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Introduction
Ovarian cancer is the most lethal gynecological malignancy. 
Patients with epithelial ovarian cancer (EOC) account for 
approximately 90% of ovarian cancer patients.1 It is challenging 
to recognize EOC without clinical symptoms and special labo-
ratory tests in the early stages, so most cases are usually detected 
in the advanced stages. The 5-year survival rate is low, only at 
30%.2 Treatment is challenging because almost 75% of cases are 
diagnosed in advanced stages.3 The current treatments include 
surgery, chemotherapy, immunotherapy, etc. In the surgical 
management of ovarian cancer, the prognosis remains challeng-
ing due to the typical late-stage diagnosis at which most patients 
present. At this advanced stage, patients often exhibit complica-
tions and distant lymph node metastases, with these metastatic 

nodes commonly located in anatomically deep positions. 
Consequently, many patients potentially lose the opportunity 
for surgical intervention or require more extensive surgeries for 
resection. These complexities make it difficult to fully eradicate 
the tumor and achieve complete lymph node removal, thereby 
negatively impacting the overall prognosis of ovarian cancer. In 
chemotherapy treatments, the adverse effects are severe, leading 
to a scenario where most patients succumb to infections rather 
than the primary disease, due to bone marrow suppression and 
resultant immunodeficiency.4 Furthermore, recent studies indi-
cate that current immunotherapy protocols have yet to demon-
strate a significant enhancement in survival rates.4 Consequently, 
it is still urgent to discover more optimal therapeutic target 
genes for EOC, offering new perspectives for prognostic pre-
diction and a breakthrough target for treatment in the later 
stage of the disease.
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ABSTRACT

Objectives: This research aims to establish a copper homeostasis-related gene signature for predicting the prognosis of epithelial ovar-
ian cancer and to investigate its underlying mechanisms.

Methods: We mainly constructed the copper homeostasis-related gene signature by LASSO regression analysis. Then multiple methods 
were used to evaluate the independent predictive ability of the model and explored the mechanisms.

Results: The 15-copper homeostasis-related gene (15-CHRG) signature was successfully established. Utilizing an optimal cut-off value 
of 0.35, we divided the training dataset into high-risk and low-risk subgroups. Kaplan-Meier analysis revealed that survival times for the high-
risk subgroup were significantly shorter than those in the low-risk group (P < .05). Additionally, the Area Under the Curve (AUC) of the 
15-CHRG signature achieved 0.822 at 1 year, 0.762 at 3 years, and 0.696 at 5 years in the training set. COX regression analysis confirmed 
the 15-CHRG signature as both accurate and independent. Gene set enrichment (GSEA), Kyoto Encyclopedia of Gene and Genome (KEGG) 
and Gene Ontology (GO) analysis showed that there were significant differences in apoptosis, p53 pathway, protein synthesis, hydrolase 
and transport-related pathways between high-risk group and low-risk group. In tumor immune cell (TIC) analysis, the increased expression 
of resting mast cells was positively correlated with the risk score.

Conclusion: Consequently, the 15-CHRG signature shows significant potential as a method for accurately predicting clinical outcomes 
and treatment responses in patients with epithelial ovarian cancer.
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Copper is an indispensable micronutrient for all living crea-
tures and is critical in many biological processes, including mito-
chondrial respiration, antioxidant activity, and neuropeptide 
processing.5,6 Precise regulation of cooper homeostasis is essential 
to maintaining essential biological functions and preventing 
related diseases. Copper homeostasis imbalance can significantly 
affect cancer cell proliferation and metastasis.5 Compared with 
normal subjects, patients with several malignancies including 
ovarian cancer have substantially higher copper levels in serum or 
tumor tissue, and the increased copper levels can lead to a poorer 
prognosis.7-9 Further, it has been found that excessive accumula-
tion of copper ions may promote the progression and migration 
of carcinoma by promoting tumor cell reproduction, cell metasta-
sis and angiogenesis. In colon cancer, the inflammatory factor 
IL-17 can drive copper absorption by inducing the metalloreduc-
tase STEAP4, and elevated copper levels in turn activate XIAP, 
inhibit apoptotic protein caspase-3 activity, and promote tumori-
genesis.10 Furthermore, by reducing the concentration of copper 
ions, copper complexes may cause the G2 /M phase cell cycle 
arrested, mitochondrial dysfunction and ROS accumulation in 
tumor cells, eventually leading to apoptosis of tumor cells, sug-
gesting that the effect of copper ions on cancer may be related to 
cell proliferation.11,12 Copper ions activate pro-angiogenic factors 
such as vascular endothelial growth factor (VEGF), angiopoietin, 
ceruloplasmin, SPARC, and NF-kB, which induce angiogenesis, 
promote ascites production, and enhance or trigger cell prolifera-
tion and migration, thereby worsening tumor progression and 
metastasis, while reducing copper levels contributes to improved 
prognosis in malignant tumors.5-8,10 In summary, copper homeo-
stasis imbalance promotes tumor advancement and metastasis, so 
target genes for copper homeostasis may become a new strategy 
for treating EOC and assessing the prognosis of EOC patients.

The expanding scale and inherent complexity of biological 
data have prompted the increasing use of machine learning to 
construct informative and predictive models of fundamental bio-
logical processes.13 Algorithms based on machine learning have 
been extensively applied to clinical decision-making,14 of which 
one of the most commonly utilized algorithms is the Least 
Absolute Shrinkage and Selection Operator (LASSO).15 
Through multiple cross-validations of the connection among 
genes and prognosis and fitting the prediction performance of 
genes according to a specific algorithm, this algorithm dramati-
cally improves the accuracy of disease prognosis prediction, and 
thus is often applied to predict the prognosis of diseases.16 In this 
article, we have attempted to explore genes for prognostic predic-
tion through machine learning to construct an EOC prognostic 
signature on copper homeostasis-related genes (CHRGs).

Methods
Data collection and the overall design proposals

RNA-Seq data and clinic records from 381 EOC cases were 
extracted from the TCGA website (https://portal.gdc.cancer.

gov/projects/TCGA). A univariate COX analysis and Kaplan-
Meier analysis were utilized to identify potential EOC-related 
prognostic genes. Meanwhile, the keyword “copper homeostasis” 
was entered, and the CHRGs datasets were retrieved from the 
MalaCards Human Disease Database (https://www.malacards.
org/). Venn diagram (https://www.malacards.org/) is used to 
identify overlapping genes between EOC-related prognostic 
genes and CHRGs, which are considered to be potential copper 
homeostasis-related prognostic genes. LASSO regression analy-
sis was used to determine the best copper homeostasis-related 
prognostic genes. The best copper homeostasis-related prognos-
tic genes were analyzed by multivariate Cox regression to con-
struct the copper homeostasis-related gene prognosis model. 
According to the optimal threshold, the patients with EOC 
were divided into a high-risk group and a low-risk group. The 
prediction ability of the model is evaluated by the Kaplan-Meier 
survival curve, nomogram, calibration curve, time-dependent 
ROC curve and principal component analysis. Further research 
on the mechanism is done through differential gene analysis 
between the high-risk group and low-risk group, and then func-
tional enrichment analysis of these genes using GO, KEGG and 
GSEA. In addition, TIC was measured in 2 risk groups. This 
comprehensive analysis further elucidates the prognostic signifi-
cance of copper homeostasis in EOC and strengthens the 
understanding of the molecular basis of this pathology. A P-value 
of <.05 was considered statistically significant. All statistical 
analyses were conducted using R (version 4.4.0), available at 
(http://www.r-project.org/). Details regarding the R packages 
used in this study can be found on the Comprehensive R Archive 
Network (CRAN) at (https://cran.r-project.org/). The flow 
chart of the study is in Supplemental File 1.

Identif ication of copper homeostasis-related 
prognostic genes

Potential EOC-related prognostic genes were initially filtered by 
Kaplan-Meier analysis with the “survminer” R package (v0.4.9) 
and univariate COX analysis with the “survival” R package (v3.6-
4). The CHRGs were retrieved from the MalaCards Human 
Disease Database. A Venn diagram was utilized to identify genes 
shared between Potential EOC-related prognostic genes and 
CHRGs, indicating potential genes involved in copper homeo-
stasis that may influence prognosis. Furthermore, LASSO 
regression analysis by R package “glmnet” (v4.1-8) was imple-
mented to explore the core genes for prognostic prediction. To 
determine the optimal penalty value for the LASSO model, we 
utilized cross-validation, specifically k-fold cross-validation, 
with k typically being 10. This method involved dividing the 
data set into k smaller sets or folds. The LASSO model was then 
trained on k-1 of these folds, while the remaining fold was used 
for testing the model. This process was repeated such that each 
fold served as the testing set once. The penalty value that mini-
mized the average error across all k folds was considered optimal. 

https://portal.gdc.cancer.gov/projects/TCGA
https://portal.gdc.cancer.gov/projects/TCGA
https://www.malacards.org/
https://www.malacards.org/
https://www.malacards.org/
http://www.r-project.org/
https://cran.r-project.org/
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With the minimal penalty (λ), multiple stepwise regression anal-
yses were applied to match the predictive performance of genes.17 
Finally, the best CHRGs were obtained.

Establishment of a copper homeostasis-related 
prognostic gene signature

Moving forward in our investigation of the influence of copper 
homeostasis on EOC, multivariate Cox regression analysis 
with the “survival” R package (v 3.6-4) was implemented to 
establish a CHRG signature model.

The formula for the risk-scoring model is as follows:

RiskScore coef xi
n

i���
*

Where n, xi, and coefi denote the count of hub genes, the 
expression level of each gene, and their corresponding regres-
sion coefficients, accordingly.

The optimal cut-off value for the risk score was determined 
using the highest Youden index. Subsequently, cases in the 
training cohort were stratified into high-risk and low-risk sub-
groups based on this value. We then visualized the distribution 
of hazard scores, overall survival (OS) status, and gene-expres-
sion profiles across these groups.

Assessment of a copper homeostasis-related 
prognostic gene signature

The 381 samples were distributed randomly into training or 
validation cohorts in a 7:3 ratio via the “caret” R package (v 
6.0-94). To evaluate the prognostic ability of the 15 CHRGs 
signature in EOC, a variety of analysis methods, including sur-
vival analysis and receiver operating characteristic (ROC) 
curve, were used to evaluate the prognostic ability of the model.

(1)  Survival analysis

we conducted a Kaplan-Meier survival analysis with the “sur-
vminer” R package (v0.4.9) in the training set, comparing OS 
between the high-risk and low-risk subgroups. The analysis 
yielded Kaplan-Meier curves illustrating these comparisons.18

(2)  Receiver operating characteristic curve (ROC)

The receiver operating characteristic curve was generated 
with the “timeROC” R package (v0.3) to appraise the forecast-
ing efficiency of the signature. To test the feasibility and stabil-
ity of the gene signature, the hazard score was computed within 
the validation queue following the same equation as in the 
training queue, after which the same verification approach as 
described above was executed.

(3)  Nomogram

A nomogram was then established by the “nomogramFor-
mula” R package (v1.2.0.0) to visualize the outcomes of the 
regression analysis, after which calibration curves evaluated the 
accuracy of the nomograms.

(4)  Principal component analysis (PCA)

Expression patterns of genes associated with copper home-
ostasis in EOC cases were analyzed using PCA. This method 
was employed to classify and visualize the spatial distribution 
among high-risk and low-risk samples, utilizing the “scatter-
plot3d” R package (version 0.3-44).

Investigation of the mechanisms of a copper 
homeostasis-related prognostic gene signature

(1)  GO and KEGG Functional enrichment analysis

To elucidate molecular functions and critical signaling 
pathways, the R package “limma” was adopted to identify 
Differentially Expressed Genes (DEGs) among low-risk and 
high-risk subgroups (log2|fold change| >1 and FDR<0.05< 
span> <.05). After that, functional annotation analysis of 
DEGs based on GO and KEGG was executed in the Metascape 
database (https://metascape.org/gp/index.html#/main/step1) 
(P < .05). GO analysis depicts the enrichment of cellular com-
ponents, molecular functions, and biological processes of 
DEGs, while KEGG shows the enrichment of pathways.19,20

(2)  Gene set enrichment analysis (GSEA)

To discover the underlying molecular mechanisms and func-
tional pathways involving the signature, we used the GSEA soft-
ware (v4.2.3) to identify the enrichment pathways among low-risk 
and high-risk subgroups based on the HALLMARK gene set.21 
The HALLMARK gene sets (v7.1 5) were obtained from the 
Molecular Signatures Database (https://www.gsea-msigdb.org/
gsea/msigdb/index.jsp). And P-value < .05, FDR q-value < .25, 
and |NES| >1 were regarded as statistically significant.

(3)  Evaluation of tumor immune cell infiltration

The CIBERSORT (https://cibersort.stanford.edu/) is an 
analytical tool for analyzing the cellular components of com-
plicated tissues with expression data based on preprocessed 
gene-expression profiles.22 To determine whether the signature 
was related to tumor immunity, the CIBERSORT algorithm 
was adopted to estimate the difference in TIC infiltration 

https://metascape.org/gp/index.html#/main/step1
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://cibersort.stanford.edu/
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among the 2 subgroups. At the same time, the Spearman cor-
relation test was applied to evaluate the relationship between 
the gene signature and TIC.

Result
Identif ication of prognostic genes associated with 
copper homeostasis in EOC

The Gene-expression profiles of 378 EOC cases were down-
loaded, and we gained 19 655 genes. Among these genes, 3446 
genes were screened as potentially prognosis-related genes by 
Kaplan-Meier and univariate COX analyses. Meanwhile, 1581 
genes involved in copper homeostasis were retrieved from the 
Malacards database. After that, common intersecting genes 

between CHRGs and EOC prognosis-related genes were 
identified as possible copper homeostasis-related prognosis 
genes in Rstudio(v4.4.0) and were presented in a Venn diagram 
(Figure 1A).

Sample preparation

Overall, the dataset consists of 381 cases. For verifying the 
predictive value of the CHRGs signature, these cases are 
divided into 2 cohorts: a training cohort and a validation 
cohort. The training cohort comprises 266 cases, while the 
validation cohort consists of 115 cases. The clinic features of 
the overall, training team and validation team samples are 
shown in Table 1.

Figure 1.  Establishment of 15-CHRG signature and validation of its predictive power on overall survival. (A) Venn diagram for the intersection of EOC 

prognosis-related genes and cooper homeostasis-related genes. (B) LASSO coefficient curves for 120 latent prognostic genes related to copper 

homeostasis. Every curve corresponds to a single gene. (C) Optimal penalty (λ) selection in LASSO-COX regression. (D) Nomogram of 15 copper 

homeostasis-related genes in the signature. (E) Calibration curve for evaluating the reliability of the nomogram. The gray diagonal dashed line depicts the 

ideal nomogram. (F) Univariate regression coefficients of 15 copper homeostasis-related genes.
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Construction of cooper homeostasis-associated gene 
signature

As illustrated in Figure 1B and C, the 15 predictors were deter-
mined according to the LASSO regression analysis and the 
optimal value of penalty (λ) (i.e. ANK2, ASAH2, CD79B, 
CEBPD, CNNM2, CYP3A5, FHIT, H2BC21, HBEGF, 
LYZ, OGG1, PIK3CG, PSMC5, SESN2, and XDH). 
Meanwhile, a 15-CHRG signature model was established with 
multivariate Cox regression analysis. The risk score for each 
EOC individual was computed by the below equation: Risk 
score = (−0.193) * Expression (ANK2) + 0.167 * Expression (ASAH2) 
+ (−0.096) * Expression (CEBPD) + (−0.177) * Expression 
(CYP3A5) + 0.121 * Expression (H2BC21) + 0.031 * Expression 

(HBEGF) + (−0.052) * Expression (LYZ) + (0.375) * Expression 
(OGG1) + (−0.153) * Expression (CD79B) + (0.168) * Expression 
(CNNM2) + (−0.238) * Expression (FHIT) + (−0.097) * Expression 
(XDH) + (−0.171) * Expression (PSMC5) + (−0.205) * Expression 
(SESN2) + (−0.076) * Expression (PIK3CG). Multivariate regression 
coefficients of 15 copper homeostasis-related genes were 
shown in Figure 1F.

Subsequently, with a risk score of 0.35 as the threshold, the 
training team cases were grouped into low-risk and high-risk 
subgroups. The distribution of hazard score, outcome status, 
and gene-expression profile of the 15-CHRG signature was 
displayed in the whole queue, training queue and validation 
queue(Figure 2A–C). The top half is for risk score distribution, 

Table 1.  The clinic characteristics of TCGA-EOC.

Characteristics Overall
381 cases

Training cohort
266 cases

Validation cohort
112 cases

Age (%)  

 <65 y 261 (68.5) 187 (70.3) 74 (64.3)

 ⩾65 y 120 (31.5) 79 (29.7) 41(35.7)

Ethnicity (%)  

 Hispanic or Latino 8 (2.1) 5 (1.9) 3 (2.7)

 Not Hispanic or Latino 216 (56.7) 160 (60.2) 56 (48.7)

 Unknown 157(41.2) 101 (38.0) 56 (48.7)

Race (%)  

 White 330 (86.6) 234 (88.0) 96 (83.5)

 Black or African American 25 (6.6) 15 (5.6) 10 (8.7)

 Asian 12 (3.1) 9 (3.4) 3 (2.6)

 American Indian or Alaska Native 2 (0.5) 0 (0.0) 2 (1.8)

 Native Hawaiian or other pacific islanders 1 (0.3) 1 (0.4) 0 (0.0)

 Unknown 11 (2.9) 7 (2.6) 4 (3.5)

Figo_stage (%)  

 Stage I 3 (0.8) 2 (0.7) 1 (0.4)

 Stage II 23 (6.0) 7 (6.1) 16 (6.0)

 Stage III 297 (78.0) 92 (80.0) 205 (77.1)

 Stage IV 58 (15.2) 14 (12.2) 44 (16.5)

Treatment_type (%)  

 Pharmaceutical therapy 178 (46.7) 128 (48.1) 50 (44.6)

 Radiation therapy 203 (53.3) 138 (51.9) 65 (56.5)

Status (%)  

 Death 147 (38.6) 100 (37.6) 47(40.9)

 Alive 234 (61.4) 166 (62.4) 68 (59.1)
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the middle is for patient survival status, and the bottom is for a 
heatmap of 15 CHRGs expression profiles. The survival of 
patients in the high-risk subgroup was remarkably lower than 
those in the low-risk subgroup.

Assessment of cooper homeostasis-associated gene 
signature

(1)  Survival analysis

The Kaplan-Meier survival analysis demonstrated that the 
overall survival of the high-risk subgroup was considerably 

poorer than that of the low-risk subgroup in the whole queue, 
training queue and validation queue (Figure 2D–F).

(2)  Time-dependent ROC and dynamic AUC change 
curves

Time-dependent ROC and dynamic AUC change curves 
illustrated that the AUC achieved 0.822 at 1 year, 0.762 at 
3 years, and 0.696 at 5 years in the training set. The AUC for 
the overall sample reached 0.797 at 1 year, 0.783 at 3 years, and 
0.729 at 5 years, whereas the AUC for the validation team 
attained 0.673 at 1 year, 0.82 at 3 years, and 0.818 at 5 years. 

Figure 2.  Further study on the predictive power of the 15-CHRG signature. The general performance of 15-CHRG signature in all cases, training and 

validation cohorts. (A–C) The top half is for risk score distribution, the middle is for patient survival status, and the bottom is for a heatmap of 15 CHRGs 

expression profiles. (D–F) Kaplan-Meier survival analysis of 15-CHRG signature. Time-dependent ROC curves (G–I) and time-dynamic AUC curves (J) 

for the whole samples, training team and validation team. (K–M) showed PCA of the training cohort, validation cohort and overall cohort.
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(Figure 2G–I).Time-dynamic AUC curves (J) for the whole 
samples, training team and validation team (Figure 2J).

(3)  Calibration curves

The calibration curves illustrated that the 15-CHRG signa-
ture was a near-ideal prediction model that correctly predicted 
1-, 3-, and 5-year overall survival (Figure 1E).

(4)  Nomogram

In the nomogram based on predictors (Figure 1D), the like-
lihood of survival for these patients was calculated by summing 
the scores of the 15 CHRGs on the integral scale.

(5)  Principal component analysis

PCA revealed that the overall, training and validation cohort 
could be reasonably segmented into low-risk and high-risk 
subgroups (Figure 2K–M).

(6)  Multivariate Cox regression analysis

For comparing the independent predictive capability of this 
gene signature with other clinic features such as age, race and 
tumor stage for EOC prognosis, Multivariate Cox regression 
analysis was performed. The result suggested that hazard score 
was remarkably associated with the overall survival of EOC 
patients (HR = 0.35, 95% CI = 0.26-0.46, P < .001), indicating 
the 15-CHRG signature is an influential independent variable 
for EOC prognosis (Figure 3).

Molecular function and pathway enrichment 
analysis by GSEA, GO, and KEGG

As for the underlying discrepancies in the biological functions 
and signaling pathways, the GSEA suggested that the low-risk 
subgroup was enriched in many tumor suppression-related 
pathways such as apoptosis and P53 pathways, as well as many 
immune-related pathways including IL2 pathway, IL6 path-
way, interferon pathway, and TNFA pathway (Figure 4A), 
while many cancer mutation-associated pathways were con-
centrated in the high-risk subgroup, for example, DNA repair, 
E2F and G2M checkpoint (Figure 4B).

For a further investigation of the differences in biological 
processes or pathways of DEGs among the 2 risk cohorts, GO 
enrichment analysis and KEGG pathway analysis were 

Figure 3.  Multivariate Cox regression analysis showing the hazard ratio of 15-CHRG signature and clinic characteristics.
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Figure 4.  GSEA performed by HALLMARK gene set. The enrichment gene set in the low-risk (A) and high-risk (B) subgroups. (NOM P-value < .05, FDR 

q-value < 0.25, and | NES | >1).
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conducted on DEGs (Figure 5A). KEGG analysis suggested 
that DEGs were mainly concentrated in protein synthesis and 
hydrolysis-related pathways and transport pathways, such as 

protein processing in endoplasmic reticulum, ubiquitin-medi-
ated proteolysis, ribosome, nucleocytoplasmic transport, and 
endocytosis (Figure 5B). At the same time, biological 

Figure 5.  GO function enrichment and KEGG analysis of the DEGs between high-risk and low-risk subgroups. (A) Volcano plots. Red represents a 

significant increase in gene expression, and blue represents a substantial decrease in gene expression. (B) GO functional enrichment analysis. Biological 

processes, molecular function, and cellular components are included. (C) KEGG pathway analysis. The bubble size represents the number of genes 

enriched by the pathway, and the bubble color represents the P-value.
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processes were primarily confined to protein transport and 
hydrolytic metabolic processes. In short, these findings implied 
that the 15-CHRG signature might influence the survival of 
EOC patients primarily by tumor suppression, tumor immu-
nity, and protein synthesis hydrolysis (Figure 5C).

Immunocorrelation analysis of EOC patients with 
15-CHRG signature

For the relationship between 15-CHRG signature and tumor 
immunity in EOC patients, TIC infiltration revealed that 
CD8 T cells, resting mast cells, activated CD4 memory T cells 
and naive B cells were differentially infiltrated (Figure 6A). At 
the same time, Spearman correlation analysis implied that 7 
immune cells were significantly relevant to the risk score 
(Figure 6B). Considering the above 2 analyses together, we 
found resting mast cells were potentially positively related to 
EOC prognosis (P < .05).

Discussion
Ovarian cancer is the third most common gynecologic cancer 
worldwide, but with the highest death rate among these can-
cers, so it is essential to identify reliable and valid prognostic 
biomarkers of EOC. According to previous research, dysregu-
lation of copper homeostasis promotes tumor development and 
prognosis by promoting tumor cell proliferation, metastases 
and angiogenesis.5-8,10 Copper chelators could induce copper 
transporter protein 1 (CTR1) expression via the Cu-Sp1-
CTR1 regulatory loop in non-small cell lung cancer cells to 
reduce copper ion concentrations, subsequently enhancing 
chemosensitivity to cisplatin treatment, finally enhancing the 
efficacy of chemotherapeutic drugs and prolonging patient 
survival.23 Similarly, copper chelators could reverse platinum 
resistance and improve cancer patient’s prognosis.24,25 In sum-
mary, the imbalance of copper homeostasis promotes tumor 
progression. Therefore, we speculated that CHRGs might be 
closely associated with the prognosis of EOC, and we thus 
tried to establish a prognostic gene signature associated with 
copper homeostasis.

Firstly, 120 potential prognostic genes related to copper 
homeostasis were identified by analyzing the intersection of 
differential genes and copper homeostasis genes. Next, a 
machine learning algorithm-LASSO regression model analysis 
was performed on these 120 genes to construct a 15-CHRG 
signature associated with copper homeostasis (ANK2, ASAH2, 
CD79B, CEBPD, CNNM2, CYP3A5, FHIT, H2BC21, 
HBEGF, LYZ, OGG1, PIK3CG, PSMC5, SESN2. and 
XDH). Meanwhile, univariate COX analysis was performed 
on clinical features including age, tumor stage, and 15-CHRG 
signature, and the result suggested that the 15-CHRG signa-
ture was more accurate and independent. Besides, the nomo-
gram and the calibration curve demonstrated that the 
15-CHRG signature could predict the survival of patients 

more accurately. Furthermore, the survival analysis shows sta-
tistically significant results in the overall and training datasets, 
highlighting differences in survival rates between risk groups 
based on copper homeostasis genes. However, the validation 
set, likely due to the smaller sample size, shows no significant 
P-value, only approaching significance at .055. This marginal 
result suggests a potential trend that might become significant 
with a larger dataset or changes in population dynamics. In 
previous studies, the Cox proportional risk prognostic model 
based on differentially expressed genes was constructed, and 
the AUC of the model was 0.7126; the model based on glucose 
metabolism-related genes was established, the AUC was 0.668 
at 2 years, 0.785 at 3 years, and 0.744 at 4 years27; the prognostic 
model based n lipid metabolism-related genes were con-
structed, the AUC was 0.706 at 2 years, 0.694 at 3 years, and 
0.724 at 5 years28; the model based on tumor mutation load-
related genes was built, the AUC was 0.703, 0.758, and 0.777 
at 1 year, 3 years, and 5 years, respectively.29 In conclusion, the 
AUC of the models established in previous studies are mainly 
located between 0.6 and 0.77, while the AUC of the models 
established in this study were 0.822 at 1 year, 0.762 at 3 years, 
and 0.696 at 5 years. So, compared with other models, the 
15-CHRG signature can better assess the prognosis of EOC.

Regarding the underlying mechanism, the toxicity of copper 
is manifested when its concentration surpasses thresholds 
maintained by evolutionarily conserved homeostatic mecha-
nisms. Recent studies ha elucidated that excessive levels of cop-
per may cuproptosis. This pathway characteristically involves 
the direct binding and subsequent accumulation of excessive 
copper to the lipoyl groups of proteins involved in the tricarbo-
xylic acid (TCA) cycle of mitochondrial respiration. This accu-
mulation leads to the destabilization and loss of iron-sulfur 
cluster proteins, culminating in proteotoxic stress and eventual 
cell death.30 Additionally, genes associated with copper home-
ostasis included in the 15-CHRG signature modulate copper 
ion concentrations by regulating the expression of copper 
homeostasis genes. This modulation plays a crucial role in 
tumor proliferation, migration, and invasion, and has signifi-
cant implications for chemotherapy resistance and tumor pro-
gression.31-35 For example, upregulation of CEBPD also 
transactivates the induction of copper/zinc superoxide dis-
mutase (SOD1) expression, reducing cisplatin-induced reac-
tive oxygen species (ROS) and apoptosis to prevent or treat 
cisplatin resistance in the bladder or other malignancies, 
enhancing the efficacy of chemotherapeutic agents and thus 
improving patients’ prognosis.36 And the HBEGF inhibitor 
CRM197 can significantly reverse chemoresistance in drug-
resistant ovarian cancer cells by downregulating the NAC-1/
Gadd45gip1/Gadd45 pathway, activating the pro-apoptotic 
JNK/p38MAPK pathway, and enhancing caspase-3 enzyme 
activity and apoptosis.37 Therefore, the 15-CHRG signature 
could affect EOC’s prognosis by regulating tumor prolifera-
tion, migration and invasive processes.
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To determine the model regulatory pathways, we also per-
formed GSEA for high-risk and low-risk groups, and the 
results showed that the DEGs were mainly enriched in the 
apoptosis pathway and P53 pathway. As was reported, the 
upregulation of P53 could promote cancer cell apoptosis by 

enhancing the function of driving pro-apoptotic gene expres-
sion after cell stress or injury, which leads to favorable ovarian 
cancer treatment and delays disease progression.38 Moreover, 
the KEGG pathway and GO enrichment analysis revealed that 
the DEGs were mainly concentrated in pathways associated 

Figure 6.  Analysis of TICs infiltration in EOC patients between low- and high-risk groups based on 15 CHRGs. (A) Box plots of the differences in 22 TICs 

infiltration. (B) Relevance between TICs and 15-CHRG signature. Only graphs with significant correlations are plotted; P < .05.
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with protein synthesis, hydrolysis metabolism and protein 
transport pathways. Previous studies have found that tumori-
genic progression may be regulated by the metabolism of pro-
teins such as copper transport proteins. For example, it was 
shown that the high-affinity copper transporter (HCtr1), cop-
per chaperone protein (ATOX1) and copper export protein 
(ATP7A and ATP7B) may affect platinum uptake, intracellular 
shuffling and export, respectively, by regulating copper homeo-
stasis, thus affecting platinum sensitivity in ovarian cancer 
patients.39 In addition, the transcription factor Sp1 controls 
multiple cellular processes, including apoptosis, DNA damage 
response, angiogenesis and immune response, and promotes 
chemoresistance, metastasis and amino acid metabolism, thus 
affecting patient prognosis.40,41 In contrast, copper deficiency 
enhances the interaction of Sp1 with DNA and increases Sp1 
expression, which in turn upregulates hCtr1, sensitizing ovarian 
cancer patients to platinum chemotherapy and prolonging their 
progression-free survival.40,42 Therefore, multiple enrichment 
analyses indicated that the 15-CHRG signature could regulate 
the P53 pathway, apoptosis pathway, and protein synthesis and 
hydrolysis pathway and thus affect the prognosis of EOC.

We also performed TIC analysis for high-risk and low-risk 
groups to understand immune-related mechanisms. The results 
of TIC analysis found that resting mast cell infiltration were 
increased in the high-risk group and significantly related to the 
risk score. However, the correlation coefficient (R-value) 
between them was low. Some biological phenomena, especially 
in complex diseases like cancer, often exhibit subtle yet biologi-
cally meaningful interactions that might not be reflected in 
high R values. The weak correlations could still be important, 
particularly when considering multifactorial influences. 
Previous studies have shown that any tumor-infiltrating mast 
cells in ovarian cancer can promote tumor immune evasion 
through increasing pro-tumor cell infiltration and impaired 
anti-tumor immune function, thus leading to poor prognosis.43 
Therefore, TIC analysis suggested that EOC patients in the 
high-risk group are immune tolerant, and the 15-CHRG sig-
nature may provide potential clues for patients to select more 
effective antitumor immunotherapy.

In this study, we constructed and validated a 15-CHRG 
prognostic model related to copper homeostasis, which signifi-
cantly enhances the predictive accuracy of outcomes in patients 
with EOC. This model categorized patients into high-risk and 
low-risk groups based on generated risk scores, with high-risk 
patients exhibiting poorer prognoses. These insights deepen 
our understanding of the roles that copper homeostasis-related 
genes play in EOC, potentially guiding more personalized 
treatment approaches and identifying novel therapeutic targets. 
However, the study faces limitations such as reliance on data 
from TCGA, which mainly involves specific ethnic groups and 
a limited number of cases, and lacks external validation. This 
could affect the generalizability of our findings across different 
clinical settings. Moreover, the complexity of the CHRG gene 

pathways involved in EOC requires more detailed investiga-
tion to fully elucidate their roles and impacts on the disease.

Conclusion
In conclusion, a 15-CHRG signature could accurately forecast 
the prognosis of EOC and may act as a promising prognostic 
molecular signature and have therapeutic implications for 
EOC patients.
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