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Abstract
Stiffness and shear moduli of human trabecular bone may be analyzed in vivo by finite ele-

ment (FE) analysis from image data obtained by clinical imaging equipment such as high

resolution peripheral quantitative computed tomography (HR-pQCT). In clinical practice

today, this is done in the peripheral skeleton like the wrist and heel. In this cadaveric bone

study, fourteen bone specimens from the wrist were imaged by two dental cone beam com-

puted tomography (CBCT) devices and one HR-pQCT device as well as by dual energy

X-ray absorptiometry (DXA). Histomorphometric measurements from micro-CT data were

used as gold standard. The image processing was done with an in-house developed code

based on the automated region growing (ARG) algorithm. Evaluation of how well stiffness

(Young’s modulus E3) and minimum shear modulus from the 12, 13, or 23 could be pre-

dicted from the CBCT and HR-pQCT imaging data was studied and compared to FE analy-

sis from the micro-CT imaging data. Strong correlations were found between the clinical

machines and micro-CT regarding trabecular bone structure parameters, such as bone vol-

ume over total volume, trabecular thickness, trabecular number and trabecular nodes (vary-

ing from 0.79 to 0.96). The two CBCT devices as well as the HR-pQCT showed the ability to

predict stiffness and shear, with adjusted R2-values between 0.78 and 0.92, based on data

derived through our in-house developed code based on the ARG algorithm. These findings

indicate that clinically used CBCT may be a feasible method for clinical studies of bone

structure and mechanical properties in future osteoporosis research.
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Introduction
Osteoporosis is a major health problem that concerns almost all developed countries and there
are big differences in the incidence of hip fractures. Countries like Denmark, Sweden, Norway
and Austria have the highest annual hip fracture incidence in women in the world (>500/
100,000) [1]. With the increasing longevity of the modern population, there is an increased risk
of falls due to impaired balance [2]. The combination of falls and decreased mechanical compe-
tence of bone leads to an increase in bone fractures. Bone fractures in elderly, including hip
fractures, result in major social and health costs and cause great suffering for the affected
individuals.

Changes in the structural and mechanical properties of human bone are correlated with
osteoporosis-related fractures, as both the mineral content and the internal trabecular micro-
structure contribute to bone strength [3–5]. The trabecular structure of bone can, in vitro, be
evaluated by histomorphometry of bone biopsies or non-invasively by micro-computed
tomography (micro-CT). There is good agreement in the literature between these two methods
[6]. In patients, the bone mineral density can be assessed and measured by dual energy X-ray
absorptiometry (DXA) [7]. The DXA method measures the bone mineral density (BMD) in a
specific bone area (g/cm²) and the bone mineral content (BMC) in gram (g). The BMD is a
major determinant of bone strength, but many individuals with low impact fractures display
BMD values in the osteopenic or normal range [8]. In studies from the 1990’s an alternative
device, peripheral Quantitative computed tomography (pQCT), was demonstrated to deliver
precise in vivo evaluations of trabecular and cortical density as well as the bone mineral content
(BMC) of selected skeletal sites [9]. pQCT was also found to give strong correlations with
micro-CT regarding trabecular bone parameters like trabecular number and mean trabecular
separation [10]. Another well-described method for visualizing the trabecular bone structure in
patients is high-resolution peripheral quantitative computed tomography (HR-pQCT). The
HR-pQCT method can be used to evaluate the peripheral skeleton, for example, the heel and
the wrist [11–14]. Magnetic resonance imaging (MRI) is also of value for imaging of the trabec-
ular bone structure in patients and is particularly useful as it does not involve radiation to the
patient [15, 16]. However, scanning time for MRI is longer, resulting in a greater risk of
motion-related imaging artefacts. There is also a risk that magnetic-field dependent susceptibil-
ity artefacts may cause overestimation of bone trabeculae [16].

In clinical practice, it would be an advantage to use other clinically available scanners for
osteoporotic research of various parts of the human body. Previous in vitro studies describe
strong correlations between micro-CT and multi-slice CT (MSCT) for bone parameters like
bone volume over total volume (BV/TV) [17, 18].

A clinically available modality that may be appropriate for this purpose is dental cone beam
computed tomography (CBCT), as the high resolution and the isotropic voxel size (75–
400 μm) make the device suitable for imaging small skeletal structures such as the mandible,
maxillofacial and temporal bones [19–22]. The dental CBCT technique was first described in
1999 [19] and the use of the technique is rapidly growing. In 2013 there were about 20 manu-
facturers offering 47 different CBCT devices [23]. There is equipment available for scanning
individuals in the standing, sitting and supine positions (http://www.sedentexct.eu/content/
comparison-cbct-machines) [23]. The CBCT machines developed to image patients in a supine
position can also be used for scanning the peripheral skeleton [24]. CBCT scanners designed
for scanning the peripheral skeleton are now available on the market and could potentially be
useful for trabecular bone structure analysis and osteoporosis research [25]. Several studies
indicate that the bone structure of the mandible can be used for diagnosing osteoporosis and
predicting osteoporotic bone fractures [26–29]. We among others have shown that trabecular
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bone structure parameters obtained by CBCT are strongly correlated to those obtained by
micro-CT [17, 30–32]. Imaging of the mandible by CBCT may in the future also be useful for
the diagnosis of osteoporosis. It is therefore of interest making a comparison between the clini-
cally already available device, HR-pQCT, and the potentially useful device CBCT using the
same segmentation software.

The segmentation process aiming at separating bone from other tissues is a critical step in
the analysis [33]. Segmentation can be performed using automated as well as manually applied
density thresholds. Unlike MSCT and HR-pQCT, current dental CBCT devices do not provide
standardized intensity values (CT-values). CT-values are provided by some scanner manufac-
turers, but may not be reliable due to influence from factors such as imaging parameters, posi-
tioning and the device itself [34, 35]. One way to overcome this is using segmentation methods
based on homogeneity thresholding, such as the automated region growing algorithm based on
an assessment function (ARG) [36, 37]. This method has in our earlier studies been shown to
be appropriate for CBCT data [17, 30]. The ARG algorithm may also be feasible for HR-pQCT
data although that equipment does provide standardized CT-values.

Bone biomechanical properties, such as stiffness, shear and strength, can be computed
through finite element (FE) analysis based on imaging data [3, 14, 33, 38–43]. Studies have
shown strong correlation between bone stiffness and mechanically tested bone strength when
computed by FE analysis [44]. The calculated bone biomechanical properties depend on the
bone volume fraction and are therefore strongly dependent on the segmentation algorithm
[33]. Previous studies have shown that clinical CT machines tend to overestimate the bone vol-
ume fraction and the trabecular thickness compared with micro-CT [17, 30, 45]. However, a
more relevant question that remains to be answered is whether the morphological measure-
ments computed from images acquired through clinically used CT machines can predict longi-
tudinal stiffness and shear based on micro-CT data.

In view of the incomplete knowledge of the validity of structured parameters from CBCT
and of the relationship between such measurements and biomechanical parameters, we have
performed a quantitative comparative study of trabecular bone changes associated with osteo-
porosis using cadaveric radius bone samples. The first aim of this study was to evaluate how
closely trabecular bone structure parameters computed on data from different clinical
machines correlated with the reference method of micro-CT. The second aim was to evaluate
how well stiffness and shear moduli calculated by finite element analysis from micro-CT data
could be predicted from the same data.

Materials and Methods

Material
Fourteen radius specimens (human wrists) from cadavers were used for the analysis. The speci-
mens were donated for medical research in accordance with the ethical guidelines regulating
such donations at University of California, San Francisco. The studied specimens have been
used in previous studies [17, 30, 37, 46–48]. The specimens are almost cubic with a side of 12–
15 mm and all include slabs of cortical bone.

Imaging methods and imaging machines
Four imaging techniques were used with five different imaging machines:

• CBCT using the 3D Accuitomo 80 (J. Morita MFg., Kyoto, Japan) in the text referred to as
CBCT(A) and the NewTom 5G (QR Verona, Verona, Italy) in the text referred to as CBCT
(N)
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• HR-pQCT CT using the XtremeCT, (Scanco Medical AG, Brüttisellen, Switzerland)

• DXA data was acquired using the Discovery A S/N 82934, (Hologic Inc, Bedford, MA) with a
switched pulse dual-energy at 100 kVp and 140 kVp

• Micro-CT data was acquired with a small desktop CT scanner, the μCT 40 (Scanco Medical
AG, Bassersdorf, Switzerland) with isotropic voxel sizes of 20 μm, tube voltage at 70 kVp and
tube current of 114 μA

The micro-CT data were used as the gold standard for data comparison. The radiation dose,
from the three clinical CT-machines, was given as the computed tomography dose index
(CTDI) measured in mGy, reported by the CT manufacturers for each examination. The imag-
ing data parameters for three clinical CT-machines are presented in Table 1.

Specimen preparation
The presence of cortical bone facilitated the orientation for the different analyses. Before imag-
ing the bone samples, fat was removed from the bone samples that were then placed in test
tubes filled with water. During imaging in the clinical CT machines, the test tubes were placed
in the center of a paraffin cylinder with a diameter of 100 mm. This was to mimic soft tissue
and to simulate measurements in vivo. To minimize the risk of influence of the large cone-
beam angle in the CBCT data, the specimens were carefully centered in the middle of the
scanned volumes. Following imaging, bone cubes consisting only of trabecular bone, with a
side of approximately 8 mm, were digitally extracted from each data set and used for the analy-
sis. During imaging by using DXA, at protocol subregion Hi-Resolution, the bone cubes were
placed in a glass bowl filled with water, with a 2 cm paraffin layer under the specimens, which
simulated soft tissue. The BMDmeasurements were made by choosing rectangular regions of
interest (ROI) consisting of only trabecular bone, with sides of approximately 8 mm.

Image processing
In this study, as in our previous studies [17, 30], we used the ARG algorithm [36] to segment
bone from other tissues, or as in the case of this study, from water. To obtain a binary image,
the voxels that were identified as bone were assigned the value ʻoneʼ, and all the other voxels
became ʻ and. With the ARG method, the separation of tissue structures starts with a very strict
homogeneity threshold to define bone, which results in an under-segmented area. The process
then repeats with more permissive thresholds until a clear over-segmented region is obtained.
The strictest homogeneity threshold is defined as the homogeneity of the original seeds. Those
seeds are selected based on the attenuation-value distribution of the entire volume. The most
permissive threshold is set as 1.6 times the strictest threshold, which has been found to results
in a clearly over-segmented image. Between those thresholds 50 iterations are performed and
the iteration where the assessment function reached its minimum was used for the calculations
of the following seven bone structure parameters [49].

Table 1. Imaging parameters.

Machine Tube Current Tube Voltage Voxel size FOV Imaging time Exposure time CTDI

[mA] [kV] [μm] [mm] [s] [s] [mGy]

CBCT(A) 5 85 80 40 17 17 4.9

HR-pQCT 0.9 60 (peak) 82 126 336 - 5.5

CBCT(N) 4.2–4.6 110 75 60 36 7.3 4.1–4.2

CBCT(A)– 3D Accuitomo 80; HR-pQCT–Scanco XtremeCT; CBCT(N)–NewTom 5G

doi:10.1371/journal.pone.0161101.t001
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1. Trabecular nodes (Tb.Nd); measured the number of trabecular intersections per mm3

2. Trabecular termini (Tb.Tm); measured the number of free ends of trabeculae per mm3

3. Trabecular separation (Tb.Sp); measured the thickness of the spaces between the trabeculae
in mm

4. Trabecular spacing (Tb.Sc); measured the distance between the midlines of the trabeculae in
mm

5. Trabecular number (Tb.N); measures the number of trabeculae in 1/mm

6. Trabecular thickness (Tb.Th); measures the thickness of the trabecular structures in mm

7. Bone volume over total volume (BV/TV); is measured by dividing the number of voxels
classified as bone trabecula by the total number of voxels in the sample.

All parameters were calculated in 3D and in order to remove biases, the same segmentation
algorithm was used for all clinical modalities. The four parameters nodes, termini, spacing and
number were obtained after skeletonizing the binary image volumes to voxel-wide lines using
the method in [50]. 3D renderings of a whole bone sample, 3D renderings of the analyzed tra-
becular bone volumes as well as raw and segmented images slice from the four analyzed CT-
machines can be seen in Fig 1. An image of the same bone cube from the DXA-measurements
can be seen in Fig 2.

The parameters were measured and calculated using MATLAB (MathWorks, Natick, MA).
The code was developed in-house and calculated on a personal computer (PC) with Intel Core

Fig 1. Images of one bone specimen imaged by the different scanners. (A) The same wrist cube imaged by the four different CT machines. Volume
renderings of the 3D bone cube are shown in the upper row. Volume renderings of the excised 3D trabecular bone cubes are shown in the second row.
Raw images slices are shown in the third row. Segmented images slices are shown in the lower row, where the HR-pQCT data from Xtreme CT is
segmented using both an implementation of ARG (automated 3D region algorithm) and an implementation of SCANCOMedical.

doi:10.1371/journal.pone.0161101.g001
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i5 (Intel Santa Clara, CA) at 2.60 GHz, 4 GB random access memory (RAM) and 64-bit operating
system. The HR-pQCT data was also segmented using the software from ScancoMedical, which
is dedicated for this machine. The micro-CT data was segmented with a method based on gray-
level histograms [51]. The measurements for all CT machines, including the contrast-to-noise-
ratio (CNR) from the clinical machines, were made in a single run using the same code.

Analysis of biomechanical properties
Biomechanical properties of the trabecular bone cubes were derived by finite element (FE)
analysis based on the segmented micro-CT data, with sides of 5.3 mm from the center of each

Fig 2. Image of one bone specimen imaged by DXA. The same wrist cube imaged using DXA. The arrow indicates the cortical bone
and the white box indicates the volume visualized in Fig 1A, from which the DXA-BMDwas calculated.

doi:10.1371/journal.pone.0161101.g002
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trabecular bone cube. A 3D-image of the FE-model for the same bone cube as in Fig 1 and Fig
2 can be seen in Fig 3. Micro-finite element models of the segmented trabecular bone cubes
were made by converting image voxels into linear isotropic eight-node hexahedral finite ele-
ments. Each element was given a Young’s modulus of 12GPa and a Poisson’s ratio of 0.3 [52,
53]. The apparent elastic properties of the micro-FE models were assessed by performing FE
simulations of six independent load cases under kinematic boundary conditions [54]. Testing
of the micro-FE models comprised three compressive and three shear tests in which a linear

Fig 3. Image of the FE-model of one bone specimen. The FE-model, of the same wrist cube as in Figs 1 and 2, used to calculate
Young’s modulus (E1, E2, E3) and minimum shear modulus (Gmin). The model is based on the segmented micro-CT data.

doi:10.1371/journal.pone.0161101.g003
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transformation was applied to the surface nodes of the cube. The FE simulations were per-
formed by using Abaqus engineering software (Dassault Systèmes, Paris, France). The full elas-
tic stiffness tensor of each bone cube was computed and the Young’s modulus E1, E2, E3 as
well as the minimum shear modulus (Gmin) from the 12, 13, or 23 plane were extracted from
the computed stiffness tensor. E3 corresponds to the maximum value, which was aligned to the
main loading direction.

Testing the reproducibility of the methods
To check the reproducibility of the methods used, the bone specimens were scanned twice in
the CBCT 3D Accuitomo 80. During this second scanning, it was also possible to check that
the status of the bone specimens was unchanged over time. The first scanning was performed
two years before and the second scanning just after the scanning in the other clinical machines.
The digitally excised trabecular specimens from all clinical CT-machines were then processed
and analyzed, as described above.

Statistical methods
Results are presented as mean values with standard deviations. Data were compared using
Pearson correlation with 95% confidence intervals and with linear regression using R2-values.
Bland Altman analysis was used to asess the reproducibility. Linear and stepwise multiple
regression analyses were performed with the IBM SPSS Statistics program. All tables and
graphs were created in MS Excel.

Results
Images of the radius specimens, for studying changes and biomechanical properties associated
with osteoporosis, were obtained with four imaging methods including two CBCT devices; 3D
Accuitomo 80 referred to as CBCT(A) and NewTom 5G referred to as CBCT(N), one HR-
pQCT device; Scanco XtremeCT, one micro-CT device; Scanco μCT 40 and one DXAmachine;
Discovery A S/N 82934.

The segmentation of HR-pQCT data was made using implementations of two different seg-
mentation methods, both with the in-house-developed code based on the ARG algorithm and
with the software dedicated for the XtremeCT device from Scanco Medical. The ARG method
worked well also for HR-pQCT data, when compared to the dedicated software, showing some-
what weaker correlations regarding five of the trabecular bone parameters, slightly stronger
regarding trabecular nodes and much stronger correlations regarding the parameter trabecular
termini (Table 2). In the following data analysis, all results from the HR-pQCT data as well as
from the CBCT are based on the in-house developed code.

The two CBCT devices as well as the HR-pQCT machine demonstrated a correlation greater
than 0.90 with micro-CT for the bone volume over total volume ratio (BV/TV). Regarding the
other bone structure parameters, there were correlations� 0.70 for all machines and all param-
eters except for termini (Tb.Tm) measured by CBCT(N) that had a correlation of 0.61. CBCT
(A) had the strongest correlations with micro-CT for all studied parameters with four parame-
ters showing correlations greater than 0.91 (Table 2).

When predicting stiffness, with simple linear regression, using Young’s modulus E3 as
dependent variable, the parameter BV/TV had R2-values varying from 0.70 to 0.93 with a p-
value lower than 0.001 for all CT-machines (Table 3). The micro-CT device had an R2-value of
0.93, showing a strong ability to predict stiffness from this single parameter. The CBCT(A) and
the HR-pQCT had R2-values� 0.85 and p-values lower than 0.001 for Tb.Tm, indicating the
possibility to predict stiffness from this parameter. In addition, when predicting shear, with
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simple linear regression using the minimum shear modulus (Gmin) from the 12, 13, or 23 as
dependent variable, the parameter BV/TV had high R2-values, here varying between 0.78 and
0.95 and with p-values lower than 0.001 (Table 4). The micro-CT device had the highest R2-
value indicating the importance of the parameter BV/TV for predicting the minimum shear
using micro-CT. Trabecular termini had R2-values� 0.84 for predicting minimum shear using
the CBCT(A) and the HR-pQCT devices.

All bone structure parameters, except trabecular thickness (Tb.Th), had significance levels
<0.05 when predicting stiffness and shear with simple linear regression. Trabecular thickness
had no significance and very low R2-values varying from 0.08 to 0.22 when predicting stiffness
and minimum shear (Tables 3 and 4).

Both HR-pQCT and the CBCT(A) were highly dependent on the bone parameter Tb.Tm
when, through stepwise multiple regression analysis, predicting stiffness with Young´s modu-
lus E3 as dependent variable. The micro-CT and the CBCT(N) were both more dependent on
BV/TV. Predicting stiffness, Young’s modulus E3, from two parameters instead of one, did
increase the adjusted R2-values for the CBCT(N), but had no stronger effect regarding the
other machines (Table 5 and Fig 4). In addition, when predicting the shear minimum value,
through stepwise multiple regression, the HR-pQCT and the CBCT(A) devices depended on
Tb.Tm as a single predictor and added BV/TV as the second predictor. The micro-CT and the

Table 2. Correlations with micro-CT.

Machine Segmentation Tb.Nd Tb.Tm Tb.Sp Tb.Sc Tb.N Tb.Th BV/TV

Method

CBCT(A) ARG 0.87 0.79 0.87 0.94 0.94 0.92 0.96

(0.64;0.96) (0.46;0.93) (0.63;0.96) (0.81;0.98) (0.80;0.98) (0.77;0.98) (0.87;0.99)

HR-pQCT ARG 0.79 0.70 0.72 0.73 0.81 0.86 0.93

(0.44;0.93) (0.27;0.90) (0.31;0.91) (0.33;0.91) (0.50;0.94) (0.60; 0.95) (0.79;0.98)

HR-pQCT SCANCO 0.75 -0.27 0.80 0.86 0.90 0.93 0.97

(0.36;0.92) (-0.70;0.30) (0.47;0.93) (0.61;0.95) (0.71;0.97) (0.79;0.98) (0.91;0.99)

CBCT(N) ARG 0.79 0.61 0.79 0.91 0.90 0.86 0.91

(0.45;0.93) (0.12;0.86) (0.46;0.93) (0.73;0.97) (0.70;0.97) (0.62;0.96) (0.74;0.97)

Values are given as Pearson correlation coefficients (r) with 95% confidence limits. Bold figures denote values� 0.90. Segmentation methods are an

implementation of SCANCOMedical segmentation (SCANCO) and an implementation of Automated Region Growing (ARG)

doi:10.1371/journal.pone.0161101.t002

Table 3. Results of simple linear regression with stiffness as dependent variable.

Machine Tb.Nd Tb.Tm Tb.Sp Tb.Sc Tb.N Tb.Th BV/TV

[1/mm3] [1/mm3] [mm] [mm] [1/mm3] [mm] [%]

CBCT(A) 0.62 0.90 0.75 0.45 0.48 0.05 0.84

p = 0.001 p < 0.001 p < 0.001 p = 0.008 p = 0.006 p = 0.429 p < 0.001

HR-pQCT 0.85 0.85 0.65 0.62 0.69 0.02 0.71

p < 0.001 p < 0.001 p = 0.001 p = 0.001 p < 0.001 p = 0.614 p < 0.001

CBCT(N) 0.60 0.67 0.43 0.53 0.52 0.00 0.70

p = 0.001 p < 0.001 p = 0.011 p = 0.003 p = 0.004 p = 0.993 p < 0.001

Micro-CT 0.55 0.64 0.62 0.44 0.46 0.14 0.93

p = 0.003 p = 0.001 p = 0.001 p = 0.009 p = 0.007 p = 0.181 p < 0.001

Dependent variable: E3 Youngs´modulus. Values given are R2 values with two-tailed p-values. CBCT(A)– 3D Accuitomo 80; HR-pQCT–Scanco XtremeCT;

CBCT(N)–NewTom 5G; micro-CT–μCT 40

doi:10.1371/journal.pone.0161101.t003
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CBCT(N) depended on BV/TV as a single predictor and added the parameter trabecular spac-
ing (Tb.Sp) as the second predictor (Table 5 and Fig 4).

The bone mineral density (BMD) values from the DXA measurements, measured in g/cm2,
of the 14 trabecular bone cubes were low and varied between 0.004 and 0.018 g/cm2. The BMD
was not correlated with the bone volume over total volume ratio measurements from the
micro-CT data and gave poor results predicting both stiffness (R2 = 0.07) and shear (R2 = 0.11)
(Table 5).

The CBCT scanners overestimated the mean bone volume over total volume ratio when
compared with the reference method, micro-CT (Table 6). The mean thickness of the trabecu-
lae was overestimated by the CBCT devices as well as by the HR-pQCT device. On the other
hand, the number of trabecular nodes (Tb.Nd) was clearly underestimated.

The radiation dose given from the clinical machines in (CTDI) measured in mGy was rather
equal for the both dental CBCT devices despite less than half radiation exposure time for
CBCT(N) compared to CBCT(A) (Table 1). The contrast-to-noise ratio (CNR) varied from 6.0
to 10.4, with the highest value for the CBCT(A).

Regarding the reproducibility of the methods, when the radius bone cubes were repeatedly
imaged in CBCT(A) and then processed and analyzed, very good reproducibility was obtained
with strong correlation to the reference method micro-CT and without any systematic errors
detected (Fig 5).

Table 4. Results of linear regressions with shear as dependent variable.

Machine Tb.Nd Tb.Tm Tb.Sp Tb.Sc Tb.N Tb.Th BV/TV

[1/mm3] [1/mm3] [mm] [mm] [1/mm3] [mm] [%]

CBCT(A) 0.51 0.88 0.68 0.36 0.38 0.11 0.86

p = 0.004 p < 0.001 p < 0.001 p = 0.023 p = 0.019 p = 0.241 p < 0.001

HR-pQCT 0.84 0.84 0.64 0.57 0.63 0.08 0.82

p < 0.001 p < 0.001 p = 0.001 p = 0.002 p = 0.001 p = 0.337 p < 0.001

CBCT(N) 0.52 0.71 0.35 0.41 0.40 0.02 0.78

p = 0.003 p < 0.001 p = 0.027 p = 0.014 p = 0.016 p = 0.668 p < 0.001

Micro-CT 0.48 0.68 0.60 0.35 0.37 0.22 0.95

p = 0.006 p < 0.001 p = 0.001 p = 0.027 p = 0.021 p = 0.094 p < 0.001

Dependent variable: Shear minimum values from the 12,13 or 23 plane. Values given are R2 values with 2-tailed p-values. CBCT(A)– 3D Accuitomo 80; HR-

pQCT–Scanco XtremeCT; CBCT(N)–NewTom 5G; micro-CT–μCT 40

doi:10.1371/journal.pone.0161101.t004

Table 5. Results [R2] of stepwisemultiple linear regression with stiffness [E3] and shear [minimum in 12,13 or 23 plane] respectively as dependent
variable.

Machine stiffness [E3] shear [minimum]

Single predictor Two predictors Single predictor Two predictors

[R2] [Adjusted R2] [R2] [Adjusted R2]

CBCT(A) 0.90a 0.89c 0.88a 0.89c

HR-pQCT 0.85a 0.87c 0.84a 0.92c

CBCT(N) 0.70b 0.78d 0.78b 0.80d

Micro-CT 0.92b 0.95e 0.95b 0.90d

DXA 0.07 0.11

Predictors: a) Tb.Tm, b) BV/TV, c) Tb.Tm and BV/TV, d) BV/TV and Tb.Sc, e) BVTV and Tb.Th. CBCT(A)– 3D Accuitomo 80; HR-pQCT–Scanco XtremeCT;

CBCT(N)–NewTom 5G; micro-CT–μCT 40; DXA–Discovery A

doi:10.1371/journal.pone.0161101.t005
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Fig 4. Graphs showing stiffness and shear frommicro-CT and predicted stiffness and shear from clinical CT-machines. The stiffness derived by
finite element analysis based on micro-CT data as a function of predicted stiffness, calculated as Young’s Modulus E3 (left panels) and Minimum shear
(Gmin) (right panels) based on regression analysis from a single bone parameter (upper panels) or two bone parameters (lower panels). For both stiffness
and shear with CBCT 3D Accuitomo 80 and HR-pQCT Xtreme CT data, the single parameter was trabecular termini and the second parameter bone
volume over total volume. For both stiffness and shear with CBCT NewTom 5G data, the single parameter was bone volume over total volume and the
second parameter trabecular spacing. For stiffness with micro-CT μCT 40 data, the first parameter was bone volume over total volume and the second
parameter trabecular thickness. For shear with micro-CT μCT 40 data, the single parameter was bone volume over total volume and the second
parameters trabecular spacing.

doi:10.1371/journal.pone.0161101.g004
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Discussion
In this study, we have demonstrated the ability of dental CBCT for predicting trabecular bone
stiffness and shear based on micro-CT data. When using the in-house developed code, based
on the ARG algorithm, to assess trabecular bone structure parameters, a strong correlation for
all studied parameters could be observed between the three studied clinical CT machines (two
CBCT and one HR-pQCT device) and the ʻgold standardʼ imaging method micro-CT. The
strongest correlations were found for the bone volume over total volume ratio (BV/TV), where
all CT machines showed correlation coefficients above 0.90. The two CBCT machines had cor-
relations coefficients of 0.90 or greater with regard to trabecular spacing (Tb.Sc) and trabecular
number (Tb.N). The CBCT 3D Accuitomo 80 (CBCT(A)) had the overall strongest correlation
coefficients being above 0.91 for four of the seven studied bone structure parameters.

The three studied clinical CT-machines were all able to predict stiffness as the Young’s mod-
ulus E3 with acceptable results. The CBCT(A) and the Xtreme CT (HR-pQCT) predicted stiff-
ness with good and rather equal R2-values (0.90 and 0.85), which were greater than for the
CBCT NewTom 5G (CBCT(N)). The bone structure parameter trabecular termini (Tb.Tm)
showed a weaker correlation with μCT than did the other parameters. Despite that, both HR-
pQCT and CBCT(A) could predict stiffness and shear well based on Tb.Tm. These high corre-
lations were an unexpected finding that needs to be confirmed by future studies. One should,
however, bear in mind that this parameter is strongly influenced by details of the skeletoniza-
tion algorithm used and need not show the same behavior with a different implementation.
This may raise the question whether the algorithm used in this study might be more suitable
for measuring Tb.Tm from CBCT and HR-pQCT data than from micro-CT data.

CBCT(N) generally had a weaker correlation to micro-CT than CBCT(A); this was probably
due to a difference in exposure parameters. The CBCT(N) imaged a volume cylinder of 6×6 cm
while the CBCT(A) imaged a cylinder of 4×4 cm. As the radiation dose, measured as CTDI,
was similar for the devices, the exposure per volume was lower for the CBCT(N) resulting in a
lower contrast-to-noise-ratio (CNR) affecting the image quality negatively.

In this study, the ability of bone mineral density (BMD), measured by DXA, to predict stiff-
ness and shear was poor. This was probably due to the small size of the cubes, 8 mm in side,
resulting in a low BMD (0.004–0.018 g/cm2). This density is probably too close to the detection
level of the scanner, designed to quantify BMD of the spine and hip, with BMD around 0.8–1
g/cm2. An in vitro study in rat bone performed to predict cortical bone fracture loads from
DXA and dental CBCT found that CBCT imaging had superior predictive value when com-
pared to DXA. In that study, the BMDmeasured by DXA was about 0.14 g/cm2 which is also
lower than in ordinary clinical DXA use [55]. DXA is normally only used to analyze the

Table 6. Basic descriptive statistics.

Machine Segmentation Tb.Nd [1/mm3] Tb.Tm [1/mm3] Tb.Sp [mm] Tb.Sc [mm] Tb.N [1/mm3] Tb.Th [mm] BV/TV [%]

method Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

CBCT(A) ARG 1.48 0.30 1.15 0.27 0.54 0.05 1.07 0.09 0.94 0.08 0.48 0.04 0.42 0.08

HR-pQCT ARG 1.21 0.39 0.69 0.15 0.78 0.11 1.14 0.15 0.89 0.11 0.30 0.03 0.17 0.06

HR-pQCT SCANCO 1.26 0.51 0.99 0.24 0.78 0.11 1.05 0.12 0.97 0.11 0.24 0.02 0.12 0.05

CBCT(N) ARG 1.55 0.25 1.57 0.20 0.59 0.05 1.06 0.07 0.94 0.07 0.44 0.03 0.38 0.05

Micro-CT otsu 5.32 1.51 0.87 0.25 0.63 0.09 0.85 0.10 1.20 0.14 0.13 0.01 0.10 0.03

Values are given as mean values with standard deviations [SD]. Segmentation methods are an implementation of SCANCOMedical segmentation

(SCANCO), an implementation of Automated Region Growing (ARG) and an implementation of otsu-thresholding (otsu). CBCT(A)– 3D Accuitomo 80; HR-

pQCT–Scanco XtremeCT; CBCT(N)–NewTom 5G; micro-CT–μCT 40

doi:10.1371/journal.pone.0161101.t006
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amount of bone and not to assess structure. However, it is possible to analyze the grey-level tex-
tural matrix, the trabecular bone-score (TBS). In our study, the evaluation of TBS was not
available on the DXA device used. TBS has shown to provide aspects of skeletal structure not
reflected by the BMD values [56]. Yet other studies have not been able to show that TBS was
superior to areal BMD in predicting vertebral fracture risk [57] or give additive value to BMD
when determining bone stiffness [58]. The impact of TBS therefore remains controversial.

At clinical imaging, there is a risk for patient movement artefacts. A short imaging time
minimizes this risk. The scanning times in our study for the CBCT devices (17.5–36 s) may
cause motion artefacts when imaging patients. To reduce the imaging time, it is possible to per-
form a 180-degree rotation at nine seconds when using CBCT(A). An earlier study by our
group [30] showed that the correlation with micro-CT as well as the CNR was reduced with
this lower rotation angle. The imaging time using CBCT(N) can be reduced by speeding up the
360-degree rotation time to 24 s instead of 36 s which reduces the radiation time from 7.3 to
4.5 s. However, there is a risk that this may result in lower CNR, as occurs for CBCT(A) when
radiation time is decreased [30]. Therefore, decreasing the scanning time in these dental CBCT
devices may not be the ideal solution for reducing risk of motion artefacts when scanning
patients in the clinic.

When considering future research studies using dental CBCT there are both disadvantages
and advantages to take in account. One advantage is that dental CBCT scanners most often are
used for examinations only during office hours. This means there is free capacity for research
studies when the scanners are not in clinical use. Both an advantage and a challenge is the pos-
sibility of changing the scanning parameters, such as field of view (FOV), tube current and

Fig 5. Bland Altman plots for reproducibility of CBCT(A)-data. Bland-Altman analysis of long-term reproducibility of the derived parameters describing
trabecular bone histomorphometry. The scans of the bone cubes were made using a CBCT 3D Accuitomo 80 with a time interval of two years.

doi:10.1371/journal.pone.0161101.g005
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tube voltage, in many ways. This is an important factor to consider since it affects the radiation
dose to the patient. [59].

The imaging machines use different imaging planes and require individuals to be in differ-
ent positions, which may affect imaging motion artefacts. When imaging in the HR-pQCT, the
patients are sitting with their limb fixed, while in the CBCT(N) the patients are in the supine
position. Both these positions would result in reduced risk of motion artefacts. When imaging
in CBCT(A), patients are in the sitting position. Although their heads and cheeks are fixated
with straps, this position may increase the risk of motion artefacts. However, a recent clinical
study demonstrated that the small middle ear structures could easily be demonstrated by
CBCT(A) when used clinically [60]. Further clinical studies are necessary to investigate the
possibility of imaging the trabecular bone structure in vivo. To image the wrist in living individ-
uals using CBCT(A), a fixation device is required; this is currently being developed by our
group.

Another difference to consider is the varying voxel volumes of the different imaging tech-
niques, which causes partial volume effects that may be more or less prominent. They can be
expected to affect the results more in vivo than in vitro. A way to reduce the problem of partial
volume effects is to replace binary segmentation with direct calculation of the relevant trabecu-
lar structure parameters from the gray-scale images. However, to our knowledge, a method for
this is available only for Tb.Th [61]. Our plans for future research include implementing gray-
scale-based algorithms for a number of structure parameters.

In this study, segmentation data from the three clinical CT-machines were achieved using
our in-house developed software; segmentation of HR-pQCT data in many other studies use
the software provided by the manufacturer of the imaging machine. In order to evaluate this,
the segmentation of the HR-pQCT data was done using both an implementation of the soft-
ware from the manufacturer and with our ARG-based software. The strong correlation that we
detected between HR-pQCT and the gold standard technique of micro-CT for trabecular bone
structure parameters, as well as the high R2-values predicting stiffness and shear from our seg-
mented data, indicate that our software and analysis may be useful for the evaluation of HR-
pQCT data.

There are limitations to this study. The most obvious limitation is the small sample size.
However, the specimens used were imaged using several scanning machines and techniques
that allowed the study of a number of imaging parameters and computation of several variables
[17, 30]. Yet another limitation is the use of cadaveric bone cubes stored for years. However,
the rescan of the bone cubes in CBCT(A) and the reanalysis of the imaging data, showed that
the radius specimens used in this study were unchanged over time. The fact that the specimens
not were surrounded by cortical bone may have an impact on the imaged trabecular bone
structures. The micro-CT used in this study, however, could not image such large samples.
This kind of cadaveric studies may not reflect conditions in vivo and future clinical studies to
support our findings are needed. To be able to include more brands into the analysis, integra-
tion into PACS-systems is needed and this is another of our ongoing projects.

When doing research using dental CBCT devices there will be possibilities to study the man-
dibular bone. There are many studies showing the correlation between mandibular trabecular
bone structure and osteoporosis-related fractures. Those studies depend on subjective assess-
ments of the bone structure in panoramic and intra-oral radiographs [26–29, 62]. It would be
appealing to carry out studies with less operator-dependent and more automated methods
based on CBCT data, as the one used in this study. As the trabecular bone structure plays a
major role in supporting dental implants [63] it would also be of great interest to study bone
quality assessed by CBCT with the possibility of potentially correlating the bone structure, as
well as the numerically calculated stiffness and shear, to dental implant stability.
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In conclusion, the strong correlation between CBCT and micro-CT regarding trabecular
bone structure parameters as well as the predictive ability of CBCT for bone stiffness and shear
derived by finite element analysis based on the μCT data, indicate that CBCT may be a feasible
method for future clinical studies and osteoporosis research.

Supporting Information
S1 File. Code_PLoS.zip. This is the code used to segment and analyse the trabecular bone vol-
umes with the structure parameters as a result.
(ZIP)

S2 File. Raw_data.xlsx. This is the Raw-data (structure parameters and FEM-analyses).
(XLSX)
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