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Quantifying rat behavior through video surveillance is crucial for medicine, neuroscience,

and other fields. In this paper, we focus on the challenging problem of estimating

landmark points, such as the rat’s eyes and joints, only with image processing and

quantify the motion behavior of the rat. Firstly, we placed the rat on a special running

machine and used a high frame rate camera to capture its motion. Secondly, we designed

the cascade convolution network (CCN) and cascade hourglass network (CHN), which

are two structures to extract features of the images. Three coordinate calculation

methods—fully connected regression (FCR), heatmap maximum position (HMP), and

heatmap integral regression (HIR)—were used to locate the coordinates of the landmark

points. Thirdly, through a strict normalized evaluation criterion, we analyzed the accuracy

of the different structures and coordinate calculation methods for rat landmark point

estimation in various feature map sizes. The results demonstrated that the CCN structure

with the HIR method achieved the highest estimation accuracy of 75%, which is sufficient

to accurately track and quantify rat joint motion.

Keywords: markerless observation method, rat landmark points estimation, rat joint motion, behavior

quantification, cascade neural network

INTRODUCTION

Rats, which are genetically similar to humans with low feeding costs, have been widely used in
research of neuroscience, medicine, the social sciences, and other fields (Scaglione et al., 2014;
Chan et al., 2017; Zhang et al., 2017). Researchers often verify the reliability of drugs or treatments
by observing the behavior of rats. For example, studies have been carried out on the relationship
between limb movement and the brain in rats (Slutzky et al., 2011; Rigosa et al., 2015) as well as the
effects of electrical stimulation on neural regeneration by observing spinal cord-injured rats (Joo
et al., 2018). Determination of how to best observe and analyze rat behavior has long constituted
a major research focus. In the past few decades, the observation method of rats’ behavior has been
continually developed.

In initial studies, in order to confirm experimental results by observing the behavior of rats,
some researchers proposed the open field (Walsh and Cummins, 1976) and water maze (Morris,
1984) experiments. With advancements in image processing technology, many new methods for
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rat behavior observation were developed, such as
HomeCageScan, EthoVision, and MiceProfiler (De Chaumont
et al., 2012). However, these techniques are highly sensitive
to the features of color and texture and are limited by the
background environment, thus are not robust in long-term
observation tasks. With the deepening of research, investigations
of rat behavior observation have become more detailed, and
a higher level of robustness is required (Weissbrod et al.,
2013; Wenger et al., 2014; Nanjappa et al., 2015). Therefore,
invasive sensors or markers are used to acquire more robust
behavior observations for neuroscience or social science research
(Weissbrod et al., 2013; Wenger et al., 2014). These methods,
however, necessitate complex surgery or special markers to
achieve the desired results (Burgos-Artizzu et al., 2012; Ohayon
et al., 2013; Eftaxiopoulou et al., 2014; Maghsoudi et al., 2017).
In the past 2 years, the observation of rat behavior based on
deep neural networks has greatly improved the robustness of
the observation results without the need for invasive sensors or
markers (Mathis et al., 2018; Jin and Duan, 2019). Although these
rat behavior observation methods are all macroscopic, which
solves the problem of the rat’s location and the rat’s behavior at
a specific time point, they do not reveal how the rat is moving.
As a consequence, in this paper, we focus on rat landmark
estimation to quantify joint motion and conduct locomotor
kinematic analysis.

Locomotor kinematic analysis can quantitatively evaluate
the locomotor recovery of the rat, which offers major
potential applications for disease research, such as spinal cord
injury, Parkinson’s disease, traumatic brain injury, cognitive
impairment, and other movement disorders (Ilha et al., 2006;
Schang et al., 2011; Wenger et al., 2014). However, there are few
features of rat joint points, and traditional quantitative methods
of joint motion frequently need to be marked in advance. Taking
the Vicon system (Schlagenhauf et al., 2018) as an example,
experimental rats have to be transferred into a specialized
laboratory, and researchers must spend time adjusting numerous
parameters. Although the Vicon system is very reliable, it requires
complex construction and preprocessing. Fortunately, with the
development of deep learning in the field of computer vision,
researchers can now utilize deep neural networks to extract more
abundant features from images, which can be employed to detect
or estimate image contents including landmarks. Specifically, for
the task of human pose estimation, investigators have designed
various neural network structures to automatically extract deep
image features (Newell et al., 2016; Wei et al., 2016; Fang et al.,
2017; He et al., 2017), and many coordinate calculation methods
are utilized to locate human joints (Toshev and Szegedy, 2014;
Carreira et al., 2016; Chu et al., 2017; Nibali et al., 2018) in
the image. These solutions inspired us to study rat landmark
point estimation and quantify rat joint motion without using
any markers.

Our approach is based on the detection of the rat’s position
and follows the paradigm of human pose estimation. Specifically,
we designed a special running machine for the rat and used
a frame rate camera to capture its motion. For the estimation
process, we used our previous work on rat observation to detect
the rat’s position (Jin and Duan, 2019). Moreover, in order

to discern the landmark points including the eyes and joints,
we designed two different cascade neural networks with three
different coordinate calculation methods. Finally, under a strict
evaluation criterion, 75% estimation accuracy was achieved.
When the rat is moving on the special running machine,
our approach realized the trajectory, and quantification of rat
joint motion.

In summary, the main contributions of our work are 3-fold.

• We designed two neural network structures with three
coordinate calculation methods to estimate landmark points
and verify the effectiveness of these structures and methods.

• We only used image processing to estimate the landmark
points and realize quantification of rat joint motion. To the
best of the authors’ knowledge, this is the first study to
quantify themotion of rat joints without using invasive sensors
or markers.

• We proposed a normalized evaluation criterion to evaluate
different network structures and coordinate calculation
methods reasonably, which can provide a useful reference for
related research.

MATERIALS AND METHODS

Neural Network Structure
The landmark estimation of the rat is very similar to that of
humans, and thus we refer to two well-known network structures
in human pose estimation: convolutional pose machines (Wei
et al., 2016) and hourglass networks (Newell et al., 2016). But
we redesign the two network structures to explore the influence
of network structure on estimation. As shown in Figure 1, both
network structures possess the same basic feature extraction
network. For the basic feature extraction network, red green blue
(RGB) three-channel images are input and convoluted by two
consecutive convolution layers and then the size is reduced by
the following downsampling layer. At this time, the size of the
feature map is half of the input image, but the channel increases.
Subsequently, these two network structures with two consecutive
convolution layers and one downsampling layer are utilized to
reduce the feature map size and increase the channel. Therefore,
the feature map size is one-eighth of the input image size. At
the end of the basic feature extraction network, five continuous
convolution networks without changing the feature map size are
used to obtain the basic feature mapping.

After achieving the basic feature mapping, we design the
first cascade convolution network (CCN) structure for further
feature extraction and prediction. For the CCN structure, as
shown in Figure 1A, there are four convolution stages. The first
stage only receives the basic feature mapping and then uses the
deep convolution network consisting of nine convolution layers
to make the feature transformation and predict the first stage
outputs. In the subsequent three stages, we fuse the basic feature
mapping and the previous stage prediction outputs with the
concat function, and nine convolution layers are also used to
predict the current stage outputs. In this way, each prediction is
related to the previous prediction, which is proven to augment
prediction accuracy (Wei et al., 2016).
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FIGURE 1 | The neural network structures. (A) The cascade convolution network (CCN) structure and (B) the cascade hourglass network (CHN) structure. (A,B) Both

have the same basic feature extraction network including 11 convolution and three downsampling layers to get the basic feature mapping. In (A), there are four stages

of the cascade convolution network, the basic feature mapping concatenates with the previous stage prediction by the feature fusion layer, and the prediction outputs

of each stage are obtained through multiple convolution layers. In (B), there is a two-stage cascade hourglass structure, and each hourglass network has the

processes of downsampling, upsampling, and residual structure of convolution. Each stage has its own prediction outputs.

At the same time, we design the second cascade hourglass
network (CHN) structure by drawing on the hourglass network
(Newell et al., 2016). For our CHN structure, as shown in
Figure 1B, there are two hourglass stages, of which only has two
times downsampling to reduce the featuremap size and two times
upsampling to recover the size. Downsampling is achieved by
maximum pooling layer, while upsampling is achieved by the
nearest neighbor method. In order to avoid excessive feature
loss during sampling, the residual structures are used for feature
connections. Similar to the CCN structure, in the CHN structure,
the first stage only receives the basic feature mapping, but the
second stage fuses the first stage outputs and basic feature
mapping to obtain the final prediction.

Coordinate Calculation Methods
In order to improve the accuracy of landmark estimation, we
designed three completely different landmark point coordinate
calculation methods. These calculations methods can be used
to estimate the coordinates of landmark points at each stage
prediction and train neural network with the corresponding
loss function.

Firstly, the same as in certain human posture estimation
tasks (Toshev and Szegedy, 2014; Carreira et al., 2016), the
coordinates of landmark points can be directly regressed by the
fully connected network, termed the fully connected regression
(FCR) method in this paper. We reshape each prediction output
used for estimating the landmark to reduce the dimension. Then,
we use a fully connected layer to estimate the two-dimensional
coordinates of the rat’s landmark points directly. Regarding the
loss calculation function, we use the smooth L1 loss (Girshick,
2015), as shown in Formula (1), to calculate the error between the
label landmark point and the estimated landmark point. When
the estimation landmark is close to the label, L2 loss has a larger
gradient and converges more rapidly.When the distance between
the estimated landmark and the label is large, L1 loss can prevent
the gradient explosion and reduce the impact of outliers.

smoothL1(x) =

{

0.5x2

|x| − 0.5
if |x| < 1
|x| ≥ 1

(1)

In Formula (1), x is the L1 loss between the label point and the
estimated point.

Secondly, the estimation of landmark points can be regarded
as a probability problem (Burgos-Artizzu et al., 2012; Ohayon
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et al., 2013; Chu et al., 2016; Yang et al., 2016). We can determine
the label coordinates of the landmark points in the label.
Here, we assume that the abscissa and ordinate of a point are
independent of each other, and then we utilize an approximate
two-dimensional Gaussian function, as shown in Formula (2),
to produce a Gaussian probability heatmap for each landmark
point. Correspondingly, for each landmark point estimation, we
also estimate a probabilistic heatmap. When we estimate the
coordinates of landmarks, we can use bicubic interpolation to
restore the estimated heatmap to the size of the input image
and select the positions of the maximum probability value as
the coordinates of the landmark point, shown in Figure 2A. We
term this the heatmap maximum position (HMP) method. As
for the loss function, the operation to obtain the positions of
the maximum probability value is also named argmax, which is
non-differentiable. As a consequence, we use the mean square
error (MSE) to calculate the difference between the label heatmap
and the estimated heatmap instead of the error between the label
point and the estimated point.

f (x, y)Gaussian = Ae
−( (x−xc)

2

2σx
+

(y−yc)
2

2σy
)

(2)

In Formula (2), A is the amplitude that is fixed to 1, σx and
σy are variances that we set to 3, and xc, and yc are the central
coordinates of the label landmark point.

Thirdly, the FCR method ignores the spatial information of
the estimated points, while the HMP method obtains coordinate
positions indirectly with quantitative errors. Therefore, we
consider integral regression to calculate the coordinates of points
from the heatmap (Nibali et al., 2018; Sun et al., 2018), called the
heatmap integral regression (HIR) method. For one-dimensional
data, the integral regression method uses SoftMax function to
calculate the probability of each value and multiply it by the
location coordinates of the value, as shown in Formula (3), which
is termed the soft-argmax process. For each landmark point, we
can estimate one heatmap, then we calculate the probability by
SoftMax for each value in the heatmap and then sum by row
and column. Subsequently, we multiply the sum result of each
row and column by the location of the corresponding row and
column and then accumulate the results of all rows and columns,
respectively, to obtain the abscissa and ordinate of the estimated
point. Finally, if the size of the heatmap is different from that of
the input image, the coordinates need to be normalized to the
input image. The whole process of the HIR method is shown
in Figure 2B. Therefore, for each heatmap, we can estimate the
two-dimensional coordinates of the landmark point by the HIR
method, which can be proven as differentiable. We can use
smooth L1 loss to calculate the error between the label landmark
point and the estimated landmark point again as follows:

σ (z) =

m
∑

i=1

ezi

m
∑

j=1
ezj

i (3)

In Formula (3), σ (z) is the result of integral regression, z is the
value of the one-dimensional data, m is the length of the data,
and i and j are the locations of the value.

Experimental Environment
Since there is no publicly available dataset for rat landmark
estimation, we collect the data ourselves. We build the rat motion
observation device comprising a small running machine and
a camera, as shown in Figure 3. The small running machine
(length × width, 500mm × 200mm) is placed on the table. A
12V DC torque motor is used to drive the running machine
track. In order to carry out the experiment and prevent the rat
from running out of the range of the running machine, a 200-
mm-high plastic plate is added around the running machine. At
the same time, in order to prevent rats from turning and other
behaviors that would influence the observations, a plastic plate
is used in the middle of the track to separate the runway in a
manner that is suitable for one-way movement of the rat. Since
the motion of the rat’s claws is very fast, it is very difficult to
capture with an ordinary camera because of certain issues such as
blur or smear. Therefore, we use the professional high frame rate
camera Grasshopper3 and set the acquisition rate to 100 frames
per second with a 1,056× 720 resolution.

Data Acquisition and Label
We selected a 3-week-old Rattus norvegicus to perform the
landmark estimation experiment. The rat was placed on the
running machine’s runway and could only perform a one-
way exercise. When the running machine is turned on, a high
frame rate camera is used to capture the movement of the
rat from the side. We then selected and eliminated the images
of the rat’s abnormal movement frame by frame and finally
obtained a dataset of 1,613 normal movement images on the
running machine.

After we obtained the dataset, it needed to be labeled
according to the estimated landmark points. We selected nine
landmark points for labeling and estimation. As shown in
Figure 4, the landmark points include the nose tip, eye, ear, front
claw wrist, front claw tip, back claw ankle, back claw palm, back
claw tip, and tail. It is worth noting that we intended to label
more landmark points, such as the knee and hip joints, but these
landmark points are obscured by the rat’s fur, and thus it is
challenging to assign accurate labels to these. Three researchers
participated in the labeling work, with each researcher randomly
selecting images for labeling. Finally, a dataset of 1,613 images
was obtained. In the process of neural network training, we
randomly selected 80% of the dataset as the training set and 20%
as the testing set, and each training result was averaged after
multiple training.

Model Training
As shown in Figure 4, in order to estimate the landmark points, it
is necessary to train the robustness of the neural network model
for feature extraction and prediction and then use an appropriate
coordinate calculation method to calculate the coordinates of the
landmark points in the image. Our methods are implemented
by using PyTorch (Paszke et al., 2019) and ran on an Intel Core
i5-6500 at 3.2 GHz desktop with a GeForce 980Ti GPU. All of
the datasets used are manually labeled by ourselves. In addition,
certain training techniques are utilized to improve the robustness
of the network model.
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FIGURE 2 | The heatmap maximum position (HMP) (A) method and heatmap integral regression (HIR) method introduction. We obtain the prediction heatmap from

the prediction outputs of the neural networks at each stage. For the HMP method (A), we use bicubic interpolation to restore the input image size, for example from 3

× 3 to 6 × 6, and we take the position of the maximum value as the coordinates of the estimated landmark point. For the HIR method (B), we perform the SoftMax

operation on the heatmap and sum the rows and columns, respectively. Then, we integrate the sum results and index value multiplication. Finally, the coordinates of

the estimated landmark point are adjusted by normalization.

FIGURE 3 | The rat motion observation device. The rat is placed on the special running machine for exercise and the high frame rat camera captures the motion from

the side.

Firstly, in the task of human pose estimation, the resolution of
the input image is always resized into a square, e.g., 416 × 416.
However, for the rat landmark point estimation task, the height
and width of the rat are always unequal in the images, so we use

images with unequal width and height as the input of the neural
network, e.g., 512× 256.

Secondly, the training data that we obtained by acquisition
and labeling in the laboratory are limited. In order to improve

Frontiers in Neurorobotics | www.frontiersin.org 5 October 2020 | Volume 14 | Article 570313

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Jin et al. Markerless Behavior Quantification

FIGURE 4 | The experiment process of rat landmark point estimation. In the prediction process, the rat’s image is input into the neural network for feature extraction,

and the feature map obtained is used to predict the heatmap (taking the HMP method as an example). The coordinates of the rat landmark points are calculated from

the heatmap. In the training process, the error between the label and the prediction coordinates is calculated by the loss function, and then gradient descent is used

to reduce the training weight of the neural network.

the generalization ability of the model, we consider the random
transformation of input data in the hue, saturation, value (HSV)
space to increase the robustness of color and light transformation.

Thirdly, the two neural network structures that we designed
possess many layers, which may cause the problem of gradient
disappearance in the process of training, and this is difficult to
converge. Therefore, we also use intermediate supervision to help
deep network training and improve the estimation quality. As
shown in Figure 1, each neural network structure has more than
one estimation outputs. In the training process, we calculate the
loss function of each estimated output for supervision learning.
In the inference process, we only use the last output as the
estimation of the landmark.

Normalized Evaluation Criterion
During the experiment, we use CCN and CHN, two different
neural network structures, to extract features and predict outputs.
Moreover, we also use FCR, HMP, and HIR, three coordinate
calculation methods, to obtain the coordinates of each landmark
point. Therefore, an objective evaluation method is required for
reasonable evaluation. It is subjective to directly calculate the
pixel distance between the estimated coordinates and the label
coordinates as the error for evaluation. Due to the different
body shape or the different camera capture distance, the size
of the rat displayed in the image also varied, and evaluation
of the same pixel error for these different sized rats in the
images should be different. For this reason, we refer to the
evaluation criteria in the human pose estimation dataset MPII,
named percentage of correct keypoints by a fraction of the head
size (PCKh) (Andriluka et al., 2014). We then use the distance
between the rat’s nose and eye as the normalized denominator.

Our normalized evaluation criteria are shown in Formula (4).

error(x
pred
i , y

pred
i ) = |

dis((x
pred
i , y

pred
i ), (xlabeli , ylabeli ))

dis((xlabelnose , y
label
nose ), (x

label
eye , ylabeleye ))

| − p (4)

In Formula (4), i is the ith estimated point and (x
pred
i , y

pred
i )

are the predicted coordinates of the ith landmark point and are
the labels. p is the Euclidean distance between two coordinates
and p is the evaluation parameter that we set to 0.1. Therefore,
the meaning of this formula is that, for the ith estimated point

error, error(x
pred
i , y

pred
i ), the Euclidean distance between the

predicted coordinates and their corresponding label coordinates
is divided by the Euclidean distance between the label coordinates
of the nose and eye points and then subtracting an evaluation
parameter, p.

When calculating the accuracy of the estimated points, the
method in Formula (5) is used for statistics. If the error of
the point is < 0, the estimation is considered to be accurate;
otherwise, the estimation is considered to be incorrect. Finally,
the accuracy of each landmark point in each method can be
calculated as follows:

f (i) =

{

1
0

error(x
pred
i , y

pred
i ) ≤ 0, correct

error(x
pred
i , y

pred
i ) > 0, wrong

(5)

RESULTS AND DISCUSSION

Neural Network Structure Effect
From Table 1, we can analyze the effect of the network structure.
In any coordinate calculation method, the accuracy of the CCN
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structure is greater than that of the CHN structure in terms of
the overall average accuracy. CHN possesses certain advantages,
such as the accuracy of certain landmark points, e.g., the tail,
being better, although it has more network parameters, and the
network floating-point operations (GFLOPs) are less due to using
the hourglass network. In fact, although the hourglass network
is commonly utilized in the field of human pose estimation, in
our experiment, our CHN structure with the hourglass network
is not superior to our CCN structure. The reason for this may
be that the hourglass network loses too much information in
the process of maximum pooling downsampling and nearest
neighbor upsampling; more information may be retained if the
network channel is added in the hourglass structure.

In addition, because each stage of the cascade network
designed in this paper can estimate the landmark points
independently and in order to further verify the role of the
cascade structure, we calculate the accuracy on the test set
every two epochs of training and record the accuracy of each
stage during training. The estimation accuracy results of the
CCN and CHN network structures using the HIR method are
shown in Figure 5. For CCN, in the early epochs of training, the
accuracy of the second-stage estimation is significantly improved
compared with the first-stage estimation, but the accuracy of the
second-stage estimation to the fourth-stage estimation does not
change. Moreover, as the number of training epochs increases,
the accuracy difference between the first-stage and the second-
stage estimation gradually decreases and that from the second-
stage estimation to the fourth-stage estimation begins to appear.
For CHN, although it is only designed as a two-stage cascade
structure, from the whole training process, the accuracy of the
second-stage estimation is indeed higher than that of the first-
stage estimation. Therefore, it can be found that, irrespective
of whether it is the CCN or CHN, the multistage cascade
structure can substantially improve the accuracy of the estimated
points. Although only the results using the HIR method are
given here, these are consistent for the other two coordinate
calculation methods.

Coordinate Calculation Method Effect
From Table 1, regardless of whether it is the CCN or the CHN,
the overall accuracy of the FCR method in calculating the
coordinates of the landmark points is the worst, and the fully
connected layer is added to increase the network parameters.
Specifically, however, the FCR method has a higher accuracy for
some landmark points with little change, such as the nose, eyes,
and ears points, while for some frequently changed points such as
the claw wrist or tip has lower accuracy. From the results of the
image landmark point estimation, shown in Figure 6, the FCR
method is good in the estimation of landmark points in the back
claw, while the estimation error of the other landmark points is
large. Based on the analysis of Table 1 and Figure 6, we conclude
that there is serious overfitting in the points with little changes,
such as the eyes, nose, and ears, while there is underfitting in the
front claw landmark points.

Table 1 also shows that the HMPmethod is only slightly better
than the FCRmethod overall. However, for each of the two neural
network structures, the estimation accuracy of each landmark
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FIGURE 5 | Estimation accuracy of each stage in the CCN+HIR (A) and CHN+HIR (B) approaches. During the training, we record the test results of each stage to

verify the effectiveness of the cascade structure.

FIGURE 6 | The results of the landmark point estimation with three coordinate calculation methods (cascade convolution network, CCN). The blue bounding box is

the detection result by rat behavior observation [11], the green point is the label of the landmarks, and the red point is the estimation result of the landmarks. In the

fully connected regression (FCR) method, only a part of the estimation points can be close to the label, and the estimation error of the landmark points is large. In the

heatmap maximum position (HMP) method, each estimation point is close to the label coordinates, but with some estimation errors. In the heatmap integral regression

(HIR) method, each estimation point, and label coordinate are closely similar or even overlapped; the landmark point estimation results are accurate.

point by the HMP method is relatively average, which may offer
certain spatial generalization ability. In addition, according to
the results of the image landmark point estimation shown in
Figure 6, the HMP method is much better than the FCR, and
every landmark point can be estimated to the corresponding
position and move with the rat’s motion. Careful observation,
however, shows that there is a small distance deviation between
the estimated point coordinates and the real coordinates in
some estimation points; using our strict normalization evaluation
criterion, these points with deviations cannot be considered
as correct. We conclude that this mainly comes from the
quantization error resultant from the unequal size of the heatmap
and the input image because of the downsampling in the basic
feature extraction network.

Regarding the HIR method, from Table 1, irrespective of
whether it is the CCN or the CHN, it achieves higher accuracy
than the other two methods without increases in any network
parameters or GFLOPs. On each item, the HIR method not only

has a far higher than average accuracy for the little-changing
landmark points, such as the nose and the eyes, but also achieves
accurate estimation for the frequently changing points, such as
moving claws. Similarly, from the results in Figure 6, the HIR
method eliminates some quantization errors through regression,
and the estimation results are excellent. Indeed, each landmark
point can accurately follow the rat’s movement.

Finally, combining the neural network structures and
coordinate calculation methods, it is demonstrated that using
the CCN structure and the HIR method constitutes the optimal
approach for the task of rat landmark point estimation and
achieves 75% accuracy in the test set.

Feature Map Size Effect
In the part of the neural network structure, we introduce the basic
feature extraction network. The feature map size is one-eighth
of the input image size, which leads to the quantization error in
the HMP method. In order to elucidate the effect of quantization
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error, we modify the basic feature extraction network to make the
size of the feature map larger. Specifically, based on the original
basic feature extraction network, we delete two consecutive
convolution layers and one downsampling layer so that the size of
the feature map is one-fourth of the input image. In this case, we
still use CCN and CHN, two network structures, as well as FCR,
HMP, and HIR, three coordinate calculation methods, to retrain
the network model. The results on the test set are presented
in Table 2.

By comparing Table 1 with Table 2, concerning the neural
network structure, the estimation accuracy of the CCN is still
better than that of the CHN when the size of the feature map is
larger. However, the larger feature map results in more floating-
point calculations, especially in the case of the CCN structure
which uses a large number of convolution layers, while the
CHN structure increases slightly due to further sampling in the
hourglass network.

Regarding the coordinate calculationmethod in both the CCN
and CHN structures, there are many different results. Firstly, in
the FCR method, with the increase of the feature map size, the
estimation accuracy has been greatly decreased. The reason for
this is that the increased size of the feature map leads to the
increase of neurons in the fully connected layer, which makes
the regression calculation task more complex and more prone
to overfitting, finally making estimation of the landmark points
unstable. Secondly, in the HMP method, the accuracy of its
estimation has increased significantly. The reason for this is that,
in the original size of the feature map, the error mainly derives
from the quantization error, which cannot be recognized by the
strict normalization evaluation criterion. With the increased size
of the feature map, however, part of the quantization error is
eliminated and more estimated landmark points are recognized.
Thirdly, in the HIR method, the overall accuracy is only slightly
improved compared to that shown in Table 1. Moreover, when
using the CCN structure, accuracy has been surpassed by the
HMP method, and it can be found that the main problem is that
the accuracy of the tail landmark point is markedly lower than
the average. When using the CHN structure, the HIR method is
still better than the HMP. From these results, it is shown that
the HMP method possesses strong spatial generalization ability
and the estimation accuracy for each point is relatively average,
whereas the HIRmethod will sacrifice part of the spatial ability in
the regression process, resulting in the reduction of accuracy at
certain points. Furthermore, since the CHN has more sampling
processes and loses some spatial characteristics of the landmark
points, its accuracy is lower than that of the CCN.

Finally, although the accuracy of the rat landmark point
estimation will increase with the increase of the scale of the
feature map, additional computation will be introduced. Based
on the comprehensive analysis, it is demonstrated that the
CCN+HIR approach is the best for small feature maps and
that the CHN+HIR approach can be considered for large
feature maps.

Quantification of Rat Joint Motion
The purpose of our rat landmark point estimation was to track
and quantify rat joint motion in order to assist research in T
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FIGURE 7 | Dynamic motion of certain joints in the rat. We divide the rat gait motion periodically into two processes to show the result, which are the falling hind limb

process and the lifting hind limb process. Each color corresponds to one joint: yellow, green, blue, and red correspond to the fore claw wrist, hind claw ankle, hind

claw palm, and hind claw tip, respectively. In the two processes, the joint coordinates of each frame are recorded and displayed in the images. From left to right, these

images show the joint motion so as to quantify the clear joint motion track.

FIGURE 8 | Quantitative results of certain joint movements. We recorded the movement of the rat in our running machine experiment for a period of time and

estimated the coordinates of the landmark joint points at each frame. We drew the height of the rat joint points in each frame as the quantitative results to analyze the

rat’s behavior. In the change of joint point height (A), yellow and red correspond to the height of the fore claw wrist joint point and the hind claw ankle joint point,

respectively. In the change of joint point height (B), green, blue, and red correspond to the height of the hind paw tip, hind paw palm, and hind paw ankle, respectively.

medicine, neuroscience, and other fields. Here, we track and
quantify some of the rat joints using the video and analyze the
rat gait movement as an example. Because many joints of the
rat are obscured by the fur, here, we only select fore claw wrist,
hind claw ankle, hind claw palm, and hind claw tip, four joint
points, and use our rat landmark point estimation CCN+HIR
approach to track and quantify them. The dynamic tracking
results are presented in Figure 7. The quantitative results of each
joint motion in a period of time are shown in Figure 8.

Figure 7 includes several images of the rat in the process of
crawling, and the positions of the joint are estimated. From left
to right, each joint position of the rat in the past few frames were

recorded through different color points. It can be seen that, in
the falling hind limb process, the movement distance of the hind
limb is significantly longer than that of the forelimb, whereas
in the lifting hind limb process, the movement distance of the
forelimb is longer. At the same time, according to the points of
different colors in Figure 7, it is possible to draw the motion
trajectory of each joint. For the trajectory of three joints in the
hind limb of the rat, there are different degrees of intersection
in the longitudinal and transverse positions in the process
of movement.

From Figure 8, certain quantitative information can be
discerned that cannot be obtained only by the naked eyes. For
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example, Figure 8A quantifies the height of the front claw wrist
and the hind claw ankle, and it can be seen that the lifting
speed of the hind claw is slower than the falling speed, while
the front claw has no obvious difference. Moreover, each time
that the front claw is lifted, two obvious peaks exist in the
process of the fore clawwrist forward protrusion and themoment
when the hind claw ankle point moves to the lowest position
corresponding to the first peak of the front claw wrist point
movement. Figure 8B quantifies the height of the hind claw
ankle, hind claw palm, and hind claw tip. It can be seen that the
movement of the hind claw is similar, but the timing of lifting
is slightly different. Specifically, the hind claw ankle joint is first
lifted, followed by the palm joint and the tip joint, and when
the ankle joint lands, the palm joint and the tip have not yet
landed, so we can find that, in some frames, the height of the
ankle joint will be lower than those of the other two joints. On
this basis, we can utilize the pre-trained model to analyze the
gait movement of the spinal cord injury (SCI) rat with electrical
epidural stimulation (EES) surgery (Moraud et al., 2016), which
provides a markerless and low-cost observation method for
further research.

CONCLUSION

In this paper, we focus on the estimation of rat landmark points
and the quantification of joint motion without invasive sensors
or markers. The four-stage convolution cascade network (CCN)
and the two-stage cascade hourglass network (CHN) are designed
to extract features. Three coordinate calculation methods—the
FCR method, HMP method, and the HIR method—are used
to calculate the coordinates of the landmark points. We also
propose a normalized evaluation criterion to evaluate these
different network structures and coordinate calculation methods.
It is demonstrated that the CCN structure achieves higher
accuracy, but the CHN structure requires less computation. After
comparing these network structures and coordinate calculation
methods in detail, the CCN+HIR approach is shown to be the
best for the small-sized featuremap and the CHN+HIR approach
can be considered when the feature map size is increased. Finally,
we use our landmark point estimation approach to quantify joint
motion in the process of rat movement. In the future, we will
investigate whether our rat landmark estimation approach can
calculate the angular velocity and angular acceleration of the

joints of SCI rats to evaluate the rehabilitation effect, which could
constitute a useful protocol for clinical applications in humans.
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