physicochemical property

Logarithm-distancea of hexamer on ORF Minimum free energy (MFE) Signal at 1/3 position (Se[N=3])
Length of the longest ORF UP frequency of paired–unpaired sequence SNR
Coverage of the longest ORF Logarithm-distancea of acguD sequence Quantile statistics (Q1, Q2, min and max)

Logarithm-distancea of acgu-ACGU sequence

aLogarithm-distance consists of three features: LogDist.LNC, LogDist.PCT and LogDist.Ratio.

Table 3. Performances of each feature group on human data set A

Feature group Sensitivity Specificity Accuracy F-measure Kappa

Sequence 0.9555 0.9705 0.9630 0.9628 0.9261
SSa 0.8129 0.8921 0.8525 0.8464 0.7050
EIIP 0.9021 0.8686 0.8853 0.8872 0.7706
All features 0.9642 0.9726 0.9684 0.9682 0.9368

aMulti-scale structural features. The results are obtained from 10-fold CV. Bold

numbers indicate the highest value.
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to the results of Figure S2-3, we calculated the importance
scores of 4-mer frequencies of Paired-Unpaired Seq and 2-mer fre-
quencies of SSE.Abbr Seq by conducting RFE algorithm, and the
feature with the highest score of each subgroup were included
in this feature group (see Table S2-5).

Now three feature subgroups (Logarithm-distance of acguD
Seq, acguS Seq and acgu-ACGU Seq) and three features (MFE, UP
frequency of Paired-Unpaired Seq and bulge frequency of
SSE.Abbr Seq) derived from the multi-scale secondary structure
may enhance the performance of sequence-derived feature.
However, it is still necessary to perform feature selection to de-
termine the optimal feature combination. Because the informa-
tion of secondary structure-derived sequence has been
embodied in Logarithm-distance features, we avoid selecting
key features by performing RFE algorithm, which may detach
three Logarithm-distance features. We re-evaluated the feature
group, which consists of three subgroups and three features
with a new algorithm displayed in Algorithm S2. This algorithm

ranks different feature groups according to their average per-
formances of 10-fold CV. For each iteration, the feature group
that shows the best improvement in accuracy will be added to
the selected feature set. One feature group alone may not im-
prove the performance, but it may boost the result by combin-
ing with other feature groups. To avoid missing potential
feature groups, all the feature groups with the highest score of
each iteration will be evaluated. The final results of feature se-
lection were summarized in Table S2-6. Eight multi-scale sec-
ondary structural features were determined, namely, MFE, UP
frequency of Paired-Unpaired Seq, Logarithm-distance of acguD
Seq and acgu-ACGU Seq (See Table 2). Eight secondary structural
features obtained an accuracy of 0.8525 and an F-measure of
0.8464 on human data set A.

As to the features based on EIIP values, subgroup quantile
statistics on the position of top 10% presented the best per-
formance in our experiments (see Figure S2-7). Depending on
the results of RFE, the signal at 1/3 position (Se

N
3

� �
), SNR and

A B C

D E F

Figure 3. ROC curves of different feature groups and different tools on three species. (A) Sequence-derived (Seq Group), EIIP-derived (EIIP Group), secondary structure-

derived (SS Group) and other six classic feature groups were evaluated on human data set B. All three feature categories we proposed were among the top five feature

groups. Logarithm-distance features outperformed other sequence-intrinsic features such as codon bias and hexamer score with the highest AUC. Six EIIP-based fea-

tures even had performance comparable to that of 64 codon bias features. (B) Nine feature groups were extracted from the training set of human data set B and were

used to build classifiers. Figure (B) shows the nine classifiers’ performances on mouse test set. All feature groups showed some fluctuations in performances, but se-

quence-derive features still achieved the best AUC. (C) Classifiers built on human data set B were evaluated with a test set of wheat data set. Compared with Figure 3

(A), AUC of codon bias features decreased about 18%, while AUC of hexamer score decreased about 30%. EIIP-based feature group surpassed codon bias features and

demonstrated its satisfactory cross-species performance. Sequence-derived features still obtained the best AUC. (D) LncFinder and other five tools, namely, CPC (offline

version), CPAT (re-trained model), CNCI, PLEK (re-trained model) and CPC2, were tested on human data set B. LncFinder and CPAT had the best AUC, but the accuracy

of CPAT was lower than that of LncFinder. (E) LncFinder and other five tools were tested on mouse data set. LncFinder achieved the best result. (F) LncFinder and other

five tools were tested on wheat data set. LncFinder achieved the best AUC on human and mouse data sets. Although the accuracy of CPC on human and mouse data

sets was inferior to that of other tools, CPC surpassed all alignment-free tools on wheat data set. LncFinder had the best performance among alignment-free tools. We

cannot know which tool is best for one specific species in advance. A tool that can present robust and stable results on multiple species is of crucial importance.

LncFinder had the most stable and reliable performances among these tools.
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quantile statistics (Q1, Q2, min and max values) were
selected as EIIP-based features (see Tables S2-7 for RFE re-
sult). Six EIIP-based physicochemical features achieved an
accuracy of 0.8853 and an F-measure of 0.8872 on human
data set A.

To assess the performances and cross-species’ stabilities of
different feature groups, three feature groups we designed and
six other classic alignment-free feature groups (codon bias, hex-
amer score, Fickett TESTCODE score of CPAT and CPC2, pI and
transcript length) were evaluated on the following three species:
human, mouse and wheat. All feature groups were used to build
SVM classifiers separately with the training set of human data set
B. Then the classifiers built with human data set were used to
predict the test set of human data set B and the test sets of mouse
and wheat. Feature groups’ receiver operating characteristic
(ROC) curve [70, 71] on three test sets were shown in Figure 3 (A),
(B), and (C). Figure 3 (A) displays each feature group’s perform-
ance on human species, while Figure 3 (B) and (C) presents their
cross-species stabilities. From Figure 3 (A), it can be observed that
the top five feature groups are Logarithm-distance features (Seq
group), codon bias, EIIP-based features, hexamer score of CPAT
and multi-scale secondary structural features (SS group). Three
feature groups among the top five were extracted from sequence-
intrinsic composition. The sequence-derived features we
designed outperformed other sequence-intrinsic features such as
codon bias and hexamer score with the AUC (area under curve) of
0.991. Six EIIP-based features had performance comparable to
that of 64 codon bias features. Secondary structural features sur-
passed features’ transcript length, Fickett TESTCODE score and pI
value with the AUC of 0.902, which demonstrates the discrimi-
nating power of structural features. The Fickett TESTCODE score
methods employed by CPAT and CPC have some minor differen-
ces. CPAT calculates Fickett TESTCODE score on ORF region and
obtains AUC 0.781. Figure 3 (B) and (C) shows the results of each
feature groups on data sets of mouse and wheat. All feature
groups showed some fluctuations in their performances, but
sequence-derived features still achieved the highest AUC.
Sequence-derived features and EIIP-based features displayed bet-
ter performances than other feature groups. Multi-scale second-
ary structural features only had average cross-species results, but
this feature category was among the top five feature groups on
human data set B. Based on a comprehensive evaluation of differ-
ent feature groups, 19 critical features are selected from
sequence-intrinsic composition, multi-scale secondary structural

information and EIIP-based physicochemical property (see
Table 2). All three feature groups achieved an accuracy of 0.9684
and an F-measure of 0.9682 on human data set A (see Table 3).
Using LncFinder, users can extract various features and construct
their own classifiers for different purposes.

Model validation

The results of five machine learning models are displayed in
Figure S2-8. The parameters of different machine learning mod-
els were tuned with 10-fold CV. The performances of each
model under different parameters are displayed in Table S3-16
and Table S3-17.

The classifier based on SVM achieved the highest accuracy,
0.9687, while deep learning had the lowest, 0.9523. In fact, most
of the models’ accuracies ranged from 0.965 to 0.968. The differ-
ence of performances between the SVM model and the random
forest model was even negligible: the accuracy of the random
forest model was 0.9681. The stable results of different classi-
fiers reflect that the critical features we designed are of a high
standard and classifier-neutral. SVM had the best accuracy, and
random forest achieved the best F-measure. In this experiment,
we selected SVM to build the classifier. But researchers can also
use LncFinder to construct models with other machine learning
algorithms. The detailed procedures and results of feature se-
lection and model validation are included in the Result Section
in Supplementary File 1. After evaluating the features and
obtaining the SVM classifier, we obtain a novel lncRNA predict-
or. In the next section, we will benchmark our predictor against
several widely used tools to further evaluate the discriminating
power of different methods.

Evaluations by comparison with popular tools

In this section, our lncRNA identification method was bench-
marked against CPC, CPAT, CNCI, PLEK and CPC2 on five spe-
cies, namely, human (Homo sapiens), mouse (Mus musculus),
wheat (Triticum aestivum), zebrafish (Danio rerio) and chicken
(Gallus gallus). The novel lncRNA identification method is one of
the main functions of LncFinder package, and here we use
LncFinder to denote the method we developed. In our experi-
ments, we used UniRef90 [72] as the protein reference database
of CPC. Because CPAT and PLEK can be trained with users’
sequences, the re-trained models were built with the data sets

Figure 4. Performances of different tools on human data set B. LncFinder had the best accuracy of 0.9728. CPC had a strong tendency to classify lncRNAs as protein-cod-

ing transcripts and thus having low accuracy of 0.8304 (web server). As an upgraded version, CPC2 presented accuracy of 0.9614. CPC2 was a big improvement on its

predecessor and also outperformed CNCI and PLEK that obtained accuracies of 0.9450 and 0.9274, respectively. CPAT (re-trained model) was inferior to only LncFinder

and obtained an accuracy of 0.9642. Even when secondary structure-derived features were excluded, LncFinder (Without.SS) can still surpass other tools with an accur-

acy of 0.9716.
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that are identical to the training sets of LncFinder. As suggested
in their documentations, the parameters of PLEK were tuned
with grid search, and the cut-off of CPAT was determined using
10-fold CV. Both the new trained and pre-built models were
evaluated to have a comprehensive and fair comparison. CPC,
CPAT and CPC2 provide a web server and a standalone version;
both versions were tested in our experiments. The web server of
CPC2 presented the results that are identical to the standalone
version. For CPC and CPAT, however, the results of the web ser-
ver and standalone version showed some minor differences,
which may result from different genome assemblies of the
training set. Additionally, considering that the secondary struc-
ture calculated by RNAfold may not present the actual struc-
ture, LncFinder can be configured to predict lncRNAs using the
structural information provided by users or simply without
using the multi-scale secondary structural features. In our
evaluation, the structural features’ excluded version of
LncFinder was also benchmarked against other tools.

Performance evaluation of human data set B
Figure 4 displays the performances of different tools on human
data set B. It can be noted that CPC had the best specificity (1.00
of standalone version and 0.9988 of the web server). However,
the accuracy (0.8318 of standalone version and 0.8304 of the
web server) was not that excellent owing to the low sensitivity
(0.6636 of standalone version and 0.6620 of the web server). As
an alignment-based method, CPC is mainly designed to assess
the coding potential, and it is very useful to evaluate highly con-
served protein-coding transcripts. Nevertheless, many lncRNAs
overlap protein-coding genes, which could make CPC incorrect-
ly classify long non-coding transcripts as protein-coding
sequences. As the upgraded version of CPC, CPC2 showed con-
siderable improvement (accuracy, 0.9614; F-measure, 0.9610) on
its predecessor. Compared with CPC, CPC2 achieved much bet-
ter sensitivity and thus much better accuracy. CPAT had rela-
tively high accuracy and F-measure on the web server, 0.9654
and 0.9653, respectively. CNCI surpassed PLEK (accuracy of pre-
build model, 0.9410) with an accuracy of 0.9450. Because the de-
fault models were trained with a large scale of sequences,
which may have some overlaps with our test sets, CPAT and
PLEK were evaluated with the re-trained models as well. The ac-
curacy of CPAT (re-trained model) was 0.9642 and the accuracy
of PLEK was 0.9274. LncFinder achieved the highest accuracy
and F-measure, 0.9728 and 0.9726, respectively. The high

accuracy and F-measure imply LncFinder is provided with a bet-
ter balance between precision and recall.

Even when secondary structure-derived features were
excluded, LncFinder still outperformed other tools. Figure 3 (D)
displays the ROC curves of CPC (offline version), CPAT (re-
trained model), CNCI, PLEK (re-trained model), CPC2 and
LncFinder on human data set B. Both LncFinder and CPAT had
the best AUC, but the accuracy of CPAT was lower than that of
LncFinder. For detailed data of the evaluation on human data
set B, please refer to Table S3-18.

Performance evaluation of mouse data set
We additionally evaluated the performance of different tools on
the mouse data set because it is one of the most studied species.
CPC predicts sequences largely depending on the reference data
set; thus, CPC can be applied to various species with one default
model. According to the manuals, the default models of CNCI
and PLEK are competent to predict sequences of other verte-
brate species; CPC2 is a species-neutral classification tool that
can be used for non-model organism transcriptomes. We, there-
fore, compared CNCI, PLEK (default model), CPC2 with
LncFinder (default model for human) to have a fair evaluation.
CPAT is the only alignment-free tool that has the pre-built
model for mouse, and both the default model for mouse and the
re-trained model were included in our tests.

Figure 5 displays the performances of different tools on the
mouse data set. CPC still obtained the highest specificity (0.9883
of standalone version), but the accuracy (0.8750 of standalone
version) was affected by the low sensitivity (0.7617 of stand-
alone version). CPC2, however, had a high sensitivity of 0.9289;
because of its poor specificity of 0.7933, it could obtain an accur-
acy of only 0.8611. CPAT with a re-trained model obtained an ac-
curacy of 0.9242, while PLEK with re-trained model had an
accuracy of 0.8178. LncFinder achieved the best result with an
accuracy 0.9347 and an F-measure of 0.9360, which indicates its
satisfactory overall performance. Furthermore, LncFinder (with-
out secondary structure-derived features) surpassed other tools
with an accuracy of 0.9286. When the model for human was
used, LncFinder achieved an accuracy 0.9186 and an F-measure
0.9207, which still surpassed other tools’ default models
(accuracy of PLEK, 0.8025; accuracy of CPC2, 0.8611; accuracy of
CNCI, 0.9133; accuracy of CPAT’s web server, 0.9161). Although
using the model for the human data set, LncFinder was only in-
ferior to the re-trained model of CPAT. Figure 3 (E) displays the

Figure 5. Performances of different tools on mouse data set. LncFinder achieved the best accuracy of 0.9347, while PLEK (re-trained model) had an accuracy 0.8178. The

accuracy of CPAT (re-trained model) was 0.9242 and better than CNCI’s 0.9133, CPC’s 0.8678 (web server) and CPC2’s 0.8611. LncFinder (Without.SS) outperformed other

tools with an accuracy of 0.9286 even without secondary structure-derived features. When using the model for human, LncFinder outperforms CPC/CPC2, CPAT (web

server), CNCI and PLEK (re-trained model) with a satisfactory accuracy of 0.9186. Under this circumstance, LncFinder can even rival CPAT (re-trained model for mouse),

which demonstrates LncFinder’s robustness and high cross-species stability.
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ROC curves of CPC (offline version), CPAT (re-trained model),
CNCI, PLEK (re-trained model), CPC2 and LncFinder on the
mouse data set. LncFinder had the best AUC and presented a
satisfactory trade-off between sensitivity and false-positive rate
(FPR, 1-specificity). CNCI and PLEK had much higher FPR and
lower AUC. The original data of this evaluation are listed in
Table S3-19.

Performance evaluation of wheat data set
We further compared different tools on plant data set. The data
set was constructed with the sequences of wheat because of its
sufficient lncRNA sequences. According to the manuals of CNCI
and PLEK, both tools provide models for plant sequences predic-
tion. Thus, their pre-built models for plants were included in
our tests. Because CPAT has no model for plant species, we add-
itionally compared CPAT with LncFinder by employing their de-
fault models that are built with human data sets.

Figure 6 shows the performances of different tools on the
wheat data set. CPC outperformed all the alignment-free tools
with the highest accuracy and F-measure, 0.9595 and 0.9585, re-
spectively. Its successor, CPC2, nonetheless, had an accuracy of
0.7870 and an F-measure of 0.7560. The accuracy of CNCI (de-
fault model for plant) was 0.6158, and the accuracy of PLEK (de-
fault model for plant) was 0.5275. Although CNCI and PLEK
provide models for plant, their results were not that favorable.
Using the re-trained model, the accuracy of PLEK increased
from 0.5275 to 0.8773. The performance of CPAT (re-trained

model) was slightly inferior to that of PLEK (re-trained model)
with an accuracy of 0.8743. LncFinder obtained the best per-
formance among alignment-free tools with an accuracy of
0.9283. LncFinder also presented satisfactory sensitivity and
specificity. From Figure 6, it can be seen that all the tools had
high specificity, but different tools had various sensitivity.
When each tool’s default model was used for this test set,
LncFinder (default model for human) had the best sensitivity of
0.7000, while PLEK (default model for plant) only got 0.0550.
Both LncFinder and CPAT were tested using their default mod-
els for the human sequences. The performance of LncFinder
(accuracy, 0.8190; F-measure, 0.7946) was much better than that
of CPAT (accuracy, 0.7145; F-measure, 0.6188). CPAT employs lo-
gistic regression, and the best cutoffs of different species vary
considerably. CPAT’s suggested cutoff for human is 0.364, while
the best cutoff for mouse is 0.440. In our experiments, the opti-
mal cutoff for wheat even reached 0.537. An inappropriate cut-
off can lead to an inferior performance. Figure 3 (F) displays ROC
curves of CPC (offline version), CPAT (re-trained model), CNCI,
PLEK (re-trained model), CPC2 and LncFinder on the wheat data
set. CPC surpassed all alignment-free tools on wheat, although
it presented unsatisfactory results on human and mouse.
Among alignment-free tools, LncFinder achieved the best AUC
of 0.983. It is reasonable to assume that the poor performance of
CNCI can be ameliorated if CNCI can be re-trained with new
data sets. The original data of the evaluation of wheat are listed
in Table S3-20.

Figure 6. Performances of different tools on wheat data set. Although CPC had inferior performances on human and mouse, it achieved the best accuracy on wheat.

CPC obtained an accuracy of 0.9595, but his alignment-free successor CPC2 only had an accuracy of 0.7870. The accuracies of CPAT (re-trained model) and PLEK (re-

trained model) were 0.8743 and 0.8773, respectively, while LncFinder obtained an accuracy of 0.9283. When default models were used, CPAT (model for human), CNCI

(default model for plants) and PLEK (default model for plants) had accuracies of 0.7145, 0.6158 and 0.5275, respectively. LncFinder (model for human) had an accuracy

of 0.8190. Although CNCI and PLEK provide default models for plants, the performances were substandard. LncFinder has the best performance among alignment-free

tools. Even using the model for human, LncFinder still outperformed CPC2, CNCI and the default models of CPAT and PLEK.

Table 4. Performances of different tools on zebrafish and chicken data sets

Methods Zebrafish (Danio rerio) Chicken (Gallus gallus)

Sensitivity Specificity Accuracy F-measure Kappa Sensitivity Specificity Accuracy F-measure Kappa

CPC 0.6728 NA NA NA NA 0.5784 0.9888 0.7836 0.7277 0.5671
CPAT 0.8668 0.8660 0.8664 0.8663 0.7328 0.9189 0.9178 0.9183 0.9183 0.8366
CNCI 0.8535 0.8728 0.8631 0.8618 0.7263 0.9128 0.9051 0.9089 0.9093 0.8179
PLEK 0.8715 0.8255 0.8485 0.8519 0.6970 0.9346 0.9124 0.9235 0.9244 0.8740
CPC2 0.8948 0.7835 0.8391 0.8476 0.6783 0.7650 0.9235 0.8443 0.8308 0.6885
LncFinder 0.8815 0.8838 0.8826 0.8825 0.7653 0.9491 0.9321 0.9406 0.9411 0.8813

Bold numbers indicate the highest value. LncFinder has the best performance. In our test, CPC could not process the protein-coding transcripts of zebrafish; thus, only

the result of lncRNAs is obtained.
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Performance evaluation of zebrafish and chicken data sets
We finally evaluated the stabilities and performances of CPC,
CPAT, CNCI, PLEK, CPC2 and LncFinder on zebrafish and chicken
data sets. The results are displayed in Table 4.

Because CPC needs to align the sequences against the refer-
ence database and CNCI has to calculate the most-like CDS
(MLCDS), these two tools have strict requirements for sequence
quality. For the sequences containing some non-nucleotide
characters (such as ‘X’), which are very common for some
poorly explored species, CPC may throw an error and stop the
computation, and CNCI may omit these sequences automatical-
ly. In this test, tools CPAT, PLEK and LncFinder functioned nor-
mally, but CPC could not identify the protein-coding transcripts
of zebrafish. Thus, only the result of lncRNAs was obtained. We
also noticed that CNCI omitted 7 lncRNAs and 6 protein-coding
transcripts of chicken and 13 protein-coding transcripts of
zebrafish automatically.

From Table 4, it can be observed that LncFinder outper-
formed other tools with the highest accuracy and F-measure.
The tool CPC had the best performance on wheat, but the sensi-
tivity of CPC was much lower on human, mouse, zebrafish and
chicken than the sensitivity of other tools; therefore, CPC had
low accuracy. CPC2 had much better overall performance than
CPC. For the zebrafish data set, CPAT achieved an accuracy of
0.8664 and was better than CNCI, PLEK and CPC2. But LncFinder
surpassed CPAT with an accuracy of 0.8826. PLEK performed
better than CPC, CPAT, CNCI and CPC2 on the chicken data set
and had an accuracy of 0.9235. But LncFinder obtained about
1.7% higher accuracy than PLEK. According to the results of the
five species, LncFinder displayed the most stable and satisfac-
tory performance. The robustness and fault-tolerance capability
make LncFinder a valuable and practical lncRNA identification
tool for multiple species, especially for those poorly explored
species.

Evaluation of computational speed
The running times of six tools were evaluated on the same plat-
form. We here avoid using large servers for computational
speed evaluation. An average hardware environment can assess
each tool’s efficiency and usability much clearly. The platform
configurations are Intel[textregistered] CoreTM i7-2600 processor
@ 3.40 GHz, 8 GB memory and 64 bits Linux OS. Human data set
B, which contains 2500 long non-coding transcripts and 2500
protein-coding transcripts, was used to evaluate six tools. CPC2
used 8.87 seconds to complete the prediction, while CPC needed
4675.45 min to complete the process of alignment and identifi-
cation. CPAT was only slightly inferior to CPC2 and used 9.05 s
to identify 5000 sequences. With the help of parallel computing,
it took CNCI, PLEK and LncFinder 1333.19 s, 83.67 s and 56.01 s,
respectively to complete the identification. If predicting sequen-
ces without using secondary structure features, it took
LncFinder 35.76 s to finish the process. LncFinder is more effi-
cient than CPC, CNCI and PLEK. Although slower than CPC2 and
CPAT, LncFinder can still predict several thousand sequences
within 1 min and present more reliable results. For detailed
data, please refer to Table S2-8.

Discussion

In this study, we reviewed several widely used lncRNA identifi-
cation tools and their features. Numerous alignment-free fea-
ture groups, such as codon bias, Fickett TESTCODE score and pI
were evaluated on three data sets to assess their performances
and cross-species stabilities. Additionally, we also

comprehensively explored the following three feature catego-
ries: sequence-intrinsic composition, multi-scale secondary
structural information and physicochemical features obtained
from EIIP and FFT. Based on the feature selection process, 19
heterologous features were extracted. We incorporated the 19
features into the following five popular machine learning algo-
rithms: logistic regression, SVM, random forest, ELM and deep
learning to validate the heterologous features we designed as
well as assess the effect of different machine learning algo-
rithms on lncRNA prediction. The stable performances of differ-
ent classifiers indicated that the features are critical and
reliable. According to the experiments’ results, we proposed a
novel lncRNA identification method. Benchmarked against sev-
eral state-of-the-art tools, our method displayed more accurate
and stable performances on multiple species with acceptable
time costs. An integrated package LncFinder is finally estab-
lished to facilitate the research on lncRNA. Various classic fea-
tures as well as features we designed can be extracted with
LncFinder. Users can use LncFinder to build the predictor with
other feature groups or machine learning algorithms. As a one-
stop package for lncRNA identification and analysis, LncFinder
can effectively and efficiently complete the main steps of pre-
dictor construction including feature extraction, feature selec-
tion, model construct and performance evaluation. LncFinder
was released as R package. To maximize its availability, a web
server was also developed for lncRNA prediction.

Euclidean-/Logarithm-distance, two new measurements,
were designed to capture the sequence-intrinsic composition.
Compared with other sequence-derived features, Logarithm-
distance can achieve high accuracy as well as simplify the fea-
tures markedly. Our designed multi-scale structural features
capture structural information at different resolution levels by
integrating sequence composition with MFE and structural
sequences. EIIP-derived features based on FFT can provide an-
other view from the prospect of physicochemical property. The
sequence-derived features are based upon linguistic meaning,
whereas the features extracted from the secondary structure
and EIIP can be further interpreted as semantic annotations,
which implies higher-level information of biological functions.

According to our experiments, features of Logarithm-
distance of hexamer on ORF region performed satisfactorily
with an accuracy of 0.9598, and the accuracy of all features from
three categories combined was 0.9687 with parameter tuning. It
seems that the improvement of secondary structural and EIIP-
derived features was trivial. However, six EIIP-derived features
achieved an accuracy of 0.8853, and eight secondary structure-
related features obtained an accuracy of 0.8525. In contrast, the
accuracy of the hexamer score on ORF region, the most discrim-
inating feature of CPAT, was only 0.8458. From Figure 3, second-
ary structural and EIIP-derived features outperformed features
of Fickett TESTCODE score, transcript length and pI value. The
performance of EIIP-derived features was even better than that
of tool CNCI [see Figure 3 (A) and (D)]. The performances of the
secondary structure and EIIP-based features are not far inferior
to those of sequence-derived features, but sequence-derived
features have achieved fairly high accuracy, thus leaving lim-
ited room for other features to enhance. Nineteen features from
these three categories were used to build our method. The sec-
ondary structure calculated by RNAfold may not completely re-
flect the actual structural information of one sequence.
Therefore, LncFinder can predict lncRNA with sequence-derived
features and EIIP features only.

Five widely used machine learning algorithms, namely, lo-
gistic regression, SVM, random forest, ELM and deep learning
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were compared to determine how much will different machine
learning algorithms affect the performance of lncRNA identifi-
cation using the features we designed. Deep learning in our test
had the lowest accuracy of 0.9523, while SVM obtained 0.9687.
Because there were only 19 features used to build classifiers, it
may be unnecessary to employ deep learning for such a small
scale of features. It is also worth mentioning that many of the
species have only limited lncRNA sequences. The insufficient
training data may lead to overfitting of the deep learning model.
Also, deep learning requires tuning of many parameters, which
requires a much longer time than other models to perform par-
ameter tuning and obtain the optimal model. Only minor dis-
tinctions existed among logistic regression, SVM, random forest
and ELM. The difference in accuracy between the SVM model
and the random forest model was merely 0.0006, which sug-
gests that these 19 features are very robust, and the fundamen-
tal features are of crucial importance in lncRNA identification.
In our experiments, SVM displayed the highest accuracy and
F-measure; random forest presented the best AUC; logistic re-
gression is fast and easy to build. Our lncRNA identification
method is developed using SVM not only because SVM achieved
the highest accuracy but also for its small size and convenient
application. If we apply random forest algorithm, the size of the
final package will be about 25 times as large as that of the cur-
rent version. As to logistic regression, the best cutoffs of differ-
ent species may vary widely, which may produce an adverse
effect on the tool’s generalization ability. Using LncFinder, users
can construct different classifiers with various machine learn-
ing algorithms.

We further compared our method (denoted by LncFinder)
with five popular lncRNA identification tools, namely CPC,
CPAT, CNCI, PLEK and CPC2. These five tools are selected be-
cause they are typical and considered state of the art. CPC is a
classic alignment-based tool, whereas the other four tools are
alignment-free. CPAT and PLEK can be re-trained by new data
sets, which can also present a comprehensive comparison.
Because results of BLASTX largely depend on the protein refer-
ence database and play an important role in CPC prediction,
CPC does not have to train several models for different species
as long as the reference database is large and comprehensive
enough. Nonetheless, CPC requires about 90 GB of free space for
storing the reference database of NCBI or more than 20 GB for
the database of UniRef90. Additionally, CPC needs a lot of time
to complete the process of alignment, which makes CPC less
efficient than other alignment-free tools. For human and mouse
data sets, CPC had the highest specificity but the lowest sensi-
tivity. This imbalanced performance has led to unsatisfactory
accuracy. CPC2 predicted lncRNAs with sequence-intrinsic fea-
tures alone and had the result much better than CPC on the
human data set. However, the performance of CPC2 was slightly
lower than that of CPC on the mouse data set. For other
alignment-free identification tools, CNCI and PLEK (pre-built
model) had comparable results. The accuracy of CPAT was
higher than that of CPC, CNCI and PLEK, but lower than that of
LncFinder. LncFinder achieved the best performances on
human and mouse data sets, even when the secondary
structure-derived features were excluded.

As to plant species, we observed some intriguing phenom-
ena from each tool’s performance on wheat data set. CPC
obtained the best result on wheat data set, despite its lower sen-
sitivity and accuracy on human and mouse data sets. CNCI and
PLEK, though provide models that can be used to predict
lncRNA of plant, their performances on wheat were hardly ac-
ceptable. One possible explanation is that there are fewer

similarities between protein-coding transcripts and lncRNAs in
wheat than in human. For instance, 38.44% (961/2500) of
lncRNAs from human test set B has BLASTX HITS but only
1.95% (39/2000) of lncRNAs from wheat test set has BLASTX
HITS. Consequently, CPC finds fewer HITS in lncRNAs in wheat,
and thus avoids classifying lncRNAs as mRNA and has low sen-
sitivity. Moreover, the nucleotide usages of different plants may
be less conserved than those of vertebrates. Thus, the tools
greatly depending on nucleotide composition features, such as
CNCI and PLEK, displayed poor results when the species of test
set largely differs from the species of their pre-built models’
training set. Gene structure is closely related to evolutionary
changes and protein functionality. The differences in gene
structure may also affect the classifier’s performance.
Compared with the popular alignment-free tools, LncFinder dis-
played the best accuracy and F-measure. LncFinder and CPAT
avoid using every nucleotide composition frequency to con-
struct the model, which helps cushion the effect of various in-
trinsic compositions of different species. Unlike hexamer score
that only uses the hexamer frequencies of reference data set,
LncFinder also considers the frequencies of unevaluated
sequences, thus showing more stable performances than CPAT.
According to our evaluation, we can find that it is essential to
build new models for different species, but only CPAT, PLEK and
LncFinder support model re-training. For some poorly explored
species, limited lncRNA may be not sufficient to train a new
model, and we need to employ models trained on other species.
In that case, CPAT may present inadequate results owing to its
wide range of cutoffs for different species. But LncFinder’s de-
fault model (trained with human data set) showed more reliable
cross-species performances than the default models of CPC,
CPAT, CNCI, PLEK and CPC2.

The computational time of each tool was also evaluated.
LncFinder is more efficient than CPC, CNCI and PLEK. CPC is the
slowest owing to the process of alignment. CNCI is less efficient
than other alignment-free tools mainly because it takes more
time to find the MLCDS region. PLEK employs 1364 features that
slow the prediction and make the process of model re-training
extremely time-consuming. CPAT and CPC2 are faster than
LncFinder mainly because (1) the source codes of CPAT and
CPC2 were implemented in C and Python, which are faster than
R, and (2) CPAT used logistic regression to build machine learn-
ing model, which is faster than SVM. Nonetheless, LncFinder is
qualified to predict lncRNA at a large-scale level with an accept-
able time cost.

In this study, we comprehensively reviewed and evaluated
different lncRNA identification features and tools. And we also
developed a valuable and user-friendly package LncFinder.
However, there remain some tough challenges. The sequence
compositions of different species showed varying degrees of dif-
ferences, which entails intrinsic composition-based tools sup-
porting model re-training. Nonetheless, the further question is
that we cannot build models for all species. Hence, more critical
features that can be applied to multiple species needed to be
explored, especially for plants. Furthermore, the performances
of each tool vary from species to species, and it is practically im-
possible to know in advance which tool can achieve the highest
accuracy on a specific species. Thus, a tool with stable and sat-
isfactory results on multiple species is highly essential for
lncRNA research.

In this study, 19 critical features are obtained from feature
selection and 10-fold CV, which could reveal some valuable
distinctions between lncRNAs and mRNAs from the perspec-
tive of sequence-intrinsic composition, secondary structure
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and EIIP-based physicochemical property. These features are
expected to play positive roles in other lncRNA-related re-
search, such as interaction, annotation and evolution. As an
integrated lncRNA identification platform, LncFinder can fa-
cilitate relevant research and provide scientists with useful
information.

Application of LncFinder

Functions of LncFinder are not limited to lncRNA identification.
The stand-alone version of LncFinder is a one-stop package for
feature extraction, feature selection, model validation, classifier
construction and performance evaluation. LncFinder’s lncRNA
identification algorithm is developed based on the optimal fea-
ture combination and the most appropriate classifiers. A web
server is provided for lncRNA identification to make LncFinder a
highly flexible and remarkably user-friendly tool.

R package of LncFinder

R package of LncFinder has been included in CRAN. Users can
simply install LncFinder by entering the command
‘install.packages(“LncFinder”)’ in R, and an appropriate version
will be installed automatically. Package and reference manual
can also be downloaded from CRAN (stable version): https://
CRAN.R-project.org/package¼LncFinder or GitHub (Dev version):
https://github.com/HAN-Siyu/LncFinder.

The stand-alone version of LncFinder provides a batch of prac-
tical functions to facilitate lncRNA identification and analysis. (1)
LncFinder provides a novel lncRNA identification method. Models
for multiple species are provided. Two modes can be selected to
identify lncRNA with or without using secondary structure-
derived features. Secondary structure sequences can be loaded
from external files, in case users should have structural data
obtained from experiments or other reliable sources. (2) LncFinder
can be used to build new machine learning classifiers. Features
and classifiers can all be customized, which helps users construct
models with various feature groups or machine learning algo-
rithms. LncFinder can extract various alignment-free features
such as GC content, k-mer frequencies, hexamer score, Fickett
TESTCODE score, length and coverage of ORF, Euclidean-/
Logarithm-distance of k-mer frequencies, EIIP-derived features,
multi-scale secondary structural features and pI value. Machine
learning algorithms such as logistic regression, SVM, random for-
est can be employed to construct models with parameter tuning.
(3) Machine learning-related functions such as feature selection,
k-fold CV and parameter tuning are also included in LncFinder to
help users select the optimal feature combination and machine
learning algorithm. The functions, descriptions and options of
LncFinder R package have been briefly summarized in Table 5.
Please refer to Supplementary File 2—R Package and
Supplementary File 4—R Package Manual for examples and
detailed information. The Documentation of LncFinder is gener-
ated with R package” roxygen2” [73].

Table 5. Functions and descriptions of LncFinder R package

Function Description Option

Functions for classic features extraction
compute_EIIP() Compute EIIP-derived features 1. spectrum.percent: set the percentage of the sorted power

spectrum;
2. quantile.probs: set the quantile interval

compute_EucDist() Compute Euclidean-distance features 1. k: set the sliding window size;
2. step: set the sliding window step;
3. on.ORF: calculate features on ORF region

compute_FickettScore() Compute Fickett TESTCODE Score on.ORF: calculate Fickett TESTCODE Score on ORF region
compute_GC() Compute GC content on.ORF: calculate GC content on ORF region
compute_hexamerScore() Compute hexamer score see compute_EucDist()
compute_kmer() Compure k-mer features improved.mode: use the improved method proposed by PLEK;

other options see compute_EucDist()
compute_LogDist() Compure Logarithm-distance see compute_EucDist()
compute_pI() Compure isoelectric point 1. on.ORF: calculate isoelectric point on ORF region;

2. ambiguous.base: take ambiguous bases into account
find_orfs() Find ORFs reverse.strand: find ORFs on the reverse strand

Functions for LncRNA identification and new classifier construction
lnc_finder() Identify lncRNAs using LncFinder 1. svm.model: select species, such as human, mouse and

wheat;
2. SS.features: use multi-scale secondary structure features

build_model() Build new model using LncFinder see lnc_finder()
extract_features() Extract features proposed by LncFinder SS.features: extract multi-scale secondary structure features
read_SS() Load external secondary structure information
run_RNAfold() Run RNAfold and capture the results
svm_cv() Perform cross validation for SVM model 1. folds.num: set the number of folds for cross-validation;

2. seed: set the seed for random number generation; other
parameters for SVM model training

svm_tune() Tune SVM model see svm_cv()

This table briefly summaries the main functions of LncFinder R package. All functions and descriptions are based on LncFinder R Package (version 1.1.2). The package

will be updated regarlarly. Refer to Supplementary File 4 - R package Manual for detailed descriptions and examples.

LncFinder | 2023

Deleted Text: ,
Deleted Text: ,
Deleted Text: &hx201D;
Deleted Text: &hx201D;
Deleted Text: &hx201D;)&hx201D; 
Deleted Text: Stable 
https://CRAN.R-project.org/package=LncFinder
https://CRAN.R-project.org/package=LncFinder
https://CRAN.R-project.org/package=LncFinder
https://github.com/HAN-Siyu/LncFinder
Deleted Text: contend
Deleted Text: Distance 
Deleted Text: ,
Deleted Text: , and so forth
Deleted Text: ,
Deleted Text: ,
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bby065#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bby065#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bby065#supplementary-data


Web server of LncFinder

The web interface of LncFinder is developed to suit the conveni-
ence of the users. This web server is available at http://bmbl.
sdstate.edu/lncfinder/. A backup server is also established,
which can be accessed via http://csbl.bmb.uga.edu/mirrors/JLU/
lncfinder/. Figure 7 is a screenshot of LncFinder’s web server.

The web server provides the following three functional mod-
ules: (1) lncRNA identification for multiple species; (2) down-
loads of multi-species models, data sets and secondary
structural sequences; and (3) an instructive summary of
lncRNA-related tools, databases and news.

The web server of LncFinder supports sequences in FASTA for-
mat as input. Users can input sequences in the text area or just

Figure 7. Screenshot of LncFinder’s web server.
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upload a FASTA file. Users can also select to identify lncRNAs with
or without multi-scale secondary structural features. Now five spe-
cies, namely, human, mouse, chicken, zebrafish and wheat, are
available on our web server. The results will be displayed after the
identification is complete. The original results and structure-
related sequences can be exported and downloaded. Each predic-
tion task will be assigned a Job ID, and users can use the Job ID to
download previous results and secondary structure-derived
sequences. Moreover, additional models for other species can be
downloaded for local use. The web server also provides an inform-
ative summary for users’ convenience, which includes the updated
information on lncRNA prediction tools, various kinds of databases
and lncRNA research progress. The summaries will be updated
regularly. See Supplementary File 3 - Web Server for detailed
information.

Supplementary Data

Supplementary data are available online at https://academ
ic.oup.com/bib.
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Key Points

• Many classic features were reviewed and discussed.
Features from the following three categories:
Euclidean-/Logarithm-distance of hexamer, multi-scale
secondary structural information and EIIP-based physi-
cochemical property were also explored to enhance the
accuracy of lncRNA prediction.

• Based on these three feature categories, a novel lncRNA
identification algorithm was developed with the com-
prehensive processes of feature selection and model
validation. Benchmarked against several state-of-the-
art methods, our algorithm presented the most robust
and satisfactory performance on multiple species.

• An integrated platform LncFinder was developed to fa-
cilitate lncRNA identification and analysis. LncFinder
can effectively perform feature extraction, feature selec-
tion, classifier construction and performance evalu-
ation. Our lncRNA identification algorithm was included
in LncFinder as well.

• Released as R package and web server, LncFinder can
be run on multiple OS platforms. LncFinder is a flexible

and useful tool for coding/non-coding sequence predic-
tion, coding potential assessment, lncRNA property
analysis, machine learning model construction and per-
formance evaluation.

• It is necessary for tools to support model retraining,
which could significantly improve their performance.
More critical features need to be designed to develop
robust and species-neutral tools.
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