
Title: Maladaptation in cereal crop landraces following a soot-producing climate catastrophe

Authors: Chloee M. McLaughlin1,3*, Yuning Shi2, Vishnu Viswanathan3, Ruairidh Sawers2,
Armen R. Kemanian2, Jesse R. Lasky3,4*

1Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University,
University Park, PA 16802
2Department of Plant Science, Pennsylvania State University, University Park, PA 16802
3Department of Biology, Pennsylvania State University, University Park, PA 16802
4PAC Herbarium, Pennsylvania State University, University Park, PA 16802

*correspondence: cmc7333@psu.edu, lasky@psu.edu

Corresponding Author:

Classification: Biological Sciences (Evolutionary Biology)

Keywords: Crop modeling, genomic offset, genotype-environment associations, nuclear winter

Abstract: Aerosol-producing global catastrophes such as nuclear war, super-volcano eruption, or
asteroid strike, although rare, pose a serious threat to human survival. Light-absorbing aerosols
would sharply reduce temperature and solar radiation reaching the earth’s surface, decreasing
crop productivity including for locally adapted traditional crop varieties, i.e. landraces. Here, we
test post-catastrophic climate impacts on barley, maize, rice, and sorghum, four crops with
extensive landrace cultivation, under a range of nuclear war scenarios that differ in the amount of
soot injected into the climate model. We used a crop growth model to estimate gradients of
environmental stressors that drive local adaptation. We then fit genotype environment
associations using high density genomic markers with gradient forest offset (GF offset) methods
and predicted maladaptation through time. As a validation, we found that our GF models
successfully predicted local adaptation of maize landraces in multiple common gardens across
Mexico. We found strong concordance between GF offset and disruptions in climate, and
landraces were predicted to be the most maladapted across space and time where soot-induced
climate change was the greatest. We further used our GF models to identify landrace varieties
best matched to specific post-catastrophic conditions, indicating potential substitutions for
agricultural resilience. We found the best landrace genotype was often far away or in another
nation, though countries with more climatic diversity had better within-country substitutions.
Our results highlight that a soot-producing catastrophe would result in the global maladaptation
of landraces and suggest that current landrace adaptive diversity is insufficient for agricultural
resilience in the case of the scenarios with the greatest change to climate.
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Introduction

Environmental variability due to changing climate poses one of the greatest threats to

agricultural productivity1. Increasingly, researchers aim to predict the effects of changing climate

on agriculture, projecting constraints on crop production and anticipated decreases in yield2,3. For

regions and crop species identified as vulnerable under future climates, strategies to increase

agricultural resilience may include adapting management practices and substituting varieties or

crop species4.

A catastrophic incident is defined by the National Response Framework as, “any natural

or manmade incident, including terrorism, that results in extraordinary levels of mass casualties,

damage, or disruption severely affecting the population, infrastructure, environment, economy,

national morale, and/or government functions”. Aerosol -producing global catastrophic events,

such as nuclear war, asteroid strike, or super-volcano explosion, are expected to produce

significant climate change5 through deflecting solar radiation, preventing sunlight from reaching

the Earth’s surface and causing global cooling. Since the spread of nuclear weapons during the

twentieth century, there has been significant focus on assessing the consequences of a nuclear

conflict on both society and the environment6. Published climate models have been used to

consider the impacts of nuclear wars on the growth of major grain crops7–9 and summarize the

degree to which the rapid environmental change induced by a soot-producing catastrophe would

impact global crop production. To date, the impact of such a soot-producing catastrophe on

agricultural systems has not accounted for intraspecific diversity present in crop species,

including landraces, and how this diversity may aid in increasing agricultural resilience. Cereal

crops account for the most calories consumed by humans10 and maintaining their production

post-global catastrophe is of the utmost importance.
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Crop landraces (local traditional varieties) contain most of the genetic diversity within

many crops, much of which is not represented in modern breeding varieties11 and are still widely

cultivated in the developing world. The continual cultivation and selection of crops by farmers

gives rise to these local varieties that often carry locally adapted alleles and phenotypes12.

Historically, landraces have contributed to plant breeding through the identification of traits and

alleles for adaptation to stressful environments (water stress, salinity, and high temperatures)13.

Many thousands of landrace varieties are now stored in germplasm banks and represent untapped

adaptive diversity that may increase agricultural resilience under changing environments14.

The genetic basis of adaptation to local environments can be characterized through

geographic associations between genotype and environment, known as genotype-environment

associations15. Genotype-environment associations have been used to study the adaptive potential

of species16, estimate optimal range shifts17, and identify genes that may be advantageous for

organisms under future climates18. Genotype-environment associations may also give insights

into which specific environmental pressures drive local adaptation19–21. For landraces, a large

portion of genomic variation can be explained by environments of origin22–24, making them good

systems for considering the environmental gradients driving local adaptation25 and the

geographic distribution of locally adapted alleles26,27.

An emerging approach for predicting adaptation to novel environments is first fitting

genotype-environment models that describe how current allele frequencies change across

environments under an assumption of local adaptation. Next, the fitted model is applied to a

novel environment to determine the change in genomic composition required for adaptation to

that environment, known as genomic offset (reviewed in 28). The genotype-environment models

can further be extended to identify optimal genotypes or varieties for specific environments24,29
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and guide movement of genotypes to minimize maladaptation to the novel climates. Such

modeling methods capture long-term signals of adaptation and may provide insights into

genotypes that are the most vulnerable/sources of resilience to climatic variability30.

We studied the climate impacts of a soot-producing catastrophe on broadly distributed

globally important cereal crops for which landrace cultivation is important for smallholder

farmers: Sorghum bicolor (L.) Moench (sorghum), Zea mays L. (maize), Oryza sativa L. subsp.

indica and japonica (rice), and Hordeum vulgare L. (barley). For each crop species included in

this study, e we independently implemented crop growth models to identify climate stressors and

genomic models to estimate the degree of disruption to current landrace adaptation under several

post-catastrophic scenarios differing in the amount of soot injected into the climate model. We

validated our genomic models through comparing predicted local adaptation and published

maize landrace performance data collected in common gardens across diverse climates in

Mexico. We further extended our genomic models to identify landrace varieties best matched to

specific post-catastrophic conditions, supporting the management strategy of substituting

vulnerable landrace genotypes for more resilient ones.

Our study aims to evaluate the environmental forces that have historically shaped

genomic variation in landraces and to assess how landrace adaptation may be disrupted by novel

catastrophic events. There is little research investigating the impacts of changing climate on

diverse genotypes of multiple species. Thus, the literature may be oversimplifying climate

change effects on agricultural and ecological systems. Utilizing a multi-species genomics

approach allows us to confront this challenge, acknowledging the distinct impacts on various

species that are vital for food production. Further, the approach developed in this study may be
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extended to and prove valuable for understanding impacts of greenhouse gas induced climate

change.

Results

Climate scenarios. We studied disruptions to current landrace adaptation for six nuclear war

scenarios that simulate the impact of varying amounts of stratospheric soot on global climate

(Fig. S1) using previously published climate simulation data6,31. The published weather files

describe the climate impacts for five India-Pakistan nuclear war scenarios (soot injections of 5

Tg, 16 Tg, 27.3 Tg, 37 Tg, and 46.8 Tg), one United States-Russia scenario with a soot injection

of 150 Tg, and a control run that describes normal fluctuations in climate.

Genotyped landrace accessions. To assess maladaptation in cereal crop landraces following a

soot-producing catastrophe, we identified species for which landrace relatives are currently

grown in the developing world that also had publicly available, high quality sequencing data of

geographically diverse accessions. From these criteria, we selected four crop species: barley (n =

215), maize (n = 3,404), rice (n = 677 of the subsp. indica n = 309 of the subsp. japonica), and

sorghum (n = 1,779). The distribution of accessions covered most of the agricultural areas in the

developing world (Fig. S2) across diverse climate regimes.

Using crop growth models to estimate integrated local climatic stressors under control and

post-war conditions. Traditional implementations of genotype-environment associations

typically use off-the-shelf climate parameters without connection to organismal biology and

without consideration of phenology. However, actual climate-driven stress likely emerges from a
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combination of conditions (e.g. precipitation and temperature) and depends on organismal

phenology and development. To address these issues, we used the Cycles agroecosystem

model2,32 to simulate growth and stress parameters for our full set of genotyped, georeferenced

landrace accessions (n = 6,384) under control and six nuclear war conditions that differed in the

quantity of stratospheric soot simulated (5 Tg, 16 Tg, 27 Tg, 37 Tg, 47 Tg, 150 Tg). Cycles

simulations select a planting date in a designated planting window when the weather and soil

conditions are suitable for the specific crop, and simulates crop growth until the time of harvest

or termination, using parameters specific to each of our four species. Cycles simulations that

accounted for species-specific growth parameters were run independently for each crop species

and climate scenario (control and six soot scenarios).

We used outputs from Cycles simulations to infer emergent climatic, growth, and stress values

experienced during key phenological stages of crop, constrained to the growing period for each

simulated accession under the different climate scenarios (Table S2). Thus, the selected model

outputs characterized differences in climate and potential stress experienced by a given landrace

accession under control and post-war climates, while accounting for crop-specific growth

parameters. For each climate scenario and accession, we extracted 13 Cycles-derived variables

representative of average temperature, coldest temperature, water stress, and solar radiation

experienced by simulated landrace accessions across the vegetative, reproductive, and total

growth and days to reach maturity (hereafter, Cycles-derived environmental variables, Fig. 1,

Table S1). While in reality landrace accessions likely exhibit variation in response to

environmental variability, modeling this genetic variation was not our goal at this stage. Rather,
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our goal was to use Cycles to estimate integrative environmental stressors through space and

time for later use in modeling genotype-environment associations.

As described by other groups, in all war scenarios regardless of detonation location,

produced soot spreads globally and causes disruptions to solar radiation reaching the earth’s

surface, resulting in global cooling6,31. Stratospheric soot from each post-war scenario dissipated

over the course of a decade and the climate anomalies caused by atmospheric soot decreased

proportionally, with respect to severity of the scenario. Across all scenarios, surface shortwave

radiation reached its all-time low two years post-war, corresponding to the point at which Cycles

modeled crops were simulated with the lowest average solar radiation (Fig. 1). Consequently,

global surface temperature immediately and rapidly declined after the catastrophe and on average

reached its lowest point in the third year post-war, with more extreme cooling in the Northern

Hemisphere6,33. Our crop models summarized this cooling trend. Daily average temperature for

landraces modeled by Cycles reached its lowest point two to three years post catastrophe. Barley,

our crop with a primary distribution in the Northern Hemisphere, experienced the coolest

post-war temperatures (Fig. S2; Fig. 1). In the coolest year of the 150 Tg Russia-US scenario,

average temperature of the growing season across all simulated accessions decreased by 10 °C

for maize and sorghum, 14 °C for rice subsp. japonica, 16 °C for rice subsp. indica, and 20 °C

for barley, indicating the severity of this scenario.

For maize, rice, and sorghum, whose landraces modeled in this study were mostly

tropical, declines in temperature across the simulated growing season led to an increase in the

number of days required for a plant to reach maturity. The strength of this relationship increased

with the more severe soot scenarios (Fig. S3). Failure to accumulate enough thermal time during

the growing season was recorded as the crop not reaching maturity. As the Cycles set up did not
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account for genetic and adaptive variation among landraces, an individual not projected to reach

maturity can be interpreted as a climate that is relatively inhibitory for growth. The simulated

number of days to maturity generally corresponded to the severity of the climate anomaly of the

post-war soot scenario. The most extreme environmental effects of the 150 Tg scenarios at least

doubled the number of days to reach maturity for all tropical crops (Fig. 1). In the second

post-war year of this scenario, 90% of barley, 62% of rice subsp. indica, 51% of rice subsp.

japonica, 54% of maize, and 33% of sorghum accessions were projected to not reach maturity.

Identification of environmentally adaptive genetic loci. For each crop species, we acquired

published genotype data of landrace accessions used in Cycles simulations above. The final set

included 6,384 accessions with genotype data represented by various sequencing and genotyping

methods: 215 barley accessions with exome sequencing (1,688,807 single nucleotide

polymorphisms, (SNPs))34, 3,404 maize accessions with genotyping-by-sequencing (GBS)

(946,072 SNPs)35, 986 rice accessions with whole genome resequencing (WGS) (677 subsp.

indica, 309 subsp. japonica; 9.78 million SNPs)22, and 1,779 sorghum accessions with GBS

(459,304 SNPs)36. All genotype files were processed in PLINK, an established software for

analyzing and filtering genotypic data37. Though differences in genotyping methods and the

distribution of genotyped accessions may influence our ability to model adaptation, we sought to

identify datasets that most represented the diversity of genotypes and environments that

landraces of our focal species originate from and are likely adapted to.

To build gradient forest (GF) models that were used to predict maladaptation in crop

landraces following post-war soot induced change in climate, we first identified a subset of

genomic loci that we hypothesized were more likely to underlie local adaptation. Specifically, we
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identified genetic loci that were associated with landrace climate of origin and flowering time

quantitative trait loci (QTL) for use in GF models. Following methods described in 38 and for

each crop species, we used partial redundancy analysis (pRDA) to identify the top 1,000 genetic

loci associated with variation in 13 Cycles-derived environmental variables under the control

scenario while also accounting for population structure (methods; Fig. S4). To ensure potentially

critical phenology QTL were accounted for in our models, we further identified single nucleotide

polymorphisms (SNPs) of loci found within and in cis-regulatory regions (+/- 5 kilobase (kb)

pairs) of known flowering time network genes (Table S2). We identified loci known to be

involved in flowering time for each crop species by literature review, obtained gene coordinates

for each flowering time gene, and extracted all SNPs that overlapped within and in cis-regulatory

regions of the genomic region. We further filtered each species’ set of flowering time loci to

account for patterns of linkage disequilibrium. The number of flowering time SNPs included in

our GF models for each of our focal species included 636 for barley, 608 for maize, 314 for rice

subsp. indica, 323 for rice subsp. japonica, and 116 for sorghum (differences in number are a

product of marker density). In total, the final genetic dataset used to build each species’ GF

model included the top 1,000 SNPs associated with variation in the control Cycles-derived

environmental variables identified by pRDA and the SNPs found in and near flowering time

network genes.

Control scenario GF models describe existing genome-environment associations. We built

GF models representative of current genotype-environment associations using the loci mentioned

above and Cycles-derived environmental variables of the control simulation for each crop

species. GF is a nonparametric multivariate approach that fits an ensemble of regression trees
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using Random Forest39 and models changes in allele frequency along environmental gradients40.

GF’s functions provide a means to rescale environmental predictors from their normal units (e.g.,

°C, mm) into a unit of cumulative importance for describing variation in a genetic dataset. For all

GF models, the emergent environmental parameter of simulated days to maturity was in the top

five most important predictors for describing variation in regions of the genome that may

contribute to environmental adaptation (Fig. S5). No single environmental variable was

substantially more related to allele frequencies of tested loci across all crop species, indicating

that GF models captured genome-wide relationships to multiple environmental gradient signals

rather than a high impact at a single locus30. The differing importance of environmental variables

specific to a growth stage of plants (variable constrained to the vegetative or reproductive stage

of growth) indicated that stress experienced by plants changes across the different phenological

stages of growth and genetic variation can be associated with life-stage specific stress.

GF models capture adaptation in landraces. To test if GF models captured current

environmental adaptation in landraces, we compared published performance data of 11,762

maize landraces grown across 13 common gardens in Mexico27,35 to GF predicted

genotype-environment relationships using Cycles-derived environmental variables of the control

scenario. The common gardens spanned geographic and environmental range of maize

cultivation (Fig. S6A). To predict adaptation, we calculated GF offset for each accession in each

common garden as the Euclidean distance between the accession’s control GF modeled

genotype-environment association and the expected genomic composition at the common

garden. As offsets are calculated from current genotype-environment relationships in the GF

models, they are weighted by the contribution of different loci that are involved in current
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landrace adaptation and indicate what amount of genetic change would be required for

adaptation to a common garden. Accessions with a low GF offset are expected to be better

adapted to the conditions at the common garden. We found that, indeed, accessions performed

best (height and yield measures) when grown in sites where they had low GF offset (Fig. 2A;

Fig. S6B). Furthermore, anthesis silking interval (ASI, synchronicity of male and female flower

maturity) was reduced when accessions were grown at sites for which they had lower GF offset.

ASI is a reliable predictor of stress in maize41, indicating maize landraces were less stressed

when grown in common gardens to which they were predicted to be adapted (lower GF offset).

The degree of GF offset post-catastrophe follows the magnitude of climate disruption. We

used the fitted GF models to predict the expected locally-adapted genomic composition for

landraces across space and time under the six post-war scenarios. To predict the magnitude of

maladaptation, we calculated GF offset as the Euclidean distance between a given landrace

source location’s expected genomic composition between control and the six soot scenarios

separately. High GF offset values corresponded to a greater degree of maladaptation and

represented a greater shift in allelic composition required for adaptation to persist in the climate

produced by the soot scenario. For all crops and scenarios, GF offset values followed the trend in

post-war climate disruptions, with a sharp increase and gradual recovery after 10 to 15 years

(Fig. 2B-F; Fig. S7). GF offset for all crops reached its highest point two to three years

post-catastrophe, indicating that crops were expected to have the highest degree of maladaptation

when global solar radiation and temperatures reached their all-time low. Maximum GF offset of

each target scenario linearly corresponded to the amount of soot simulated for the 5 Tg to 47 Tg

soot scenarios. In the most extreme 150 Tg scenario, the trend was more pronounced and
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deviated from the linear pattern (Fig. 2 B-F). Across all crop species, we detected a strong

latitudinal pattern associated with GF offset values, equatorial regions which experienced less

adverse climate impacts were predicted to be less maladapted to post-war conditions (Fig. 3).

Identification of landrace substitutions for post-catastrophe adaptation. We leveraged our

GF models to identify landrace genotypes best matched to specific post-catastrophic conditions,

indicating potential varietal substitutions for locations with landraces that were the most

maladapted to post-catastrophic climates. Under post-catastrophic conditions, many locations

will not have climate suitable for the cultivation of crops and we constrained our analyses to only

look for substitutions for locations that were projected to have a crop reach maturity in the worst

year (year 2 post-strike) of the 150 Tg scenario. After filtering for locations that were not

expected to be suitable for agriculture, 10% of barley, 38% of rice subsp. indica, 49% of rice

subsp. japonica, 46% of maize, and 67% of sorghum landraces source locations were retained to

search for a suitable substitution. For the remaining locations, we identified the most vulnerable

locations as those with the highest GF offset. We then searched for the most optimal substitution

globally as well as the best within country substitution, identifying the landrace accession with

the lowest GF offset to the post-catastrophic climate in the vulnerable location (Fig. 5). Though

the identification of landraces with lower levels of maladaptation to post-catastrophic conditions

may be valuable for finding the genotypes most resilient to post-catastrophic climates, it is

important to note that our calculation of maladaptation is a relative metric and to approach these

findings with caution. The post-catastrophic climate of the 150 Tg scenario may be sufficiently

extreme to dramatically reduce the absolute production of accessions that is identified as a

suitable substitution and predicted to have a low GF offset to the novel climate conditions.
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Across all crops, the most optimal substitution was often far away (~1000 to ~10,000 km)

and across country borders. For many locations, the best substitution still had a high degree of

GF offset, indicating that there was not a genotype that was expected to be adapted to the

post-catastrophic climate at the vulnerable location included in our dataset (Fig. 5A, C, E, G, I).

This could be due to the severity of the novel climate at the vulnerable location, the absence of a

landrace accession that was expected to be adapted to the novel environment, or some

combination of both. For all crops, the best substitution trajectories typically moved landrace

accessions from poles and high elevations towards the equator and low elevations, indicating that

landrace germplasm adapted to currently cooler climates may be sources of resilience for

locations that may be more likely to support agriculture post-catastrophe. For all crop species,

there were instances where one genotype was the most optimal substitution for multiple

vulnerable locations, suggesting genotypes that may be particularly valuable for

post-catastrophic agriculture.

In the case of a catastrophe, substitutions across long distances may not be possible due

to socioeconomic disruptions, e.g. in transport and trade. We further searched for the optimal

within-country substitution. For all crops, within country substitutions with a low GF offset were

rare; within country substitutions always had a higher GF offset, corresponding to higher

expected maladaptation, than the optimal global substitution (Fig. 5B, D, F, H, J). Though

maintaining a high degree of maladaptation (GF offset), most within-country substitutions

included trajectories moving individuals towards the equator and lower elevations.

The within-country current diversity of environments to which landraces are adapted may

be important for finding a suitable substitution. To test this hypothesis, we compared the GF

offset for the 25% most maladapted locations within each country after using global substitutions
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versus within-country substitutions. We focused on sorghum because it was the crop with the

most countries having viable cultivation in year 2 of the 150 Tg scenario, giving power to

compare countries. As expected, all 31 countries with at least 5 sorghum accessions had greater

GF offset for the most maladapted locations when only using within-country substitutions,

compared to the global substitutions. The proportional inferiority of within-country compared to

global substitutions was only weakly related to the number of landraces from each country (r =

0.27, p = 0.14). We next tested if the control climate mean and variance influenced the inferiority

of within-country substitutions in a multiple regression, while accounting for the number of

landraces in each country. We found that the countries with less variance among landraces in

cold stress and greater mean cold stress had significantly worse within-country substitutions

compared to global (linear model, mean cold t = 3.99 p = 0.0005, variance in cold t = 2.54 p =

0.0173, number of landraces t = 0.37 p = 0.7173, R2 = 0.45). This highlights the potential future

value of diversity for regions and nations housing landraces adapted to diverse climates.

Discussion

The resilience of agricultural systems to changing climate determines global food

security. In this study we used information on landrace genetic variation and environment of

origin for agronomically important cereal crops to predict disruptions to their

adaptation/cultivation and to explore if the diversity of landraces may be beneficial sources of

resilience in the case of a soot-producing climate catastrophe. Consistent with other groups who

have investigated the consequences of a soot-producing catastrophe on global agriculture7,9 and

fisheries33, we find the climate impacts would be devastating to global subsistence agriculture,

many locations would become unsuitable for agriculture, and for the most extreme soot scenario,
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the locations that remain suitable may not have sufficient local landrace diversity within a

species to enable a successful substitution of a resilient variety.

Our crop model results correspond to previous estimates of the climate impacts of

soot-producing catastrophes6,7,9,31,33,42 while also providing an assessment of the diversity of

environments to which crop landraces of globally important cereal crops are adapted. Increases

in the number of days simulated to reach maturity corresponded to the climate anomalies of

reduced daily temperature and solar radiation. In the years and locations with the greatest climate

impacts, landraces in higher latitudes rarely achieved full maturity. Colder temperatures slow

down phenological development, and can diminish photosynthetic activity and damage tissue.

We built GF models to summarize current landrace genotype-environment relationships

and validated that GF models captured real adaptive differences through use of phenotypic data

collected for a broad diversity panel of maize landraces grown in common gardens across

Mexico. We show that predicted maladaptation, in the form of GF offset, is associated with

height, yield, and stress-related traits, demonstrating a new test of these tools23. Landrace

accessions had classic phenotypic patterns of local adaptation when grown in common gardens

they had a low degree of maladaptation to (low GF offset), suggesting GF models captured broad

adaptation of landraces’ local environments43. However, landrace performance was not perfectly

predicted by our genotype-environment model. This inability to completely predict adaptation

may be attributable to limitations of genotype-environment association approaches or to the

maintenance of diversity within environments. In general, reciprocal transplants and common

gardens often find mixed evidence for local adaptation44. Genotypes from the same environment

may differ in performance in a given common garden environment if processes like migration or

environmental fluctuations maintain diversity within populations or if important selective forces
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are not present in experimental conditions. Our validation methodology confirms that GF offset

can be a powerful tool to capture current genotype-environment relationships though our

inability to perfectly predict adaptation likely highlights a potential importance of maintaining

genetic diversity within a site.

When environments change and populations are not able to track the environmental

change through plasticity or rapid shifts in genetic composition, populations may become

maladapted and have reduced fitness in a novel climate45. In our case, landraces were predicted

to be the most maladapted, or have the highest GF offset, in the locations where climate was the

most disrupted from long-term averages, corresponding to the most extreme soot scenarios and

the years post-war where atmospheric soot was the most abundant. The strong relationship we

observed between GF offset and soot-induced change in climate is perhaps unsurprising. GF

models are trained using current genotype-environment associations and any shift in the

environment will likely require a change in genomic composition to track adaptation to a novel

climate. The ability to interpret the magnitude of offsets derived from GF-derived functions in an

ecologically meaningful way has recently become a point of discussion. Genetic-based

quantifications of adaptation38 and offset46 can be biased for unsampled areas or if the projected

environment exceeds what is used to train the model. Though we have a broad sampling of

landrace accessions for each focal crop species that are adapted to a diversity of environments

and used in GF genotype-environment models, the extremeness and novelty of post-war climates

used in this study likely make predicting maladaptation difficult47. At the same time, though the

true magnitude of maladaptation may be difficult to quantify, our GF models allow us to

incorporate measures of climate-associated genomic variation for the identification of the most

vulnerable locations that will likely require a varietal substitution. Additionally, our GF models
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provide insights to the aspects of the environment that may be most related to a crop’s current

adaptation, which is likely related to the evolutionary history and cultivation practices of the

crop. For example, GF identified average temperature and solar radiation experienced in the

reproductive growth phase as most related to rice subsp. indica to genome-wide allelic turnover,

suggesting these variables may be important in driving local adaptation within this species. Rice

landraces of the indica variety are traditionally cultivated in warm, tropical to subtropical

locations and may have limited cold tolerance48. While cold and solar radiation are the variables

most altered by nuclear winter, perhaps suggesting vulnerability of this species, the GF model

also suggests that indica genotypes vary in their adaptation to temperature and light, suggesting

there is some mitigation possible with genotype substitutions.

Crop diversity has been suggested as a potential solution to mitigate climate impacts on

agriculture24,49. For all crops included in this study, we found that landraces accessions with a

distribution farther from the equator were most maladapted to post-catastrophic climates and

were most often selected as the best varieties for substitutions. Most substitutions that were well

matched to vulnerable locations required long migration distances and for many locations, a

landrace adapted to the novel environment at the vulnerable location does not exist within our

dataset24. Substitutions that maintained a high level of GF offset indicated landrace varieties that

may remain maladapted to the novel climate, and no other varieties were better adapted to the

vulnerable, tested location. At the same time, for locations where the cultivation of crops remains

possible, the identification of multiple suitable genotypes may be important for the maintenance

of crop diversity within a site. For vulnerable locations that were not predicted to have a

well-adapted substitution, switching cultivation to faster-maturing crop varieties, or other

non-cereal crop species that tolerate lower temperatures (e.g. potato)50, may be a strategy for
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increased resilience. However, the adoption of a new crop species requires a significant

investment by farmers and substantial modifications of farmer and consumer behavior51. It is

worth noting that there may be some diversity in response to post-catastrophic conditions in

modern elite crop varieties cultivated in wealthier nations, which are not accounted for in this

study. Other groups have considered changes to global crop productivity under nuclear conflict,

including studies by Jagermeyer et al. (2020), which shows that even a relatively small nuclear

strike (e.g., 5 Tg of soot) would drastically impact crop production.

Though our study highlights maladaptation in cereal crop landraces following a

soot-producing catastrophe, methodology used in this study can also be leveraged to understand

disruptions to adaptation and possible genotype substitutions (also known as assisted gene flow)

given any change in climate, including greenhouse gas induced climate change52. Our results

indicate that for the most populations most vulnerable to climate catastrophe, the plant genetic

diversity within a country may not be sufficient for resilience and substitutions across country

borders of further distances may be required.

Methods

We used landraces to characterize global disruptions to adaptation and identify resilient

accessions in the case of a climate catastrophe that produces soot (Fig. S1). Selected landrace

crop species fulfilled two criteria - 1. Landrace relatives of the species account for a large portion

of accessions currently grown and 2. High quality sequencing data of geographically diverse

accessions were publicly available. From these criteria, we selected four cereal crop species-

Hordeum vulgare L. (barley), Oryza sativa L. (rice) subsp. indica and japonica, Zea mays L.

(maize), and Sorghum bicolor (L.) Moench (sorghum). For all analyses, the rice subsp. indica
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and japonica were run separately. Altogether, the species cover most of the agricultural areas of

the globe (Fig. S2) and are cultivated in and adapted to diverse climate regimes.

Weather data. Previously published weather data described in Toon et al. (2019) and Coupe et

al (2019) simulate the climate impacts of India-Pakistan and US-Russia wars using the

Community Earth System Model (CESM, version 1.3) with the Whole Atmosphere Community

Climate Model Version 4 (WACCM4, version 4) as the atmospheric component, or

CESM-WACCM4 (Marsh et al., 2013). The climate impacts of nuclear war were simulated by

injecting varying quantities of black carbon aerosol (soot) into the stratosphere in a layer

between 100 and 300 hPa over a 1-week period starting on 15 May above the U.S. and Russia, or

the South Asian subcontinent6,31,42. In total, six nuclear war scenarios were simulated, and we

refer to the year soot was injected as year “0”. For the five India-Pakistan nuclear war scenarios

(soot injections of 5 Tg, 16 Tg, 27.3 Tg, 37 Tg, and 46.8 Tg, representing a range of arsenal

sizes) simulations were each run for 19 years. One United States-Russia scenario with a 150 Tg

soot injection was also considered, and the simulation was run for 21 years. This scenario

assumes both countries use most of their nuclear arsenals53 and is still possible given modern

nuclear arsenals. Additionally, a control run that repeats the climate forcing of 2000 was

simulated for 20 years to represent normal atmospheric circulations6,31.

Cycles. The Cycles agroecosystem model was used to infer growth and stress variables of

landrace accessions’ point of origin using conditions accessions are expected to be adapted to

(control scenario) and post-catastrophe (six post-nuclear war scenarios). Cycles is a

process-based multi-year and multi-species agroecosystem model2,32 that requires a number of
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input files to simulate crop growth. All simulations were carried out using Cycles v0.13.0

(https://github.com/PSUmodeling/Cycles). The crop description file defines the physiological

and management parameters that control the growth and harvest of crops used in the simulation.

For each of our crop species, we used Cycles default crop parameters from the default crop

description file. The management (operation) file defines the daily management operations to be

used in a simulated crop rotation. We activated conditional planting where Cycles “plants” a

simulated crop once certain soil moisture and temperature levels are satisfied within a window of

planting dates. For many of the scenarios where planting conditions are not met (i.e. daily

temperature remains too low) Cycles forced planting on the last day of the planting window. We

turned on the automatic nitrogen fertilization option and set planting density to 67% for all crops

in the simulation to be grown without nitrogen limitations so that stress observed in model

outputs was due entirely to climatic factors. Weather files were built using the CESM-WACCM4

outputs as described 31 and 6 for control and six target post-nuclear scenarios, formatted for use in

Cycles. The weather files were generated by aggregating the three-hourly CESM output to daily

time steps at all CESM grids, which have a 1.9° latitude × 2.5° longitude resolution. Weather

files were matched to landrace point of origin for each simulated accession, where the climatic

parameters used to simulate growth match the location accessions were sourced from. Weather

files included variables describing variation in daily precipitation, temperature, solar radiation,

humidity, and wind. Soil physical parameters were obtained from the ISRIC SoilGrids global

database54 via the HydroTerre data system55–57 for all simulation locations. Soil files were also

matched to landrace point of origin for each simulated accession and describe the average soil

characteristics and land use for crop cultivation types. For accessions designated as paddy rice by
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22 we used the irrigated or post-flooding land use type. Rainfed land use type was used for all

other simulated crop accessions.

For all simulated accessions of each crop species, seven Cycles simulations, including the

control scenario and six target scenarios were implemented separately. Cycles models simulated

20 years of crop growth for the control scenario, 15 years of crop growth after impact for the

India-Pakistan scenarios (5 Tg, 16 Tg, 27 Tg, 37 Tg, 47 Tg, and 150 Tg), and 17 years of crop

growth for the US-Russia scenario (150 Tg). From the outputs of each Cycles simulation and for

each year growth was simulated, we extracted variables summarizing the environmental stress

and simulated growth plants experienced for each of our focal crop species (Cycles-derived

environmental variables). Variables included information on the number of days to reach

maturity, water stress, cold stress, and light stress experienced across simulated plant growth and

when in the vegetative and reproductive phase. For accessions not projected to reach maturity,

certain environmental summary variables were not extractable, and we imputed the 95% stress of

the variable for each accession with missing environmental values, specific to crop species and

the year growth was simulated for.

Genotyped datasets. As differences in genotyping resolution across species might influence the

detection of genomic signals of adaptation, we selected datasets with high density genomic

markers and a distribution of sequenced landraces accessions that most represented the

environments that landraces of our focal species originate from and are likely adapted to.

Advances in technology have made low-coverage whole-genome sequencing (WGS) relatively

inexpensive, providing datasets that are particularly well-suited for research exploring polygenic

signals. For each landrace species, raw genotype files were filtered for minor allele frequency

21

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2024. ; https://doi.org/10.1101/2024.05.18.594591doi: bioRxiv preprint 

https://paperpile.com/c/a8ARbG/nqmO3
https://doi.org/10.1101/2024.05.18.594591
http://creativecommons.org/licenses/by-nc/4.0/


(MAF) removing all SNPs with lower than 5% MAF and for linkage disequilibrium (LD) to

reduce the number of SNP candidates we tested for environmental association. As the initial

genotype files differed in size, the LD filter step included different conditions to thin files. We

used --indep-pairwise 30 10 .1 for both rice subsp. (indica and japonica) and sorghum, and

--indep-pairwise 100 10 .05 for the maize and barley data files. This filtering step resulted in

74,430 SNPs for barley, 43,818 SNPs for rice subsp. japonica, 61,430 SNPs for rice subsp.

indica, 67,522 SNPs for maize, and 20,387 SNPs for sorghum to test for association to

species-specific Cycles-derived environmental variables.

Genome scan for environmentally related SNPs. Genotype-environment associations test for

genetic variation that is statistically correlated to environmental predictors. We followed partial

redundancy analysis (pRDA) methods developed by 38 to identify loci putatively involved in

environmental selection for our focal crop species. For each crop species, pRDA models were

built using population allele frequencies (population defined as accessions from the same

geocoordinates) from the filtered genetic dataset as response variables and the 13 Cycles-derived

environmental variables from the control simulation, averaged across the 20 years of modeled

growth as explanatory variables. Neutral genetic structure was accounted for by including the

first three axes of a population PCA as conditional covariables. Using the rdapat function

described in 58, we identified the top environmentally related (outlier) loci based on the

extremeness of their loading along a Mahalanobis distance distribution calculated between each

marker and the center of the first two pRDA axes. P-values for each marker were derived as this

distance, corrected for the inflation factor using a chi-squared distribution with two degrees of

freedom. We then selected the top 1,000 markers with the lowest P-values as candidate outliers
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to represent loci that may be important for environmental adaptation. The analysis was carried

out using R/vegan 59.

To assess whether the top loci selected by pRDA are unique to the method, we further

implemented Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway

(BLINK) and compared the significant loci as identified by BLINK and pRDA for sorghum.

BLINK is a package commonly used for genome-wide association studies (GWAS) and

improves upon traditional GWAS methods by addressing limitations such as computational

inefficiency and reduced statistical power60. We ran BLINK separately for the same 13

Cycles-derived environmental variables used in the sorghum pRDA model and extracted the set

of significant loci (p-value < 0.05) for each BLINK model that were built separately for each

climate variable. For all BLINK models, the first three axes of a population PCA were used as

covariates to account for population structure. We then compared the set of BLINK-identified

significant loci across all 13 models (8,728 unique SNPs) to the 1,000 most significant loci as

identified by pRDA and found that 556 SNPs were present in both datasets. Thus, the overlap

between genotype-environment association methods for identifying loci that are related to

variation in environmental gradients confirm that the results are not highly sensitive to the

approach.

Identification of flowering time SNPs. We further accounted for genetic variation that may

capture important plant phenological processes by including SNPs of known flowering time

network loci for each focal crop species. We conducted a literature search to identify genes

known to be involved in the flowering time network for each crop (Table S2). Gene coordinates

of each flowering time gene were gathered from the gff3 files that corresponded to each
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reference genome used to call SNPs (maize (reference B73v2,

https://figshare.com/articles/dataset/GTF_and_GFF_for_maize/895628); rice (reference R498

IGDBv3, http://mbkbase.org/R498/); sorghum (reference S. bicolorv3.1,

https://phytozome-next.jgi.doe.gov/info/Sbicolor_v3_1_1)61–63. For maize, rice subsp. indica and

japonica, and sorghum we also included SNPs found +/- 5 kilobase (kb) of each flowering time

gene to account for variation in cis-regulatory elements. Barley sequence information was

reported as contigs and we extracted SNPs located in contigs previously identified to overlap

with homologs of well-characterized genes in Arabidopsis thaliana34. Gene coordinates for the

location of each flowering time gene region or flowering time related contig extracted using

--extract in PLINK37. To account for patterns of linkage disequilibrium, we further filtered each

species’ set of flowering time loci (gene and sites up and downstream of the gene) and only

retained SNPs with an r² value less than 0.2 within the flowering-time genic window and

flanking region.

Gradient forest models and calculation of offset. Gradient forest (GF) is a machine learning

algorithm extended from random forest which searches for genotypic patterns as associated with

environmental descriptors. Using R/gradientForest::gradientForest40, we built GF models to

associate current adaptive allelic diversity (the combined set of pRDA-identified

environmentally related loci and flowering time network loci) with Cycles-derived

environmental variables from the control simulation, averaged across the 20 years of modeled

growth (hereafter, control GF model). Models were built separately for each of our focal crop

species to describe control species-specific genotype-environment relationships. The control GF

model parameters were tuned to increase the number of trees built to ntree = 500.
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Genomic offset (also known as genomic vulnerability) is one metric used to characterize

maladaptation with a genomic context (reviewed in 28). The distance between current and

expected genotype-environment associations under some change in environment is

representative of the genomic offset, or the genetic shift required in a population to adapt to the

future climate. Comparing control genotype-environment associations captured by GF models,

and projected genotype-environment for different scenarios (common garden, target scenarios,

vulnerable locations) we made several measurements of GF offset to summarize predicted

maladaptation. For all GF offset calculations, we followed methods described in 24 To validate

that our control GF models captured current genotype-environment associations, we first used

the maize control GF model to predict the genomic composition expected at common gardens

maize landraces had been phenotyped in for a previous study35. Here, the GF offset was defined

as the Euclidean distance of current genotype-environment relationships at the common garden

site from the genotype-environment relationship of each landrace’s point of origin. This measure

summarized how genetically well matched a landrace was to the common garden it was grown in

(measure of predicted maladaptation to a common garden) and was compared to the phenotypic

breeding values for each landrace grown in a common garden.

Validation of gradient forest-predicted adaptation. We used phenotypic data of maize

landraces grown in 23 trials across 13 common garden locations over 2 years to confirm that our

control GF models captured real differences in current landrace genotype-environment

relationships. We restricted our analysis to include the phenotypic data of landraces accessions

that were simulated in Cycles models.

25

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2024. ; https://doi.org/10.1101/2024.05.18.594591doi: bioRxiv preprint 

https://paperpile.com/c/a8ARbG/90Syj
https://paperpile.com/c/a8ARbG/ZkVbs
https://paperpile.com/c/a8ARbG/zgs8i
https://doi.org/10.1101/2024.05.18.594591
http://creativecommons.org/licenses/by-nc/4.0/


Briefly, phenotyped accessions are a part of the broader SeeD evaluation of the maize

landrace collection35. Accessions were planted in multiple environments under a replicated F1

crossing. Importantly, two features of the crossing design ensure that phenotype data is not

overly biased by elevational adaptation. Crossed plants were preferentially grown in locations

that were of similar adaptation (highland tropical, sub-tropical or lowland tropical) to their home

environment and each plant was crossed to a tester that was adapted to the environment that the

F1 seeds were grown in. These design features allowed for comparison of a larger sample of

accessions, but also led to an unbalanced experimental design. As a further consequence of the

experimental design, apparent adaptive differences among landraces may be reduced and make

phenotypic estimates of adaptation more conservative27. We extracted phenotypic information

capturing differences in plant height (PH), the total weight of ears (kernels and cob) measured in

the field (field weight; FW), bare cob weight (BCW), moisture adjusted grain weight per hectare

(GWH), days to anthesis (DA), days to silking (DS), and anthesis-silking interval (ASI) for

plants grown in trials (https://data.cimmyt.org/dataset.xhtml?persistentId=hdl:11529/10548233).

The phenotypic datasets ranged from having n = 4,851 (BCW) to n = 11,762 (ASI) across the

field sites. Following methods from Gates et al., (2019) and Romero Navarro et al., (2017), we

estimated breeding values controlling for tester, checks, and field position in a complete nested

model. We further accounted for the random effect of tester and year.

Calculation of offset under post-catastrophic conditions. Once we confirmed that our maize

control GF model captured phenotypic differences representative of adaptation to common

gardens with conditions most like the source locations landraces were adapted to, we extended

our control GF models to predict maladaptation in crop landraces under the six post-war target
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climate scenarios. Here, GF offset was calculated as the Euclidean distance between the current

predicted genotype-environment relationships and future projected genotype-environment

relationships across all 13 Cycles-derived environmental variables.

We confirmed that GF offset values were correlated to relative changes in environment

that were most related to genotype-environment relationships, as summarized by the control GF

model, by comparing the difference in GF offset (target subtracted from control) versus the

change in Cycles-derived environmental variables (Fig. S8). Environmental variables were

scaled and adjusted by their relative contribution to GF models.

Identification of landrace substitutions for post-catastrophe adaptation. To understand if

existing landrace diversity may be a source of resilience following a climate catastrophe, we

used our GF models to identify the best suited substitutions for locations with the landraces that

are the most maladapted24,29 under the most extreme target scenario (150 Tg) and for the year

where climate is the most disrupted (post-strike year 2). We first excluded all locations not

predicted to reach maturity, so as not to identify substitutions to locations where agriculture

would not likely be possible. For the remaining locations, we defined the most vulnerable

locations as those with the highest GF offset to search for both the most optimal and the best

within-country substitution. Clusters of vulnerable pixels were identified using

R/DBscan::dbscan64, which groups pixels based off proximity. Clustering was based on the

geographic distance between vulnerable pixels measured with R/geosphere::distm65. Only

clusters separated by <1000 km were retained for further analysis.

For each vulnerable cluster, a GF offset (i.e., Euclidean distance) was calculated between

the projected genotype-environment relationship of the vulnerable location under the 150 Tg
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target scenario and the control GF modeled genotype-environment relationship across all

landrace accessions included in the model. The lowest GF offset was defined as the minimum

Euclidean distance and identified the current landrace accession predicted to be best adapted to

the future climate conditions of the vulnerable area. For accessions that were not perfectly

adapted to the locations they were substituted to (i.e GF offset is higher than 0), this measure

represented the genomic gap that still needs to be filled for the migrated varieties to be fully

adapted to their new location and conditions (assuming current genotype-environment

relationships are representative of perfect adaptation). High GF offset indicated substitutions

where accessions are not predicted to be well adapted to the locations they were substituted to,

and no other landraces included in the model were better adapted to the projected climate of the

vulnerable area.

Acknowledgments and funding sources

We thank Liana Burghardt and Estelle Couradeau for comments on earlier versions of this
manuscript and the whole Penn State Food Resiliency team for their input and discussion. We
would like to thank Daniel Runcie and Jeffrey Ross-Ibarra for helpful feedback on analyses
using the common garden data. This research was supported by the Food Resilience in the Face
of Catastrophic Global Events grant funded by Open Philanthropy. This work was also supported
by NIH award R35 GM138300 to J.R.L. A.K. and Y.S. were additionally supported by the
USDA National Institute of Food and Agriculture and Hatch Appropriations under Project
#PEN05001 (Accession 7007612) and Project #PEN05016 (Accession 7007513), respectively.

Author contributions

C.M.M., Y.S., A.K., J.R.L designed research; C.M.M. performed research; Y.S., A.K. contributed
new analytic tools; C.M.M. and J.R.L. analyzed data; C.M.M. wrote the manuscript, with input
from Y.S., A.K., R.J.H.S., and J.R.L.; All authors contributed to manuscript revision.

28

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2024. ; https://doi.org/10.1101/2024.05.18.594591doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.18.594591
http://creativecommons.org/licenses/by-nc/4.0/


References

1. Lemi, T. Effects of climate change variability on agricultural productivity. Int. J. Environ. Sci. Nat.

Resour. 17, (2019).

2. Kemanian, A. R. et al. The Cycles agroecosystem model: Fundamentals, testing, and applications.

Comput. Electron. Agric. 227, 109510 (2024).

3. van Klompenburg, T., Kassahun, A. & Catal, C. Crop yield prediction using machine learning: A

systematic literature review. Comput. Electron. Agric. 177, 105709 (2020).

4. Altieri, M. A., Nicholls, C. I., Henao, A. & Lana, M. A. Agroecology and the design of climate

change-resilient farming systems. Agron. Sustain. Dev. 35, 869–890 (2015).

5. Turco, R. P. et al. Nuclear Winter: Global Consequences Multiple Nuclear Explosions. Science 222,

1283–1292 (1983).

6. Coupe, J., Bardeen, C. G., Robock, A. & Toon, O. B. Nuclear winter responses to nuclear war

between the United States and Russia in the whole atmosphere community climate model version 4

and the Goddard institute for space studies ModelE. J. Geophys. Res. 124, 8522–8543 (2019).

7. Jägermeyr, J. et al. A regional nuclear conflict would compromise global food security. Proc. Natl.

Acad. Sci. U. S. A. 117, 7071–7081 (2020).

8. Özdoğan, M., Robock, A. & Kucharik, C. J. Impacts of a nuclear war in South Asia on soybean and

maize production in the Midwest United States. Clim. Change 116, 373–387 (2013).

9. Xia, L. et al. Global food insecurity and famine from reduced crop, marine fishery and livestock

production due to climate disruption from nuclear war soot injection. Nat. Food 3, 586–596 (2022).

10. Lafiandra, D., Riccardi, G. & Shewry, P. R. Improving cereal grain carbohydrates for diet and health.

J. Cereal Sci. 59, 312–326 (2014).

11. Azeez, M. A., Adubi, A. O. & Durodola, F. A. Landraces and crop genetic improvement. in

Rediscovery of Landraces as a Resource for the Future (InTech, 2018).

12. Villa, T. C. C., Maxted, N., Scholten, M. & Ford-Lloyd, B. Defining and identifying crop landraces.

29

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2024. ; https://doi.org/10.1101/2024.05.18.594591doi: bioRxiv preprint 

http://paperpile.com/b/a8ARbG/JcUi6
http://paperpile.com/b/a8ARbG/JcUi6
http://paperpile.com/b/a8ARbG/lvtm6
http://paperpile.com/b/a8ARbG/lvtm6
http://paperpile.com/b/a8ARbG/nSeiN
http://paperpile.com/b/a8ARbG/nSeiN
http://paperpile.com/b/a8ARbG/I3mJ5
http://paperpile.com/b/a8ARbG/I3mJ5
http://paperpile.com/b/a8ARbG/L2hUC
http://paperpile.com/b/a8ARbG/L2hUC
http://paperpile.com/b/a8ARbG/aCXu3
http://paperpile.com/b/a8ARbG/aCXu3
http://paperpile.com/b/a8ARbG/aCXu3
http://paperpile.com/b/a8ARbG/LvQHZ
http://paperpile.com/b/a8ARbG/LvQHZ
http://paperpile.com/b/a8ARbG/qMH34
http://paperpile.com/b/a8ARbG/qMH34
http://paperpile.com/b/a8ARbG/son8R
http://paperpile.com/b/a8ARbG/son8R
http://paperpile.com/b/a8ARbG/nbTV6
http://paperpile.com/b/a8ARbG/nbTV6
http://paperpile.com/b/a8ARbG/ptaOS
http://paperpile.com/b/a8ARbG/ptaOS
http://paperpile.com/b/a8ARbG/apkOq
https://doi.org/10.1101/2024.05.18.594591
http://creativecommons.org/licenses/by-nc/4.0/


Plant Genet. Resour. 3, 373–384 (2005).

13. Dwivedi, S. L. et al. Landrace germplasm for improving yield and abiotic stress adaptation. Trends

Plant Sci. 21, 31–42 (2016).

14. Hoisington, D. et al. Plant genetic resources: what can they contribute toward increased crop

productivity? Proc. Natl. Acad. Sci. U. S. A. 96, 5937–5943 (1999).

15. Lasky, J. R., Josephs, E. B. & Morris, G. P. Genotype–environment associations to reveal the

molecular basis of environmental adaptation. Plant Cell 35, 125–138 (2023).

16. Vanhove, M. et al. Using gradient Forest to predict climate response and adaptation in Cork oak. J.

Evol. Biol. 34, 910–923 (2021).

17. Sklenář, P., Kučerová, J. & Macková, K. Temperature Microclimates Plants Tropical Alpine

Environment: How Much does Growth Form Matter? Arctic, Antarctic. Arctic 48, 61–78 (2016).

18. Fitzpatrick, M. C. & Keller, S. R. Ecological genomics meets community-level modelling of

biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecol.

Lett. 18, 1–16 (2015).

19. Lasky, J. R. et al. Characterizing genomic variation of Arabidopsis thaliana: the roles of geography

and climate. Mol. Ecol. 21, 5512–5529 (2012).

20. Razgour, O. et al. Considering adaptive genetic variation in climate change vulnerability assessment

reduces species range loss projections. Proc. Natl. Acad. Sci. U. S. A. 116, 10418–10423 (2019).

21. Savolainen, O., Lascoux, M. & Merilä, J. Ecological genomics of local adaptation. Nat. Rev. Genet.

14, 807–820 (2013).

22. Gutaker, R. M. et al. Genomic history and ecology of the geographic spread of rice. Nat. Plants 6,

492–502 (2020).

23. Lasky, J. R. et al. Genome-environment associations in sorghum landraces predict adaptive traits.

Sci. Adv. 1, e1400218 (2015).

24. Rhoné, B. et al. Pearl millet genomic vulnerability to climate change in West Africa highlights the

need for regional collaboration. Nat. Commun. 11, 5274 (2020).

30

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2024. ; https://doi.org/10.1101/2024.05.18.594591doi: bioRxiv preprint 

http://paperpile.com/b/a8ARbG/apkOq
http://paperpile.com/b/a8ARbG/02QWK
http://paperpile.com/b/a8ARbG/02QWK
http://paperpile.com/b/a8ARbG/b0U0w
http://paperpile.com/b/a8ARbG/b0U0w
http://paperpile.com/b/a8ARbG/oNY1t
http://paperpile.com/b/a8ARbG/oNY1t
http://paperpile.com/b/a8ARbG/8a3GI
http://paperpile.com/b/a8ARbG/8a3GI
http://paperpile.com/b/a8ARbG/uhDKp
http://paperpile.com/b/a8ARbG/uhDKp
http://paperpile.com/b/a8ARbG/4of1v
http://paperpile.com/b/a8ARbG/4of1v
http://paperpile.com/b/a8ARbG/4of1v
http://paperpile.com/b/a8ARbG/xZC7N
http://paperpile.com/b/a8ARbG/xZC7N
http://paperpile.com/b/a8ARbG/jjyFp
http://paperpile.com/b/a8ARbG/jjyFp
http://paperpile.com/b/a8ARbG/2zWGG
http://paperpile.com/b/a8ARbG/2zWGG
http://paperpile.com/b/a8ARbG/nqmO3
http://paperpile.com/b/a8ARbG/nqmO3
http://paperpile.com/b/a8ARbG/9gsZg
http://paperpile.com/b/a8ARbG/9gsZg
http://paperpile.com/b/a8ARbG/ZkVbs
http://paperpile.com/b/a8ARbG/ZkVbs
https://doi.org/10.1101/2024.05.18.594591
http://creativecommons.org/licenses/by-nc/4.0/


25. McLaughlin, C. M. et al. Evidence that variation in root anatomy contributes to local adaptation in

Mexican native maize. Evol. Appl. 17, e13673 (2024).

26. Bellis, E. S. et al. Genomics of sorghum local adaptation to a parasitic plant. Proc. Natl. Acad. Sci.

U. S. A. 117, 4243–4251 (2020).

27. Gates, D. J. et al. Single-gene resolution of locally adaptive genetic variation in Mexican maize.

bioRxiv (2019) doi:10.1101/706739.

28. Rellstab, C., Dauphin, B. & Exposito-Alonso, M. Prospects and limitations of genomic offset in

conservation management. Evol. Appl. 14, 1202–1212 (2021).

29. Caproni, L. et al. The genomic and bioclimatic characterization of Ethiopian barley (Hordeum

vulgare L.) unveils challenges and opportunities to adapt to a changing climate. Glob. Chang. Biol.

29, 2335–2350 (2023).

30. Láruson, Á. J., Fitzpatrick, M. C., Keller, S. R., Haller, B. C. & Lotterhos, K. E. Seeing the forest for

the trees: Assessing genetic offset predictions from gradient forest. Evol. Appl. 15, 403–416 (2022).

31. Toon, O. B. et al. Rapidly expanding nuclear arsenals in Pakistan and India portend regional and

global catastrophe. Sci. Adv. 5, eaay5478 (2019).

32. Shi, Y., Montes, F. & Kemanian, A. R. Cycles‐L: A coupled, 3‐D, land surface, hydrologic, and

agroecosystem landscape model. Water Resour. Res. 59, (2023).

33. Harrison, C. S. et al. A new ocean state after nuclear war. AGU Advances 3, (2022).

34. Russell, J. et al. Exome sequencing of geographically diverse barley landraces and wild relatives

gives insights into environmental adaptation. Nat. Genet. 48, 1024–1030 (2016).

35. Romero Navarro, J. A. et al. A study of allelic diversity underlying flowering-time adaptation in

maize landraces. Nat. Genet. 49, 476–480 (2017).

36. Hu, Z., Olatoye, M. O., Marla, S. & Morris, G. P. An integrated genotyping-by-sequencing

polymorphism map for over 10,000 sorghum genotypes. Plant Genome 12, 180044 (2019).

37. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage

analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

31

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2024. ; https://doi.org/10.1101/2024.05.18.594591doi: bioRxiv preprint 

http://paperpile.com/b/a8ARbG/DphEx
http://paperpile.com/b/a8ARbG/DphEx
http://paperpile.com/b/a8ARbG/sHZej
http://paperpile.com/b/a8ARbG/sHZej
http://paperpile.com/b/a8ARbG/oBwXe
http://paperpile.com/b/a8ARbG/oBwXe
http://dx.doi.org/10.1101/706739
http://paperpile.com/b/a8ARbG/oBwXe
http://paperpile.com/b/a8ARbG/90Syj
http://paperpile.com/b/a8ARbG/90Syj
http://paperpile.com/b/a8ARbG/Kji6t
http://paperpile.com/b/a8ARbG/Kji6t
http://paperpile.com/b/a8ARbG/Kji6t
http://paperpile.com/b/a8ARbG/MxQRf
http://paperpile.com/b/a8ARbG/MxQRf
http://paperpile.com/b/a8ARbG/7wGT6
http://paperpile.com/b/a8ARbG/7wGT6
http://paperpile.com/b/a8ARbG/GcVJo
http://paperpile.com/b/a8ARbG/GcVJo
http://paperpile.com/b/a8ARbG/kA33L
http://paperpile.com/b/a8ARbG/BDyfA
http://paperpile.com/b/a8ARbG/BDyfA
http://paperpile.com/b/a8ARbG/zgs8i
http://paperpile.com/b/a8ARbG/zgs8i
http://paperpile.com/b/a8ARbG/G2edt
http://paperpile.com/b/a8ARbG/G2edt
http://paperpile.com/b/a8ARbG/Rw3Ku
http://paperpile.com/b/a8ARbG/Rw3Ku
https://doi.org/10.1101/2024.05.18.594591
http://creativecommons.org/licenses/by-nc/4.0/


38. Capblancq, T. & Forester, B. R. Redundancy analysis: A Swiss Army Knife for landscape genomics.

Methods Ecol. Evol. 12, 2298–2309 (2021).

39. Breiman, L. Random Forests. Mach. Learn. 45, 5–32 (2001).

40. Ellis, N., Smith, S. J. & Pitcher, C. R. Gradient forests: calculating importance gradients on physical

predictors. Ecology 93, 156–168 (2012).

41. Bolaños, J. & Edmeades, G. O. The importance of the anthesis-silking interval in breeding for

drought tolerance in tropical maize. Field Crops Res. 48, 65–80 (1996).

42. Bardeen, C. G. et al. Extreme ozone loss following nuclear war results in enhanced surface

ultraviolet radiation. J. Geophys. Res. 126, (2021).

43. Kawecki, T. J. & Ebert, D. Conceptual issues in local adaptation. Ecol. Lett. 7, 1225–1241 (2004).

44. Leimu, R. & Fischer, M. A meta-analysis of local adaptation in plants. PLoS One 3, e4010 (2008).

45. Bay, R. A. et al. Genomic signals of selection predict climate-driven population declines in a

migratory bird. Science 359, 83–86 (2018).

46. Lachmuth, S., Capblancq, T., Prakash, A., Keller, S. R. & Fitzpatrick, M. C. Novel genomic offset

metrics integrate local adaptation into habitat suitability forecasts and inform assisted migration.

Ecol. Monogr. 94, (2024).

47. Lasky, J. R., Hooten, M. B. & Adler, P. B. What processes must we understand to forecast

regional-scale population dynamics? Proc. Biol. Sci. 287, 20202219 (2020).

48. Glaszmann, J. C. Isozymes and classification of Asian rice varieties. Züchter Genet. Breed. Res. 74,

21–30 (1987).

49. Vigouroux, Y. et al. Selection for earlier flowering crop associated with climatic variations in the

Sahel. PLoS One 6, e19563 (2011).

50. Dahal, K., Li, X.-Q., Tai, H., Creelman, A. & Bizimungu, B. Improving potato stress tolerance and

tuber yield under a climate change scenario - A current overview. Front. Plant Sci. 10, 563 (2019).

51. Jain, M., Naeem, S., Orlove, B., Modi, V. & DeFries, R. S. Understanding the causes and

consequences of differential decision-making in adaptation research: Adapting to a delayed monsoon

32

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2024. ; https://doi.org/10.1101/2024.05.18.594591doi: bioRxiv preprint 

http://paperpile.com/b/a8ARbG/uSgvl
http://paperpile.com/b/a8ARbG/uSgvl
http://paperpile.com/b/a8ARbG/Jjfej
http://paperpile.com/b/a8ARbG/a2Z3x
http://paperpile.com/b/a8ARbG/a2Z3x
http://paperpile.com/b/a8ARbG/HMaZ
http://paperpile.com/b/a8ARbG/HMaZ
http://paperpile.com/b/a8ARbG/Ss9rM
http://paperpile.com/b/a8ARbG/Ss9rM
http://paperpile.com/b/a8ARbG/YeXcP
http://paperpile.com/b/a8ARbG/RKRlx
http://paperpile.com/b/a8ARbG/dmkqk
http://paperpile.com/b/a8ARbG/dmkqk
http://paperpile.com/b/a8ARbG/5k7gM
http://paperpile.com/b/a8ARbG/5k7gM
http://paperpile.com/b/a8ARbG/5k7gM
http://paperpile.com/b/a8ARbG/nJAa9
http://paperpile.com/b/a8ARbG/nJAa9
http://paperpile.com/b/a8ARbG/wehbk
http://paperpile.com/b/a8ARbG/wehbk
http://paperpile.com/b/a8ARbG/Sl6Kq
http://paperpile.com/b/a8ARbG/Sl6Kq
http://paperpile.com/b/a8ARbG/EqC9s
http://paperpile.com/b/a8ARbG/EqC9s
http://paperpile.com/b/a8ARbG/Qw2eV
http://paperpile.com/b/a8ARbG/Qw2eV
https://doi.org/10.1101/2024.05.18.594591
http://creativecommons.org/licenses/by-nc/4.0/


onset in Gujarat, India. Glob. Environ. Change 31, 98–109 (2015).

52. Aitken, S. N. & Whitlock, M. C. Assisted gene flow to facilitate local adaptation to climate change.

Annu. Rev. Ecol. Evol. Syst. 44, 367–388 (2013).

53. Robock, A., Oman, L. & and Stenchikov, G. L. Nuclear winter revisited with a modern climate

model and current nuclear arsenals: Still catastrophic consequences. J. Geophys. Res. 112, (2007).

54. Hengl, T. et al. Mapping soil properties of Africa at 250 m resolution: Random forests significantly

improve current predictions. PLoS One 10, e0125814 (2015).

55. Leonard, L. & Duffy, C. J. Automating data-model workflows at a level 12 HUC scale: Watershed

modeling in a distributed computing environment. Environ. Model. Softw. 61, 174–190 (2014).

56. Leonard, L. & Duffy, C. J. Essential Terrestrial Variable data workflows for distributed water

resources modeling. Environ. Model. Softw. 50, 85–96 (2013).

57. Leonard, L. & Duffy, C. Visualization workflows for level-12 HUC scales: Towards an expert

system for watershed analysis in a distributed computing environment. Environ. Model. Softw. 78,

163–178 (2016).

58. Capblancq, T., Luu, K., Blum, M. G. B. & Bazin, E. Evaluation of redundancy analysis to identify

signatures of local adaptation. Mol. Ecol. Resour. 18, 1223–1233 (2018).

59. Oksanen, J. et al. vegan community ecology package version 2.6-2 April 2022. The Comprehensive

R Archive Network. Available online: http://cran. r-project. org (accessed on 15 August 2022)

(2022).

60. Huang, M., Liu, X., Zhou, Y., Summers, R. M. & Zhang, Z. BLINK: a package for the next level of

genome-wide association studies with both individuals and markers in the millions. Gigascience 8,

(2019).

61. Ross-Ibarra, J. GTF and GFF for maize. figshare https://doi.org/10.6084/M9.FIGSHARE.895628.V1

(2014).

62. Du, H. et al. Sequencing and de novo assembly of a near complete indica rice genome. Nat.

Commun. 8, 15324 (2017).

33

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2024. ; https://doi.org/10.1101/2024.05.18.594591doi: bioRxiv preprint 

http://paperpile.com/b/a8ARbG/Qw2eV
http://paperpile.com/b/a8ARbG/JNfwu
http://paperpile.com/b/a8ARbG/JNfwu
http://paperpile.com/b/a8ARbG/mEEuo
http://paperpile.com/b/a8ARbG/mEEuo
http://paperpile.com/b/a8ARbG/DVTIp
http://paperpile.com/b/a8ARbG/DVTIp
http://paperpile.com/b/a8ARbG/P1Vvj
http://paperpile.com/b/a8ARbG/P1Vvj
http://paperpile.com/b/a8ARbG/O7bN3
http://paperpile.com/b/a8ARbG/O7bN3
http://paperpile.com/b/a8ARbG/VdAif
http://paperpile.com/b/a8ARbG/VdAif
http://paperpile.com/b/a8ARbG/VdAif
http://paperpile.com/b/a8ARbG/FMiGV
http://paperpile.com/b/a8ARbG/FMiGV
http://paperpile.com/b/a8ARbG/ZiDPc
http://paperpile.com/b/a8ARbG/ZiDPc
http://paperpile.com/b/a8ARbG/ZiDPc
http://paperpile.com/b/a8ARbG/L7xq2
http://paperpile.com/b/a8ARbG/L7xq2
http://paperpile.com/b/a8ARbG/L7xq2
http://paperpile.com/b/a8ARbG/OAbY4
http://dx.doi.org/10.6084/M9.FIGSHARE.895628.V1
http://paperpile.com/b/a8ARbG/OAbY4
http://paperpile.com/b/a8ARbG/OAbY4
http://paperpile.com/b/a8ARbG/wPhdu
http://paperpile.com/b/a8ARbG/wPhdu
https://doi.org/10.1101/2024.05.18.594591
http://creativecommons.org/licenses/by-nc/4.0/


63. McCormick, R. F. et al. The Sorghum bicolor reference genome: improved assembly, gene

annotations, a transcriptome atlas, and signatures of genome organization. Plant J. 93, 338–354

(2018).

64. Hahsler, M., Piekenbrock, M. & Doran, D. dbscan: Fast Density-Based Clustering with R. J. Stat.

Softw. 91, (2019).

65. Hijmans, R.J., Williams, E., and Vennes, C. geosphere: Spherical Trigonometry. R package version

1.5-14. https://CRAN.R-project.org/package=geosphere (2022).

Figure legends

Figure 1 Cycles-derived environmental variables for A) barley B) maize C) rice subsp. indica D) rice
subsp. japonica and E) sorghum. Lines are averaged for accessions that were projected to reach maturity,
grouped and colored by soot scenario. The vertical dotted line indicates the time of soot injection into the
climate models. Control line indicates yearly fluctuations in environmental parameters.

Figure 2 GF models capture current genotype-environment associations in maize landraces and were used
to predict maladaptation (GF offset) under post-catastrophic climate scenarios. A) Phenotypic residuals
(remaining variation after accounting for experimental design) plotted against the logged GF offset of
accessions grown in common gardens. GF offset is calculated for each phenotyped accession as the
Euclidean distance of the expected genotype-environment relationship at a common garden common vs
the genotype-environment relationship from the accessions’ source location. Points with GF offset
distance of zero indicate landrace accessions expected to be adapted to the common garden it was grown
in. Yearly logged GF offset for B) maize C) barley D) rice subsp. indica E) rice subsp. japonica and F)
sorghum. Lines are averaged logged GF offset across all accessions of a species and colored by soot
scenario. The vertical dotted line indicates the time of soot injection into the climate models. Control GF
offset line indicates yearly fluctuations in maladaptation (GF offset) due to normal variability in climate.
Inlayed scatter plots are the averaged logged GF offset across all accessions of a species two years after
the incident.

Figure 3 Global distribution of logged GF offset (a measure of maladaptation), under the 150 Tg scenario
2, 9, and 16 years after the incident for landraces (filled black circles, with overlaid open colored circles
indicating offset). Higher GF offset values correspond to a larger degree of predicted maladaptation under
the post-war scenario.

Figure 4 Substitution trajectories for the most vulnerable locations in year 2 of the 150 Tg scenario. For
each crop, arrows connect the source location of landrace accession that is the most optimal to the
vulnerable location (arrowhead) and are colored by the remaining GF offset (maladaptation) of the
substitution. Substitutions are colored by how well-matched the moved landrace is to the vulnerable
location, where colors corresponding to lower GF offset of substitution indicate a substitution that has a
low degree of maladaptation to the novel environment. For each crop, substitution trajectories are
provided for the most optimal substitution across all available germplasm and the best within-country
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substitution. Inlaid histograms represent the frequency of substitutions of different distances and are
colored by the remaining GF offset (maladaptation) of the substitution.

35

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2024. ; https://doi.org/10.1101/2024.05.18.594591doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.18.594591
http://creativecommons.org/licenses/by-nc/4.0/


Figure 1 Cycles-derived environmental variables for A) barley B) maize C) rice subsp. indica D)
rice subsp. japonica and E) sorghum. Lines are averaged for accessions that were projected to
reach maturity, grouped and colored by soot scenario. The vertical dotted line indicates the time
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of soot injection into the climate models. Control line indicates yearly fluctuations in
environmental variables.
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Figure 2 GF models capture current genotype-environment associations in maize landraces and
were used to predict maladaptation (GF offset) under post-catastrophic climate scenarios. A)
Phenotypic residuals (remaining variation after accounting for experimental design) plotted
against the logged GF offset of accessions grown in common gardens. GF offset is calculated for
each phenotyped accession as the Euclidean distance of the expected genotype-environment
relationship at a common garden common vs the genotype-environment relationship from the
accessions’ source location. Points with GF offset distance of zero indicate landrace accessions
expected to be adapted to the common garden it was grown in. Yearly logged GF offset for B)
maize C) barley D) rice subsp. indica E) rice subsp. japonica and F) sorghum. Lines are
averaged logged GF offset across all accessions of a species and colored by soot scenario. The
vertical dotted line indicates the time of soot injection into the climate models. Control GF offset
line indicates yearly fluctuations in maladaptation (GF offset) due to normal variability in
climate. Inlayed scatter plots are the averaged logged GF offset across all accessions of a species
two years after the incident.
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Figure 3 Global distribution of logged GF offset (a measure of maladaptation), under the 150 Tg
scenario 2, 9, and 16 years after the incident for landraces of the focal species A) barley B) maize
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C) rice subsp. indica D) rice subsp. japonica and E) sorghum. Higher GF offset values
correspond to a larger degree of predicted maladaptation under the post-war scenario.
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Figure 4 Substitution trajectories for the most vulnerable locations in year 2 of the 150 Tg
scenario. For each crop, arrows connect the source location of landrace accession that is the most
optimal to the vulnerable location (arrowhead) and are colored by the remaining GF offset
(maladaptation) of the substitution. Substitutions are colored by how well-matched the moved
landrace is to the vulnerable location, where colors corresponding to lower GF offset of
substitution indicate a substitution that has a low degree of maladaptation to the novel
environment. For each crop, substitution trajectories are provided for the most optimal
substitution across all available germplasm and the best withincountry substitution.

Figure S1 Bioinformatics pipeline used in this study.
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Figure S2 Global distribution of genotyped landrace accessions used in the study (All
accessions, n = 6,384; Barley, n = 215; Maize, n = 3,404; Rice subsp. indica, n = 677; Rice
subsp. japonica n = 309; Sorghum, n = 1779).
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Figure S3 The relationship between simulated days to reach maturity and change in daily temperature for
all landrace accessions across all years simulated, colored by soot scenario. Points are masked from the
plots for years where landrace accessions were not projected to reach maturity. The frequency of crop
failure (points that are masked from the plot) for the year with the most extreme climate impacts are given
here as percentages for the 5 Tg, 6 Tg, 27 Tg, 37 Tg, 47 Tg, 150 Tg scenarios. Barley: 6%, 8%, 13%,
22%, 24%, 90%. Maize: 0%, 0%, 0%, 0.5%, 4%, 54%. Rice subsp. indica: 0.5%, 1%, 2%, 3%, 5%, 62%.
Rice subsp. japonica: 3%, 5%, 12%, 19%, 20%, 51%. Sorghum: 0, 0.5%, 0.5%, 2%, 4%, 33%.
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Figure S4 pRDA loading plots for the identification of environmentally associated (outlier) loci used in
gradient forest models. Percent variation explained by each RDA axis is calculated as the percent
variation described by the constrained
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RDA axis divided by the variation across all unconstrained axes.
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Figure S5 R2 importance plots of Cycles environmental and growth variables used to build each species’
control gradient forest model for A) barley B) maize C) rice subsp. indica D) rice subsp. japonica and E)
sorghum. Variables are ordered by their relative contribution in describing genome-wide diversity of loci
included in each respective gradient forest model.
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Figure S6 GF models capture current genotype-environment associations in maize landraces. A) Large
red points denote site of common gardens. Black points denote the source locations of landrace accessions
grown in common gardens. B) Phenotypic residuals (remaining variation after accounting for
experimental design) plotted against the GF offset of genotypes grown in common gardens. GF offset is
calculated for each phenotyped accession grown in a common garden as the Euclidean distance of the
expected genotype-environment relationship at a common garden common vs the genotype-environment
relationship from the landrace accessions’ source location. Points with a more negative GF offset indicate
landrace accessions are expected to be adapted to conditions at the common garden.
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Figure S7 Variation in logged GF offset for A) barley B) maize C) rice subsp. indica D) rice subsp.
japonica and E) sorghum by scenario. Each black line represents the logged GF offset for a modeled
landrace accession. The colored line is the average across all individuals by soot scenario. Averaged
logged GF offset by soot scenario is the same as shown in Figure 2 B-F.
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Figure S8 GF offset corresponds to changes in climate for maize landrace accessions. Distance between
predicted genotype-environment relationships for the 150 Tg “target” scenario and the control scenario vs
the environmental change between the 150 Tg target and control scenario.
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Table S1 Description of environmental and growth and variables obtained for Cycles simulated landrace
accessions. Each variable was extracted for each simulation year and for each climate scenario (control, 5
Tg, 6 Tg, 27 Tg, 37 Tg, 47 Tg, 150 Tg) and for landrace accession separately.

Variable Description

Average temperature (°C)

vegetative, reproductive, cumulative

The daily average temperature for each day crop
growth was simulated across the entire growth period
(cumulative) or for specific phenological growth
stages (vegetative, reproductive).

Coldest temperature (°C)

vegetative, reproductive, cumulative

The daily minimum temperature for each day crop
growth was simulated across the entire growth period
(cumulative) or for specific phenological growth
stages (vegetative, reproductive).

Solar radiation (MJ m-2/day)

vegetative, reproductive, cumulative

Daily solar radiation for each day crop growth was
simulated across the entire growth period
(cumulative) or for specific phenological growth
stages (vegetative, reproductive).

Water Stress (%)

vegetative, reproductive, cumulative

Daily water stress for each day crop growth was
simulated across the entire growth period
(cumulative) or for specific phenological growth
stages (vegetative, reproductive).

Maturity days Simulated days to reach physiological maturity.

Table S2 Flowering time genes used in GF models ordered by species. For each flowering time gene, the
GeneID for each species’ reference genome is included.

Species Gene
GeneID within
reference genome

Maize CCA1 GRMZM2G014902
CCT1 GRMZM2G381691
CCT11 GRMZM2G135446
CCT4 GRMZM2G033962
CCT2 GRMZM2G004483
CONZ1 GRMZM2G405368
D8 GRMZM2G144744
D9 GRMZM2G024973
DLE1 GRMZM5G859316
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DLF1 GRMZM2G067921
Gi1 GRMZM2G107101
Gi2 GRMZM5G844173
GL15 GRMZM2G160730
ID1 GRMZM2G011357
MADS1 GRMZM2G171365
MADS69 GRMZM2G171650
PEBP2 GRMZM2G156079
PEBP24 GRMZM2G440005
PEBP4 GRMZM2G075081
PEBP8 GRMZM2G179264
PRRTF1 GRMZM2G095727
RAP2 GRMZM2G700665
ZAG6 GRMZM2G026223
ZCN8 GRMZM2G019993 
LHY GRMZM2G474769
MADS4 GRMZM2G032339 
TOC1a GRMZM2G020081

Barley CCA1 Hvcontig_1567295
CEN Hvcontig_274284
COL1 Hvcontig_138334
COL2 Hvcontig_6805
ELF3 Hvcontig_80895/67536
EL
F4-/ike3 Hvcontig_42805
FKF1 Hvcontig_38586
FT Hvcontig_54983

GI
Hvcontig_58270/158000
5

GRP7 Hvcontig_1578172
LHY Hvcontig_1567295
LUX Hvcontig_2548416
PRR9(5) Hvcontig_46739
PRR5(9) Hvcontig_41351
PRR7/37 Hvcontig_94710
TOCI Hvcontig_37494
ZTL Hvcontig_273830

Rice DTH2 OsR498G0204681300.01
DTH3 OsR498G0305144600.01
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DTH8 OsR498G0815298200.01
E OsR498G1018858200.01
E1 OsR498G0713935400.01
E2 OsR498G0713935400.01
E3 OsR498G0307088600.01
Ehd1 OsR498G1018858200.01
Ehd2 OsR498G1018735700.01
Ehd4 OsR498G0305108900.01
GHd7 OsR498G0713935400.01
Hd1 OsR498G0612090700.01
Hd16 OsR498G0307192700.01
Hd17 OsR498G0611607800.01
Hd18 OsR498G0815152000.01
Hd3a OsR498G0611656900.01
Se OsR498G0612090600.01

Sorghum CO Sobic.004G007400 
CN12 Sobic.003G295300
CRY1-b1 Sobic.004G188400 
CRY2-2 Sobic.006G101600
D8 Sobic.001G120900 
Ehd1 Sobic.010G238700.1
ELF3 Sobic.009G257300.2
FT1 Sobic.010G045100
HD6 Sobic.002G010300
LHY-4 Sobic.004G279300
Ma2 Sobic.002G302700
Ma3 Sobic.001G394400.1
Ma5 Sobic.001G087100.1
TOC1 Sobic.004G216700.1
Zfl1 Sobic.006G201600
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