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Abstract: Clostridium difficile infection (CDI) is known to be associated with prior 

exposure to many classes of antibiotics. Standard therapy for CDI (i.e., metronidazole and 

vancomycin) is associated with high recurrence rates. Although tetracycline derivatives such 

as tetracycline, doxycycline or tigecycline are not the standard therapeutic choices for CDI, 

they may serve as an alternative or a component of combination therapy. Previous 

tetracycline or doxycycline usage had been shown to have less association with CDI 

development. Tigecycline, a broad-spectrum glycylcycline with potency against many  
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gram-positive or gram-negative pathogens, had been successfully used to treat severe or 

refractory CDI. The in vitro susceptibility of C. difficile clinical isolates to tigecycline in 

many studies showed low minimal inhibitory concentrations. Tigecycline can suppress  

in vitro toxin production in both historical and hypervirulent C. difficile strains and reduce 

spore production in a dose-dependent manner. Tetracycline compounds such as doxycycline, 

minocycline, and tigecycline possess anti-inflammatory properties that are independent of 

their antibiotic activity and may contribute to their therapeutic effect for CDI. Although 

clinical data are limited, doxycycline is less likely to induce CDI, and tigecycline can be 

considered one of the therapeutic choices for severe or refractory CDI. 
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1. Clinical Impact of Clostridium Difficile Infections 

Nosocomial diarrhea is a common complication in hospitalized patients and contributes to increased 

morbidity and mortality and prolonged hospitalization [1,2]. Infectious diarrhea accounts for 10%–30% 

of nosocomial diarrhea [3]. Clostridium difficile infection (CDI) is the most well-known disease within 

the etiology of nosocomial infectious diarrhea. Moreover, C. difficile is the major cause of nosocomial 

antibiotic-associated diarrhea through the production of toxins A and B. The CDI disease pattern ranges 

from mild diarrhea to pseudomembranous colitis, toxic megacolon or colon perforation [4]. The 30-day 

attributable mortality rate in CDI cases is 6.9%; this rate is higher in patients who developed toxic 

megacolon, ranging from 25% to 40% [5,6]. C. difficile is frequently transmitted in healthcare settings 

via medical care workers. Therefore, CDI represents an important infection control issue [7].  

The incidence of CDI has been increasing in recent years with sporadic outbreaks. The most well-

known event was the CDI outbreak in Quebec, Canada in 2003. In this outbreak, CDI was the attributable 

cause of death in 117 (6.9%) cases out of 1703 patients and was a contributing factor in an additional 

127 (7.5%) deaths [6]. In the United States, the number of CDI cases reported in 2005 (84 per 100,000) 

was nearly three times the number reported in 1996 (31 per 100,000) [4]. A recent multistate active 

surveillance study in the US revealed alarming national data concerning CDI that was indicative of a 

persistent health threat. In 2011, the estimated number of incident CDI cases was more than 453,000, 

and the crude incidence of community-associated and healthcare-associated CDI cases was 48.2 and 

92.8 episodes per 100,000 persons in the US, respectively [8]. Of greater concern is the increase in severe 

and fatal infections [4]. The incidence of CDI at a medical center in southern Taiwan was 42.6 cases per 

100,000 patient-days or 3.4 cases per 1000 discharges between January 2007 and March 2008 [9]. 

Notably, the incidence of toxigenic C. difficile colonization was higher, accounting for 84.8 

cases/100,000 patient-days or 73.0/1000 patients at a regional hospital from 2011 to 2012 [10]. 

2. Antibiotic Exposure Related to the Development of Clostridium Difficile Infection 

Antibiotic exposure causes disruption of the normal colonic flora and predisposes patients to C. difficile 

colonization and infection [9–12]. Antibiotics decrease the density of intestinal bacteria and alter  
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the intestinal microbiota. The effect may last for more than eight weeks after the cessation of  

antibiotics [13]. Exposure to more than one class of antibiotics resulted in a higher rate of C. difficile 

colonization [14]. Notorious antimicrobial agents that have been linked to the disruption of the 

indigenous microflora [15] and CDI development include third-generation cephalosporins [16,17], 

clindamycin [16–18], and fluoroquinolones [17–20]. These drugs can be regarded as “predisposing” 

drugs. Current clinical management for CDI involves the discontinuation of predisposing antibiotics and 

the administration of anti-CDI antibiotics, such as metronidazole and vancomycin [4]. 

Interestingly, some antibiotics, such as piperacillin-tazobactam, exhibited in vitro antibacterial 

activity against clinical C. difficile strains. Moreover, prior exposure to these antibiotics was noted to be 

less likely to induce Clostridium difficile-associated diarrhea (CDAD). These antibiotics were once 

considered to be “friendly” antibiotics [21]. For example, a higher incidence of CDI was noted in patients 

with C. difficile colonization who received cefotaxime as opposed to piperacillin-tazobactam (69.2%, 

18/26 versus 33.3%, 1/3) [22]. Furthermore, the rate of CDI increased following the shortage of 

piperacillin-tazobactam [23]. Nevertheless, the classification of piperacillin-tazobactam as a “friendly” 

antibiotic was challenged because opposing results were reported in other studies [17,24,25]. Although 

piperacillin-tazobactam can inhibit C. difficile in vitro, it most likely disrupts the anaerobic gut 

microflora and facilitates the growth of C. difficile [24]. Indeed, the administration of penicillins and  

β-lactamase inhibitor combinations (mainly piperacillin-tazobactam) has been recognized to be associated 

with an increased risk of CDI [17]. A significant reduction in the rate of CDI was noted with the reduced 

availability of piperacillin-tazobactam [25]. Such contradictory information indicates that the interaction 

of antibiotics, the gut microbiota, and pathogenic C. difficile is complex in the clinical real world. 

Even metronidazole, a therapeutic drug for CDI that had been considered for prophylaxis for CDI in 

high risk patients [26], might not be free of risk because its use has been associated with CDI relapse 

(odds ratio, 2.74) [27]. Another finding arguing against the preventive potential of metronidazole is the 

occurrence of CDI after the administration of a triple metronidazole-containing regimen to eradicate 

Helicobacter pylori [28]. Thus, exposure to broad-spectrum antibiotics that are active against C. difficile 

in vitro may predispose a susceptible patient to CDI, most likely due to inadequate anti-clostridial 

activity and the loss of colonization resistance in the gut. 

3. Doxycycline—Varied Susceptibility Data In Vitro but High Gut Tissue Concentrations 

Before the susceptibility data of tetracycline for C. difficile isolates can be interpreted and compared, 

the important issue of the susceptible or resistant breakpoint must be addressed. No susceptible or 

resistant breakpoint for doxycycline was recommended from the Clinical and Laboratory Standards 

Institutes (CLSI), British Society for Antimicrobial Chemotherapy (BSAC) or European Committee on 

Antimicrobial Susceptibility Testing (EUCAST). Moreover, the susceptibility of tetracycline or its 

derivatives has rarely been reported for C. difficile isolates, making international comparisons difficult. 

This lack is at least partially related to the limited pharmacological data available for doxycycline at the 

target site (the intestinal mucosa) and the lack of a correlation between clinical treatment and the 

therapeutic outcome of doxycycline, which is not commonly used for CDI. 

Although the susceptibility of C. difficile isolates to tetracycline varied geographically, most isolates 

reported in Europe were susceptible to tetracycline derivatives, with resistance rates of less than  
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10% [29–32]. The resistance rates of doxycycline in C. difficile isolates from animal products, animal 

stools, or soil were low, ranging from 0% to 2.1% as shown in Table 1 [33–35]. However, the 

susceptibility data for clinical C. difficile isolates varied significantly in a limited number of reports.  

A total of 11% of 43 isolates from Spain were doxycycline-resistant using a resistance criterion of 

minimal inhibitory concentration (MIC) >2 μg/mL [36]. Doxycycline resistance defined as a doxycycline 

MIC ≥8 μg/mL was noted in nearly 40% of 317 clinical isolates from Germany [37]. In contrast, all  

48 clinical isolates in Israel were susceptible to doxycycline (MIC range: 0.016–0.38 g/mL) [38]. Even 

with the existence of a substantial degree of doxycycline resistance in clinical strains, a preventive or 

therapeutic role for doxycycline in C. difficile infection cannot be excluded completely because high 

doxycycline concentrations are present in bowel tissue after oral administration. Oral intake of 200 mg 

of doxycycline every 4–6 h resulted in a serum concentration of 4.0 ± 0.3 mg/L, ileum concentration of 

7.5 ± 1.2 mg/L, and colon concentration of 3.9 ± 0.3 mg/L [39]. Theoretically, the high bowel tissue 

concentration may render doxycycline effective against C. difficile strains with higher MICs, but the 

drug levels in the intestinal lumen where C. difficile vegetative cells reside is likely to be the critical 

variable for the prevention or treatment of CDI. 

4. Doxycycline—Protective Effect against CDI in Clinics? 

Some reports have discussed the connection between doxycycline and CDI [40–42], but no 

information is available concerning minocycline. Although CDI was noted after doxycycline 

prophylaxis for malaria [43], doxycycline was associated with a decreased incidence of CDI in recent 

studies. Doxycycline was associated with a reduced risk of CDI (odds ratio, 0.41) in a retrospective  

case-control study that compared 1142 cases of hospital-acquired CDI from 1999 through 2005 with 

3351 controls matched for facility [40]. In another study that used a multivariable model to adjust for 

confounding factors, the rate of CDI was 27% lower for each day of doxycycline administration 

compared to a patient without doxycycline therapy (hazard ratio, 0.73) [41]. A pharmacotherapy review 

concluded that doxycycline had protective effects against the development of CDI [42]. In contrast to 

the studies in Europe, tetracycline resistance was present in more than 30% of C. difficile isolates in 

China [32,44–46]. Thus, the preventive effect of tetracycline derivatives for CDI warrants confirmation 

by further clinical observation. 
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Table 1. In vitro susceptibility of doxycycline and tigecycline against Clostridium difficile isolates. 

Authors Year Location Isolate Numbers 3 Test Method 
MIC, μg/mL Resistant Rate, 

% (Breakpoint) 
Reference 

MIC50 MIC90 Range 

Doxycycline          

Schmidt et al. 2002–2004 Germany 317 Etest 0.125 32 <0.06–>256 37 (≥8 μg/mL) [35] 

Bishara et al. 2003–2004 2 Israel 49 
Disc diffusion 

and Etest 
0.016 0.023 0.016–0.38 0 (ND) [36] 

Simango et al. 2006 2 Zimbabwe 
53 from soil and 

animal feces 
Disc diffusion ND ND ND 0 (ND) [33] 

Simango et al. 2008 2 Zimbabwe 51 from chicken Disc diffusion ND ND ND 0 (ND) [32] 

Kouassi et al. 2009–2010 Cote d’Ivoire 49 from beef Disc diffusion ND ND ND 2.1 (<17 mm) [31] 

Alcalá et al. 20122 Spain 43 Etest 0.032 3 0.016–8 11.4 (≥16 μg/mL) [34] 

Tigecycline 1          

Hecht et al. 1983–2004 Primarily from the US 110 Agar dilution 0.125 0.25 0.06–1 ND [46] 

Edlund et al. 1998 Sweden 50 Agar dilution 0.032 0.032 0.016–0.032 ND [47] 

Hawser et al. 2008 Europe 256 Agar dilution <0.06 0.25 0.06–2 5.1 [48] 

Rashid et al. 2008–2011 Stockholm, Sweden 114 Agar dilution 0.064 0.125 0.032–0.25 0 [27] 

Lin et al. 2011 Taiwan 108 Agar dilution 0.06 0.06 0.03–0.25 0 [45] 

Lachowicz et al. 2012 Poland 83 Etest 0.094 0.19 0.016–0.25 0 [49] 

Rashid et al. 20132 Stockholm, Sweden 133 Agar dilution 0.064 0.125 0.032–0.25 0 [28] 

1 Resistant breakpoint of the European Committee on Antimicrobial Susceptibility Testing (EUCAST) for tigecycline: >0.5 μg/mL; 2 Publication year; 3 Clinical isolates, if 

not specified. ND: no data. 
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5. Tigecycline—Good In Vitro Susceptibility but Bad for Gut Microbiota 

Tigecycline is a new generation tetracycline derivative. Although there is no CLSI breakpoint of 

tigecycline for C. difficile, in vitro susceptibility studies of clinical C. difficile isolates to tigecycline 

showed excellent antibacterial activity [29,30,47–51] (Table 1). For example, two (2.4%) strains from a 

collection of 83 toxigenic C. difficile isolates from Polish hospitals were resistant to tetracycline, while all of 

the strains were sensitive to tigecycline according to the latest EUCAST breakpoint (MIC <0.25 μg/mL). 

Although tigecycline has the capability to inhibit toxin production or spore formation, its broad-spectrum 

antibacterial activity on gut microbiota renders its usage a risk factor for CDI. Tigecycline treatment 

resulted in major shifts in the gut microbiota in mice, including a decrease in Bacteroidetes levels and 

an increase in Proteobacteria levels, which made the treated mice susceptible to CDI [52]. Such a change 

in gut microbiota could last for weeks, as evidenced by the findings that the recovery of the bacterial 

community was incomplete and diversity was lower compared to untreated controls 5 weeks after the 

cessation of tigecycline treatment [52]. However, tigecycline instillation reduced competing microflora, 

including Bacteroides and Bifidobacteria, in an in vitro human gut model but did not induce C. difficile 

proliferation or cytotoxin production [53]. 

6. Tigecycline—Beyond Antibacterial Effects against C. Difficile 

Notably, tigecycline can suppress spore formation in vitro [24], and this finding was linked to the 

potential efficacy for tigecycline therapy against recurrent CDI. Furthermore, tigecycline did not 

promote the growth or toxin production of C. difficile in a mouse model, and concurrent administration 

of tigecycline prevented clindamycin-induced promotion of C. difficile growth in the cecal contents [54]. 

Tigecycline can suppress in vitro toxin production in both historical and hypervirulent C. difficile strains 

and reduce spore production in a dose-dependent manner [55,56]. These experimental data partially 

explain the fact that tigecycline therapy was associated with a low recurrence rate of CDI [57,58]. In 

contrast, metronidazole and vancomycin, two standard antimicrobial drugs for CDI, had a similar 

suppressive effect on toxin production but less suppression on spore formation [55], which provided an 

explanation as to why metronidazole or vancomycin therapy for CDI was related to a higher recurrence 

rate [59,60]. 

Tetracycline compounds possess anti-inflammatory properties independent of their antibiotic activity 

that may contribute to their therapeutic effects on CDI [61]. Tigecycline can attenuate staphylococcal 

superantigen-induced T-cell proliferation and the production of cytokines (i.e., IL-1β, IL-6, and TNF-α) 

and chemokines (i.e., MIP-1α and MIP-1β) [62]. For example, tigecycline therapy significantly reduced 

the concentrations of inflammatory pulmonary cytokine (i.e., IL-1β, IL-12, IFN-γ, and TNF-α) and 

chemokine concentrations (i.e., MIG, MIP-1α, and IP-10) in a murine model of Mycoplasma 

pneumoniae pneumonia [63]. Moreover, tigecycline prevented the lipopolysaccharide-induced release 

of pro-inflammatory and apoptotic mediators in neuronal cells [64], thereby exhibiting a so-called 

“neuroprotective effect”. In CDI cases, these anti-inflammatory effects may contribute additional 

therapeutic benefits to intestinal inflammation. 
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7. Tigecycline—Treatment of CDI 

Metronidazole and vancomycin are currently regarded as the primary therapy for CDI, although the 

choice of initial therapy depends on the severity of disease. Metronidazole is the agent of choice for most 

patients with mild to moderate CDI and can be administered via the oral or intravenous routes [65]. Oral 

vancomycin is recommended for patients with severe CDI [65]. The facilitation of fecal colonization by 

vancomycin-resistant enterococci is a potential drawback of oral vancomycin [66]. Nevertheless, 

recurrent CDI was noted with either metronidazole or vancomycin therapy and was more difficult to 

manage than the initial CDI episodes [59,60]. The newer antibiotic fidaxomicin showed promising 

therapeutic results, with clinical cure rates similar to those of vancomycin and lower recurrence  

rates [67]. Nevertheless, fidaxomicin is expensive and not available worldwide. 

Although tetracycline derivatives such as doxycycline or tigecycline are not the standard therapeutic 

choices for CDI, they may serve as alternatives or components of combination therapy for refractory 

CDI. Although tigecycline usage might be a risk factor for CDI, successful treatment of CDI using a 

tigecycline-containing combination regimen had been reported. The dosage of tigecycline commonly 

used was an intravenous loading dose of 100 mg, followed by 50 mg every 12 h. In 2009, Herpers and 

colleagues first described four cases of severe refractory CDI that were successfully treated by 

tigecycline monotherapy or combination therapy with oral vancomycin [68]. Then, Lu successfully 

treated another case of severe and refractory CDI with tigecycline and metronidazole for 14 days [69]. 

One patient with recurrent CDI that was refractory to vancomycin and metronidazole was effectively 

managed by the combination of intravenous tigecycline, oral rifaximin and oral vancomycin [70], while 

a second patient was managed by intravenous tigecycline and oral rifaximin [71]. Recently, seven cases 

of severe CDI reported by Nicholas et al. were treated with an antibiotic cocktail containing intravenous 

tigecycline and metronidazole in combination with oral vancomycin, which led to clinical cure in six 

(85.7%) cases. The sustained response at 28 days was 100% among five evaluable cases [72] (Table 2). 

Thus, these clinical experiences indicated that tigecycline could be a potential component of combination 

therapy for CDI, especially in severe or refractory cases. 
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Table 2. Clinical reports of the therapeutic efficacy of tigecycline for Clostridium difficile infection (CDI). 

Publication 

Year 
Case No. Severity of CDI 1 

Duration of Tigecycline, 

Therapy, Days 
Combination Antibiotics Outcomes 

Favor Tigecycline 

Therapy 
Reference 

2009 4 Severe 7–24 2 
Monotherapy or with oral 

vancomycin 
Clinical improvement Yes [59] 

2010 1 Severe 14 Oral metronidazole Clinical improvement Yes [60] 

2010 1 Severe 18 
Intravenous metronidazole 

and vancomycin enema 
Lack of clinical improvement No [71] 

2012 1 Severe/recurrent 10 Oral rifaximin Clinical improvement Yes [68] 

2012 1 Severe/recurrent 4 
Oral rifaximin and 

vancomycin 
Clinical improvement Yes [67] 

2014 43 Severe No data 
Intravenous metronidazole 

and oral vancomycin 

No extra-benefit in requiring 

colectomy, recurrence or 

mortality 

No [70] 

2014 7 Severe/complicated 3–21 
Intravenous metronidazole 

and oral vancomycin 

Clinical improvement in  

85.7% of 7 cases 
Yes [69] 

1 Defined as a white blood cell count >15,000/μL or a rise in serum creatinine to 150% of the premorbid level; severe complicated disease defined as the presence of  

C. difficile sepsis, ileus, or toxic megacolon; 2 One patient received tigecycline at a standard dosage for 24 days, followed by an additional two weeks of tigecycline treatment 

interspersed with one treatment-free week. 
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In contrast, conflicting clinical data had argued against the use of tigecycline-containing regimens for 

CDI. Ashley et al. compared 18 patients with severe CDI treated with tigecycline-containing regimens 

in which tigecycline was administered for at least 48 h, 17 patients administered oral vancomycin and 

intravenous metronidazole and one patient administered oral fidaxomicin compared with 26 patients 

receiving oral vancomycin and metronidazole therapy [73]. There were no differences in the need for 

colectomy, recurrence, or mortality between the two groups. Kopterides et al. reported a 70-year-old 

man with severe CDI that eventually succumbed to complications of his illness despite three-week 

tigecycline therapy in conjunction with vancomycin, metronidazole and intravenous immunoglobulin. 

Additionally, the specific challenges related to tigecycline therapy (i.e., the development of Proteus 

mirabilis bacteremia and colonization with tigecycline-resistant Acinetobacter baumannii) should not 

be ignored [74]. 

8. Conclusions 

In conclusion, prior exposure to doxycycline is less likely to induce CDI. The correlation between 

prior tigecycline therapy and subsequent CDI is controversial. Nevertheless, tigecycline has an 

inhibitory effect on toxin production, spore formation, and inflammation and may serve as a potential 

component of combination therapy for severe or refractory CDI. 
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