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ABSTRACT

RNA molecules with common structural features may
share similar functional properties. Structural com-
parison of RNAs and detection of common substruc-
tures is, thus, a highly important task. Nevertheless,
the current available tools in the RNA community pro-
vide only a partial solution, since they either work at
the 2D level or are suitable for detecting predefined or
local contiguous tertiary motifs only. Here, we
describe a web server built around ARTS, a method
for aligning tertiary structures of nucleic acids (both
RNA and DNA).ARTSreceives apair of3D nucleicacid
structures and searches for a priori unknown com-
mon substructures. The search is truly 3D and irre-
spective of the order of the nucleotides on the chain.
The identified common substructures can be large
global folds with hundreds and even thousands of
nucleotides as well as small local motifs with at
least two successive base pairs. The method is highly
efficient and has been used to conduct an all-
against-all comparison of all the RNA structures in
the Protein Data Bank. The web server together with
a software package for download are freely accessible
at http://bioinfo3d.cs.tau.ac.il/ARTS.

INTRODUCTION

In recent years there is a fast growing interest in RNA
molecules. This stems from the groundbreaking discovery
that RNA is not solely a carrier of genetic information, but
a key player in a wide range of essential processes within
the cell, such as protein synthesis and transport, RNA pro-
cessing and splicing, gene silencing, and chromosome rep-
lication (1–3). RNA is also involved in many pathological

processes, like cancerous tumors and retroviral infections as
AIDS. Much like proteins, understanding the functions of
these active RNA molecules requires methods for analyzing
their tertiary structures. However, in contrast to the wide
range of 3D structure-based approaches available for proteins
(4), a similar field for RNA is only now emerging.

Many methods for structure analysis of RNA have been
developed to work at the secondary structure level, that is
the level of base pairing (5). In the absence of RNA tertiary
structures, such methods provide an excellent starting point
for exploring RNA structures. However, their inherent limita-
tion is that they are incapable of predicting and annotating
tertiary interactions. These interactions are formed between
secondary structure elements and are crucial for establishing
the global fold of an RNA (6,7). Fortunately, in the past few
years both the number and size of solved RNA tertiary struc-
tures has dramatically increased. This has given rise to vari-
ous computational tools for 3D structural analysis. A variety
of methods are available for analyzing and classifying nucle-
otide conformations and spatial base interactions (8–13). Sev-
eral other methods have been suggested for measuring the
similarity between larger RNA structures, but require the
structures to be with the same number of nucleotides and
with a predefined correspondence between them (14–16).
Fewer methods are available for locating small predefined
motifs in larger structures (15,17). These methods are useful
for finding new examples of known motifs, but are incapable
of discovering novel ones. To date, the problem of identifying
a priori unknown common substructures is only partially
addressed by a few methods for recognizing recurring 3D
contiguous fragments (18,19). Thus, there is a great need
for new approaches.

Herein, we present a web server built around the ARTS
method [http://bioinfo3d.cs.tau.ac.il/ARTS (20)] for aligning
3D nucleic acid structures. Compared with the current very
few comparison tools available for tackling this task, ARTS
is suitable for identifying a priori unknown common sub-
structures that may not necessarily be contiguous. The
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common substructures can be either large global folds con-
taining hundreds and even thousands of nucleotides or
small local spatial motifs with at least two successive base
pairs. ARTS is also highly efficient requiring typically a
few seconds for comparing a pair of average-size RNA struc-
tures with hundreds of nucleotides. The tool has been used to
conduct an all-against-all comparison of all the RNA 3D
structures currently available in the Protein Data Bank
(PDB) (21). The results can be accessed via the website.

METHOD OUTLINE

The input is a pair of nucleic acid structures represented by
the 3D coordinates of their atoms. The phosphate atoms are
singled out as critical points and each structure is represented
as a set of points in 3D space, where each point is the position
of a phosphate atom. Using this representation the problem is
a version of the Largest Common Point Set (LCP) problem in
Computational Geometry. Namely, the task is to find a rigid
transformation (rotation and translation) that superimposes
the largest number of phosphate atoms of one structure
onto the phosphate atoms of the other one within a predefined
bottleneck matching distance (22) error. Although this prob-
lem has been studied extensively, the current known exact
and approximate algorithms for solving it are impractical,
since they require O(n32.5) and O(n8.5) time, respectively,
where n is the number of phosphate atoms (22,23).

ARTS [http://bioinfo3d.cs.tau.ac.il/ARTS (20)] is thus a
heuristic method. By exploiting the base pairing and stacking
properties of nucleic acids, it is capable of providing biolo-
gically relevant solutions in practical running times, even
for large compact structures with thousands of nucleotides
like the ribosome. Its time complexity is O(n3). Unlike the
LCP problem, the goal is to maximize both the number of
superimposed phosphate atoms and the number of superim-
posed base pairs. The rationale is that more than half of the
nucleotides in an average non-coding RNA are involved in
base pairing and the stems that they form are evolutionarily
more conserved than loops (7). It is thus unlikely that an
alignment with a large number of superimposed base pairs
will be biologically meaningless, as might happen when
solving the pure geometric LCP problem. In the first stage,
all the possible local alignments of two successive base
pairs between the structures are constructed. Then, a greedy
approach is used to extend the local alignments so that a max-
imal number of phosphate atoms and base pairs will be super-
imposed. Finally, the global alignments are scored, clustered
and ranked, and the highest scoring ones are reported.

We estimate the significance of the obtained alignments by
computing the P-value of their score with respect to a random
dataset G of pairwise alignments. In the current version of the
application G contains �245 000 alignments that have been
randomly chosen from an all-against-all comparison of all
the RNA structures in the PDB. The P-value of an alignment
between a pair of RNA structures with n and m nucleotides is
computed with respect to all alignments in G for which the
number of nucleotides in the smallest structure is ±20%
min(n,m). The resulting P-value of the alignment represents
the probability that a pairwise alignment for which the size

of the smallest structure is similar would receive a higher
or equal score by chance.

WEB SERVER

The ARTS web server as well as an accompanied software
package are freely available at http://bioinfo3d.cs.tau.ac.il/
ARTS.

Input

The user interface of the web server is straightforward
(Figure 1a). It requires the user to enter an Email address
and a pair of nucleic acid structures in PDB format (21).
The structures can be either uploaded to the server or
retrieved from the PDB. In the second case the user has to
enter a four-character PDB code, optionally followed by a
colon and a list of chain IDs, for instance ‘1u6b’, ‘1u6b:B’
and ‘1u6b:BC’. In both cases, the structures must contain
all atoms and not only the ones on the backbone. The reason
is that otherwise hydrogen bonds cannot be computed and
these are necessary for finding base pairs. Another require-
ment is that each structure has at least two successive base
pairs.

Output

A typical run of ARTS for comparing a pair of average-size
nucleic acid structures with hundreds of nucleotides takes a
few seconds. After the run completes, a web page with a sum-
mary of the obtained alignments is displayed. In addition, an
Email with a link to this web page is sent to the user.
Figure 1b displays a summary page obtained for two self-
splicing group I introns, the Azoarcus pre-tRNAIle intron
with both exons [PDB—1u6b:B (24)] and the Twort
ribozyme intron [PDB—1y0q (25)]. The page contains two
tables. The upper table shows the name of the compared
structures and the number of nucleotides and base pairs in
each structure. The bottom table shows the 10 top-ranking
alignments sorted in descending order by their score. Besides
the score, the following data are presented for each align-
ment: (i) the number of matched base pairs (BP Core Size);
(ii) the total number of matched nucleotides including
unpaired ones (Core Size); (iii) the root mean square devi-
ation (RMSD) between the phosphate atoms of the matched
nucleotides in the core; (iv) the P-value; and (v) a PDB file
with the aligned structures. Clicking on the ‘BP Core Size’
field of one of the alignments displays a new page with a
table of the matched base pairs. Figure 1c shows the page
obtained after clicking on the ‘BP Core Size’ field of the
top-ranking alignment in the summary page presented in
Figure 1b. The table consists of two columns, one for each
structure. Each line corresponds to a match between 2 base-
pairs, and each entry provides the chain identifier, base type
and residue number of the 2 nucleotides in the corresponding
base pair. Clicking on the ‘Core Size’ field of one of the
alignments in the summary page (Figure 1b) displays a sim-
ilar page with a table of all matched nucleotides (paired and
unpaired). A PDB file with the input structures superimposed
one onto another will be downloaded or presented by a
viewer (if configured) when clicking on the ‘PDB Alignment’
field of one of the alignments in the summary page. Figure 1d
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shows the superimposition of the input structures displayed
by the PyMOL viewer [http://www.pymol.org (26)] after
clicking on the ‘PDB alignment’ field of the top-ranking
alignment in the summary page presented in Figure 1b.
Scripts for easy use with viewers are provided with the soft-
ware package. Among them are PyMOL [http://www.pymol.
org (26)] and RasMol (27) scripts for displaying the align-
ments and selecting the matched base pairs (bpcore) and all
matched nucleotides including unpaired ones (core).

CONCLUSIONS

We have presented a freely available web server accompan-
ied by a software package for 3D structural alignment of nuc-
leic acids. The web server receives as input a pair of tertiary
structures of nucleic acids in PDB format, and searches for a
priori unknown common substructures that are not necessar-
ily contiguous. The output consists of the top-ranking super-
positions between the two input structures in PDB format and

corresponding lists of matched nucleotides in the common
substructures. To the best of our knowledge, this is the first
web server that performs RNA structural comparisons that
are truly 3D and irrespective of the order of the nucleotides
on the chain. The only requirement is that there are at least
two consecutive base pairs in the match. The algorithm
behind the web server is highly efficient, where a typical
comparison of two nucleic acids takes a few seconds on a
standard PC. An all-against-all comparison of all the RNA
structures currently available in the PDB has been carried
out and the results can be accessed via the web server. In
future work we intend to allow online searches of uploaded
structures against the entire PDB.
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Figure 1. The ARTS web server. (a) The entrance page of the web server. The user is required to enter an Email address and a pair of nucleic acid structures in
PDB format (21). The structures can be either uploaded to the server or retrieved from the PDB. In the second case the user has to enter a four-character PDB code,
optionally followed by a colon and a list of chain IDs. (b) A web page with a summary of the 10 top-ranking alignments obtained for ‘1u6b:B’ and ‘1y0q’ PDB codes.
(c) The page obtained after clicking on the ‘BP Core Size’ field of the top-ranking alignment in the summary page presented in (b). (d) The superimposition of the
input structures displayed by PyMOL (26) after clicking on the ‘PDB Alignment’ field of the top-ranking alignment in the summary page presented in (b). The
backbone of the two structures, PDB:1u6bB and PDB:1y0q, is depicted in red and blue, respectively. The matched base pairs are in green and the matched unpaired
nucleotides are in yellow.
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