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ABSTRACT: A coarse-grained computational model is used to investigate the effect of a fluctuating
fluid membrane on the dynamics of patchy-particle assembly into virus capsid-like cores. Results from
simulations for a broad range of parameters are presented, showing the effect of varying interaction
strength, membrane stiffness, and membrane viscosity. Furthermore, the effect of hydrodynamic
interactions is investigated. Attraction to a membrane may promote assembly, including for subunit
interaction strengths for which it does not occur in the bulk, and may also decrease single-core assembly
time. The membrane budding rate is strongly increased by hydrodynamic interactions. The membrane
deformation rate is important in determining the finite-time yield. Higher rates may decrease the entropic penalty for assembly
and help guide subunits toward each other but may also block partial cores from being completed. For increasing subunit
interaction strength, three regimes with different effects of the membrane are identified.

1. INTRODUCTION

The formation of the protein shell of viruses has, due to its
relative simplicity and importance in many diseases, become
one of the most well-studied examples of self-assembly.1

Although viruses are typically assembled within the cells of their
host, the process may also be triggered in a bulk solution of
viral proteins by changing the pH.2 Such experiments have
stimulated the application of simple computational models1,3−7

to help understand assembly processes.
While much modeling has focused on the formation of virus

capsids in the bulk, in recent work investigating the growth of
viral shells around their genome, the assembly of simple
subunits attracted to a flexible polymer was simulated.8,9

Interaction with the polymer was found to allow assembly for
parameters for which it would otherwise not occur.
Encapsulation of spherical nanoparticles has also been
considered both in experiment10 and in simulation.11,12

Experimentally, it was demonstrated that shells resembling
different types of viral particles could be assembled by varying
the nanoparticle diameter.
Beyond interactions with an encapsulated genome, there is

also much evidence that membranes play an important role in
assembly for many viruses.13−21 In a recent publication,22 we
presented results on the effect of fluctuating membranes on the
equilibrium of a system of self-assembling patchy colloids,
designed to assemble viral core-like structures, from Monte
Carlo (MC) simulations.23 We found a nonmonotonic
dependence of the promotion of assembly on membrane
stiffness, as well as the formation of membrane buds. It is of
course true that such effects would be observable in an
analogous experimental system after sufficient time and to be
expected that they will influence the products of dynamical
assembly. However, on relevant time scales, self-assembly
processes may not reach equilibrium and the products may be
affected, for example, by kinetic traps.1,24 It is therefore of

foremost interest to consider simulations with realistic
dynamics. Key dynamical features that we capture in our
simulations are the viscosity of the membrane and hydro-
dynamic interactions, the inclusion of which may alter
dynamics both quantitatively and qualitatively.25

Two key factors in the present work are attractions to the
fluctuating membrane and hydrodynamic interactions. Previous
computational studies have looked into the effects of each of
these individually on the clusters formed by isotropic spherical
colloids. Hydrodynamic interactions were found to change both
the size and shape of clusters,26 while attraction to a membrane
was found to induce the formation of linear chains on the
surface.27 Further, attractions of particles to a membrane
surface may cause the formation of buds22,28,29 or tube-like
structures.30,31

Here, as a simple model to gain insight into the effect of
membranes on the dynamics of self-assembly, we consider
primarily the same, patchy-particle, subunits,6,32 which may
assemble 12-component cores, as in our previous work,22 and
simulate their assembly using a dynamically realistic method. As
previously, our subunits are coupled to a membrane modeled
using particles bonded to form a triangulated surface.33,34 The
target core structure has icosahedral symmetry, similar to many
viruses, although in reality enveloped viruses are larger. The
remainder of the paper is organized as follows. In section 2 we
describe our simulation models and in section 3 we present
results from MC simulations on the equilibrium of the system.
We then move on to dynamical simulations, describing
simulation methods in section 4. We present results for the
12-component cores in section 5 and compare them to some
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results for other cores in section 6. Finally, we conclude in
section 7.

2. SIMULATION MODELS

Rather than only considering enough subunits to form just one
target structure as in our previous work,22 we now simulate 180,
allowing a maximum of 15 complete cores to be assembled.
While it is expected that in experimental and biological
situations it is also likely that a larger number of subunits will be
available than required for one complete structure, this choice
was additionally made for computational efficiency, so that, on
a feasible time scale, although assembly of all possible cores
may not occur, some complete cores will form. We simulate a
membrane composed of 1156 particles. The simulation setup is
sketched in Figure 1a.
The interactions between subunits, ss, and between subunits

and membrane particles, ms, are identical to those used in our

previous work22 but we describe the important features again
here. The potentials are based on a Lennard-Jones form. As
shown in eq 1, the potential is split into attractive, Uatt, and
repulsive, Urep, parts. The interaction of two particles, i and j,
separated by rij (i ≠ j), with orientations Ωi and Ωj, either both
subunits or a subunit and a membrane particle, is given by

γ γ γΩ Ω = +r r rU U U( , , ) [ ( ) ( )]ij ij i j ij ijarea rep att orient att (1)

where the forms of Uatt and Urep are shown in Figure 1b. γarea,
γatt and γorient are dimensionless factors that take different forms
for ss and ms interactions. For ss-interactions, γarea = γatt = 1 and,
as depicted in Figure 1a, there are 5 patches on each subunit,
which are arranged symmetrically around a single ms patch. The
minimum of Uatt is set to −εss. γorient is used to control the patch
width, and it has the form of a product of three functions of the
form shown in Figure 1c, see also the Supporting Information.
For the first two factors, the argument is the angle between the
interacting patches and the center-to-center vector, rij. The
parameters for determining patch width, see Figure 1c, are set
to θ0 = θ1 = 0.2. In contrast, for the third factor, the argument is
the angle between the projections of the membrane patches
onto the plane perpendicular to rij and θ0 = θ1 = 0.4. The third
factor represents the torsional stiffness of protein interactions.6

For ms-interactions, the minimum of Uatt is set to −εms. In
these interactions, only the subunits are patchy, having one
patch. Parameters for the one orientational function composing
γorient, see Figure 1c, are θ0 = π/4 and θ1 = 0.2, and there is no
penalty for subunits rotating around rij. Since, typically,
assembling proteins will only be able to access one side of a
membrane, we choose to make only one side of the membrane
in our simulations attractive to subunits.35 This is achieved by
setting γatt = 1 if a subunit interacts with the “upper” side and
γatt = 0 if it interacts with the “lower” side. The γarea factor is
proportional to the area of surface that surrounds the
interacting membrane particle. The length scale for ss-
interactions is chosen as σss = 2.5l0 and the length scale for
ms interactions is σms = 1.75l0, where l0 is a simulation unit of
length. For the exact functional forms used in the ss and ms
interactions, see the Supporting Information.
The membrane is modeled as in ref.35 but we describe the

key features again here. As depicted in Figure 1a, the membrane
is composed of particles bonded to form a triangulated surface.
To include membrane fluidity, MC moves that flip bonds
between different particles are included.34 The typical
separation between bonded membrane particles is l0,
maintained by a potential that has a flat central region but
diverges at 0.67l0 and 1.33l0, see Supporting Information. We
perform simulations in a box of size 45l0 × 45l0 × 45l0, giving a
subunit number density within the range for which yield was
found to weakly depend on concentration.6 As in our previous
work,22 we consider a range of εss that, at equilibrium in the
bulk, covers the crossover to complete assembly of all cores.
Although approximately centered around the same εss value, for
the larger number of cores considered here, the crossover is
broader36 and so a wider range of εss is used. The same range of
εms as in ref 22 is considered, chosen to cover the crossover
from freely diffusing to membrane-bound structures. The
stiffness of our membrane is controlled by a parameter λb,
through a potential, Ubend = λb(1 − ni·nj), applied to all pairs of
neighboring triangles in the surface, where ni and nj are the unit
normal vectors of the triangles. We simulate using the three
middle values from our previous work,22 λb = √3kBT, 2√3kBT
and 4√3kBT: at equilibrium, this covers the crossover from

Figure 1. (a) Simulation setup. Subunits, which are all identical, are
rendered in yellow, with positions, but not extents, of patches for
interactions with other subunits in red. Positions of patches for
interactions with the membrane particles are in blue. The membrane is
modeled as a triangulated surface of bonded particles. The particles
forming the surface edge are confined to a frame region, which is
located at a distance rframe from the periodic boundaries. In simulations
with hydrodynamics, a stochastic rotation dynamics (SRD) solvent
composed of point particles is included. Interactions between SRD
particles are effected by first dividing the entire system into a grid of
cells of side l0. (b) The radial part of the inter-subunit or subunit-
membrane potential, U(r), with a well-depth ε is split into attractive
(green) and repulsive parts (red). (c) The attractive part is multiplied
by factors of the form Fang(θ), where θ is an angle that depends on the
relative orientation of the interacting particles. (d) Sketch of
momentum transfer between SRD particles in a cell: (i) Only particles
within one cell interact. (ii) Velocities are subtracted from all particles
such that the center of mass velocity is 0. (iii) All velocities are rotated,
as signified by the heavy arrow, around a random axis, by a given angle.
(iv) The subtracted velocities are added back on so that total
momentum is conserved.

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp4037099 | J. Phys. Chem. B 2013, 117, 8283−82928284



cores being able to cause budding of the membrane to them
not being able to. As discussed in our previous work,22 this
range of bending stiffness is at the lower end of that expected
for biological membranes. Given that in viral budding37

intrinsic curvature is expected to be important, which is
neglected in our model, the bending stiffness in our simulation
is most relevant in terms of the cost of deformation.
Although our focus is on dynamical simulation, we first

investigate the equilibrium of the system for comparison. For
this purpose, we use MC simulations, employing a similar
approach as in our previous work.22 On the other hand, for
molecular dynamics (MD) simulations, we include hydro-
dynamic interactions using a stochastic rotation dynamics
(SRD) solvent,38 a coarse-grained method in which the fluid is
represented by point particles. SRD particle interactions are
effected by dividing the system into a grid of cells, of side l0, at
regular intervals and exchanging momentum by a rotation
through a certain angle of velocities relative to the cell center of
mass velocity. This procedure is shown schematically in Figure
1d. To understand the influence of hydrodynamic interactions,
we also simulate using a method that neglects them, Langevin
dynamics (LD), in which the effect of the solvent is represented
by uncorrelated random, as well as drag, forces.39,40

To simulate a tensionless membrane, rather than box
rescaling,22 we use a new membrane boundary condition,
recently introduced by us,35 which is compatible with SRD. The
edge of the membrane is attached to a square frame, with sides
positioned at a distance rframe into the simulation box, as
depicted in Figure 1a. For those triangles in the surface that
have a side that forms part of the membrane edge, a bending
potential of the same form as that between neighboring
triangles is applied, except that the unit normal of the triangle is
compared to a unit normal to the frame-plane. The distance
rframe may increase and decrease during the simulation. To allow
for deformation, the number of membrane particles bonded to
the frame may also vary, with corresponding changes to the
number of bonds in the bulk of the surface, Nb−bulk. For more
details of the membrane boundary condition, see the appendix
of ref 35, the functional form of the confining potential is also
given in the Supporting Information. For consistency, this
approach is also used in MC and LD simulations, in which, of
course, the solvent is absent.

3. RESULTS FROM EQUILIBRIUM SIMULATIONS
We first present, in Figure 2, results from MC simulations on
the yield of complete cores, defined to be a cluster of 12
bonded subunits, each unit making 5 bonds to other cluster
members. Two subunits are defined to be bonded if their
interaction energy is < −0.25εss. Interaction strengths for
different simulations lie on a grid from 0.12 to kBT in spacings
of 0.08kBT for εms and from 4.5 to 8.02kBT in spacings of

0.32kBT for εss. Systems at different parameters were run in
parallel using Multicanonical Parallel Tempering.41 For each
data point in Figure 2, approximately 4 × 109 attempted MC
moves were performed, including about 4 × 104 Hybrid MC
moves,42 as well as Aggregate Volume Bias moves.43 These
were both found to significantly speed up relaxation. The
largest error for a single data point was estimated to be about
0.6. Similarly to our results with one core,22 for λb = √3kBT
and λb = 2√3kBT at higher εms, the assembly of the cores
causes the membrane to form buds, although these now
generally contain multiple cores. For λb = 4√3kBT, budding
did not occur. Again as for single cores, for high εms, assembly
occurs for lower values of εss: the membrane promotes
assembly. Here, membrane-dependent, low εss assembly does
not occur to the same extent as for high εss because, due to
steric repulsion, only a fraction of the cores may interact with
the membrane at once, typically about 4 cores in the case where
a bud is formed. Whereas for one core, the range over which
promotion occurred was clearly largest for λb = √3kBT, here
the results for λb = 2√3kBT are very similar. This may be
because multiple cores together effectively form a larger object
deforming the membrane.

4. DYNAMICAL SIMULATION METHODS

We next give details of our dynamical simulation methods. The
SRD particles have mass m and number density per cell γ = 5.
We define our unit of time, t0 = l0(m/kBT)

1/2. Collisions are
performed every Δtcoll = 10−1t0 and we use an SRD rotation
angle of π/2, giving a fluid viscosity of ηf = 2.5m/l0t0.

44 We
apply a SRD-cell level thermostat that conserves momentum to
maintain the temperature.38 Membrane particles are coupled to
the SRD solvent by including them in the collision step.38

There will typically be about one membrane particle per SRD
cell and we set their mass to γm, giving a short-time friction
coefficient ζmem = 15.8(m/t0).

44

Unlike membrane particles, subunits have rotational degrees
of freedom and so are coupled to the SRD solvent using
bounce-back boundary conditions.45 For their interactions with
the fluid, subunits are treated as solid spherical particles of
radius a = l0, having mass M = (4/3)πa3mγ and moment of
inertia I = (2/5)Ma2. Every Δtbound = 10−2t0, the SRD particles
are checked. If an overlap with a subunit is detected, then the
SRD particle with velocity u is first moved by (−1/2)Δtboundu
and then shifted radially to the edge of the subunit, r from the
center, where |r| = a. This scheme is based on the fact that for
SRD particles the average crossing of the subunit boundary is
halfway through a time step. It was found to function well in
previous work.46 A bounce-back collision is then performed:
the radial, u⊥, and tangential, u∥, components of u are updated
according to

Figure 2. Results from MC simulations. Average yield of complete cores, ⟨yield⟩, as a function of subunit-membrane interaction strength, εms, and
inter-subunit interaction strength, εss, for different membrane stiffnesses, λb: (a) λb = √3kBT; (b) λb = 2√3kBT; (c) λb = 4√3kBT.
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Here, A = 2M/(m+M), B = 7m/2M and the surface velocity V
= v + ω × r, where v is the center of mass velocity of the
subunit and ω is its angular velocity around an axis that passes
through the center of mass. Equation 2 is valid for I = 2/5Ma2.
After all overlapping SRD particles have been rebounded,
corresponding changes to the subunit velocity and angular
velocity, Δv = (m/M)Σi(ui

old − ui
new) and Δω = (m/I)Σiri ×

(ui
old − ui

new), where i indexes the different rebounded particles,
are applied so that momentum and energy are conserved. If M
≫ m, SRD particle velocities relative to the surface are
completely reversed; for our parameters, M ≈ 20m.
Overlapping of embedded particles in an SRD fluid may lead

to a spurious depletion attraction.47 In fact, even if particles are
prevented from overlapping, the bounce-back scheme may need
to be iterated due to the possibility of a fluid particle interacting
with more than one solute particle within Δtbound. We avoid
these issues by choosing the excluded volume length for
subunit interactions, σss = 2.5l0, so that the typical closest
approach of two subunit fluid surfaces ≈ 0.5l0 is much greater
than the typical displacement of a fluid particle ≈ 10−2l0.
Bounce-back interactions between SRD particles and

embedded colloids lead to spurious slips at the colloid surface.
Methods exist to ameliorate this by the introduction of virtual
particles but, for mobile colloids, this was found to lead to
deviations from expected thermal distributions.45 In our
simulations, the concern is moot anyway, because of the
discrepancy between the radii chosen for inter-subunit and
subunit-fluid interactions. Effectively, there is a slip-velocity at
the subunit surface, as defined by its interactions with other
subunits, which has contributions from these two different
sources. Given that the subunits are typically representing
protein complexes, which are rough on length-scales up to
many solvent molecules,48 rather than smooth colloids, this is
reasonable.
For bounce-back boundaries, the short-time friction

coefficients for the subunits may be calculated using a modified
Enskog theory.45 For our parameter choice, this gives
coefficients of ζv = 62.0(m/t0) and ζω = 73.3(ml0

2/t0), for
linear and angular velocities respectively. Comparing the
corresponding correlation times, M/ζv and I/ζω, to typical
thermal velocities, we obtain values of 0.07l0 and 0.04 for the
typical length and angular displacements over which the
subunit motion is correlated. These are smaller than the typical
separation of subunits and patches, given by σss = 2.5l0 and ≈
0.4 respectively, so that at the scale that assembly occurs on,
subunit motion is diffusive. Similarly, the length scale over
which membrane particle motion is correlated is 0.1l0.
To obtain parameters for simulations without hydrodynamic

interactions, we simulated single subunits and membrane
particles in a box of the same size as that used for assembly
with an SRD solvent. The friction coefficients extracted were
lower than the short-time values due to long-time hydro-
dynamic contributions. These friction coefficients were input to
LD simulations. In this way, the hydrodynamic contribution to
the self-diffusion coefficients is included but hydrodynamic
interactions between different particles are neglected. An
alternative approach to simulating without hydrodynamics is
to use an SRD fluid and randomize particle velocities at every

step. For colloids, however, this has been found to introduce an
unphysical caging effect.49

Membrane fluidity is included by performing a certain
number of attempts to flip bonds between neighboring pairs of
membrane particles34 every 10−1t0. The membrane viscosity is
set by the level of attempted bond-flips and we consider three
different rates: Nb−bulk, 10

−1Nb−bulk and 10−2Nb−bulk attempted
bond-flips per 10−1t0, where Nb−bulk is the number of bonds in
the bulk of the membrane and the resulting numbers are
rounded to integers. By considering Poiseuille flows in two-
dimensional membranes,34 the corresponding membrane
viscosity, ηm, may be estimated. For the highest rate of flips
the value is estimated to be 35.1 ± 0.1m/t0,

35 whereas for the
lower rates we estimate 133.3 ± 0.6m/t0 and 1190 ± 60m/t0
respectively. For a lipid bilayer in water, the ratio of membrane
to fluid viscosities, lη, is typically around 1−10 μm.50 In our
simulations the solvent viscosity ηf = 2.5m/l0t0 so that, if our
subunits represent capsomers with a size on the order of 10
nm,51 then the ratio of their hydrodynamic radius to lη is
around the expected range.

5. RESULTS FROM DYNAMICAL SIMULATIONS

We next present results from our dynamical simulations.
Interaction strengths for dynamical simulations were chosen to
coincide with those for MC simulations, although fewer were
considered due to higher computational costs. A closer spacing
between the highest interaction strengths was chosen as it was
expected that the most interesting results would be found here.
All averages are taken over at least 5 independent runs and in
some cases over 10. We consider the same values of λb, and also
εms and εss in the same range, as for the equilibrium MC
simulations. We simulate primarily using SRD but, for λb =
√3kBT and 2√3kBT, we also simulate using LD for
comparison, to gain insight into the importance of hydro-
dynamic interactions. LD simulations were essentially identical
to the SRD ones expect that, rather than having regular
interactions with an explicit fluid, subunits and membrane
particles were, at each MD integration step, subject to random
and friction forces.39,40 The system was initially simulated for
either 8 × 103t0 with SRD, or 2 × 104t0 with LD, without
attractive interactions. These times were chosen as being
sufficient to allow membrane relaxation. Subsequently,
attractions were switched on and the system was simulated
for a further 5 × 104t0 to gather results. In contrast to the MC
results, for the stiffest membrane, λb = 4√3kBT, with the
highest membrane-subunit interaction strength only, εms = kBT,
in some, though not all runs, budding occurred.
Were it possible to run the dynamical simulations

indefinitely, it is expected that results would eventually
converge to those found for the equilibrium simulations.
However, as the simulation progresses, further assembly
becomes increasing slow as the supply of free subunits is
depleted and eventually relies on rearrangement of subunits
between partially formed structures, possibly moving into or
out of a membrane bud. It is thus necessary to choose a finite
simulation time shorter than that required for complete
assembly and inevitably the results obtained will depend on
it. For our chosen simulation time, the highest yield observed in
any simulation is ∼50% of the possible maximum. It is
nonetheless sufficient for the effect of the membrane on
assembly to be apparent. However, the finite time chosen
should be borne in mind when considering the results.
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First, in Figure 3, we plot the averages of various quantities as
a function of εms and εss at different simulation times, t, for λb =
2√3kBT and ηm = 133.3m/t0. Considering Figure 3a, at later
times, the largest number of correctly assembled cores are
obtained for the second highest εss, 7.38kBT. This is close to the
optimal value obtained in previous work6 with a very similar
model of about 7.14kBT. Although for the highest value, εss =
8.02kBT, the total interaction energy between subunits relative
to the interaction strength is somewhat lower, see Figure 3b,
this corresponds to many incomplete cores assembling, thus
starving the system of free subunits. This kinetic trap is not
related to the membrane and has often been observed
previously.1 In contrast, for high εss, increasing attraction to
the membrane hinders complete assembly due to the
membrane enveloping, or partly surrounding, partial cores
too quickly, thus preventing subunits or other partial cores
from approaching them. The fast envelopment is apparent in
Figure 3, where it may be seen that, for high εms and εss, the
interaction energy of the subunits with the membrane
approaches its final value much more quickly than the yield.
Similarly to the MC results, a promotion of the finite-time
assembly for low εss at high εms occurs.
Comparing results for equilibrium, Figure 2, to those from

dynamical simulations, there are several differences. Clearly, for
equilibrium results, kinetic traps do not play a role.
Furthermore, the interaction strength at which assembly starts
is slightly lower at equilibrium than after a finite time in
dynamical simulation. For the lowest εms, εms = 0.12kBT, where
the membrane does not play a significant role and assembly
occurs in the bulk, whereas at equilibrium there are complete
cores at εss = 5.46kBT, albeit at a relatively small yield, no
complete cores were formed within the allowed time in
dynamical simulations. Similarly, the range of parameters for
which there is assembly promotion is larger for the equilibrium
results.
Considering Figure 3a, we note that a time lag before

complete cores are assembled, seen in previous work,1 is
apparent for many data points at t = 104t0, including for εss =

7.38kBT and low εms, where the yield is highest at later times.
However, for some data points, primarily with high εms, some
complete cores are already present at t = 104t0: as well as
causing a higher yield for low εss once assembly has progressed
significantly, attraction to the membrane may also speed up the
formation of a single core. By confining subunits to a surface,
the effective size of the space that they must search to find each
other is reduced. The membrane may also mediate effective
attractions, directing subunits and partial cores toward each
other28 and, if deformation occurs, it may bring membrane-
attached subunits closer together. Conversely, deformation of
the membrane may also tend to block assembly, preventing
partial cores from being accessed by subunits or other partial
cores, leading to an increase in assembly time. The effect of the
membrane on single-core assembly times is also shown in
Figure 4, where we plot the average time until the first

complete core in the system is formed, which we denote ⟨τ⟩, as
a function of εms. We note that, since this quantity is based on a
single assembly event, large fluctuations were seen for lower
interaction strengths and for some parameters additional
simulations were run. For both membrane stiffnesses shown,
λb = 2√3kBT and 4√3kBT, ⟨τ⟩ tends to be lower for high εms

Figure 3. Plots as a function of subunit-membrane interaction strength, εms, and inter-subunit interaction strength, εss at different times, t, increasing
from left to right in intervals of 1 × 104t0, for membrane stiffness, λb = 2√3kBT and membrane viscosity ηm = 133.3m/t0, from SRD simulations. (a)
Average yield of complete cores, ⟨yield⟩. (b) Average total interaction energy between subunits, relative to the interaction strength, ⟨Uss/εss⟩. (c)
Average total interaction energy between subunits and the membrane, relative to the interaction strength, ⟨Ums/εms⟩.

Figure 4. Average time until the first complete core is assembled, ⟨τ⟩,
as a function of membrane-subunit interaction strength, εms, for inter-
subunit interaction strength, εss = 6.42kBT (red) and εss = 7.38kBT
(green), with different membrane viscosities: ηm = 35.1m/t0 (▲); ηm =
133.3m/t0 (●); ηm = 1190m/t0 (■). (a) Membrane stiffness, λb =
2√3kBT. (b) λb = 4√3kBT.
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for εss = 6.42kBT, whereas for εss = 7.38kBT the curve is flatter.
For subunit interaction strengths that are approximately
optimal for bulk assembly, the process is sufficiently fast that
the membrane does not affect ⟨τ⟩, whereas for lower values it
may cause a significant speed-up. However, we note that, for
high εms with some parameters, ⟨τ⟩ shows an increase. This is
consistent with the membrane blocking assembly.
We next consider the average yield of complete cores,

⟨yield⟩, measured at the end of the simulation, at time t = 5 ×
104t0. We present results for all the different parameter sets we
have simulated, except for the lowest εss, for which only a very
small amount of assembly occurred at the highest εms. We split
the results into 3 figures by membrane stiffness: λb = √3kBT in
Figure 5; λb = 2√3kBT in Figure 6; λb = 4√3kBT in Figure 7.

Within each figure, results are divided by εss into four different
subfigures labeled a−d. ⟨yield⟩ is plotted as a function of εms,
with curves corresponding to different membrane viscosities
and simulation methods indicated by different colors, symbols
and line types. Rather than describe in detail the specific
features of each figure, we discuss the general trends that arise
and pick out interesting features.
Overall, as εss is increased, we identify three different trends

for finite-time assembly with realistic dynamics. First, at εss =
5.46kBT and 6.42kBT, both lower than the bulk-assembly
optimal value, increasing εms, which tends to increase the
membrane deformation rate in all regimes, may promote finite-
time assembly. With high εms, assembly also occurs for values of
εss where there is no bulk assembly within our simulation time.
However, the rate at which the membrane deforms is
important. It is influenced by various factors, for example the
strength of the attraction of subunits to the membrane or
membrane viscosity, and results in competing effects on
assembly. Increasing it via εms may at first aid assembly, as
seen in the initial increase in ⟨yield⟩ with εms in parts a and b of
Figures 5−7, but when it is too high, the yield may decrease
again, as is seen particularly clearly in Figure 6a and b. Results
depend on factors such as membrane viscosity and hydro-
dynamic interactions: decreasing membrane viscosity or
including hydrodynamic interactions both increase the
deformation rate. Attraction to, deformation of, and encapsu-
lation within, the membrane is expected to decrease the subunit
entropy such that the difference in entropy between
unassembled and assembled states is less. Additionally, the
deformation of the membrane may help to guide subunits
attached to it toward each other. It is expected that these effects
will all play a role in promoting assembly, although their relative
importance may not be easily deduced. However, if the
deformation occurs too quickly, before complete cores are
formed, the membrane will hinder further subunits, or other
partial cores, from approaching the partial structure, preventing
its completion.
Interestingly, in this low εss regime, finite-time assembly is

promoted even for λb = 4√3kBT, Figure 7a,b, although for this
membrane stiffness budding only occurs for the highest εms. For

Figure 5. Plots of the average yield of complete cores, ⟨yield⟩, as a
function of membrane-subunit interaction strength, εms, for membrane
stiffness, λb = √3kBT at t = 5 × 104t0. From simulations with SRD
(solid lines, filled symbols) or LD (dashed lines, open symbols), for
different membrane viscosities: ηm = 35.1m/t0 (blue, ▲/Δ); ηm =
133.3m/t0 (green, ●/○); ηm = 1190m/t0 (red, ■/□); and subunit
interaction strengths, εss, as indicated in panels a−d.

Figure 6. Plots of the average yield of complete cores, ⟨yield⟩, as a
function of membrane-subunit interaction strength, εms, for membrane
stiffness, λb = 2√3kBT at t = 5 × 104t0. From simulations with SRD
(solid lines, filled symbols) or LD (dashed lines, open symbols), for
different membrane viscosities: ηm = 35.1m/t0 (blue, ▲/Δ); ηm =
133.3m/t0 (green, ●/○); ηm = 1190m/t0 (red, ■/□); and subunit
interaction strengths, εss, as indicated in panels a−d.

Figure 7. Plots of the average yield of complete cores, ⟨yield⟩, as a
function of membrane-subunit interaction strength, εms, for membrane
stiffness, λb = 4√3kBT at t = 5 × 104t0. From simulations with SRD,
for different membrane viscosities: ηm = 35.1m/t0 (blue, ▲/Δ); ηm =
1190m/t0 (red, ■/□); and subunit interaction strengths, εss, as
indicated in panels a−d.
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this membrane stiffness, results do not depend on membrane
viscosity, confirming that here budding does not play a role.
Despite a lack of envelopment, it is expected that attachment to
the membrane will nonetheless reduce the entropic cost of
forming a partial core. A second plausible mechanism is a local
increase in subunit density near the membrane surface. In
contrast, for the lower two λb, Figure 5a,b and Figure 6a,b, the
membrane deformation rate does play a role. Comparing SRD
and LD results, simulations with hydrodynamic interactions
show a larger promotion of finite-time assembly as εms is
increased, at least initially. For some parameters the yield
decreases again as εms is increased further and this drop off
occurs earlier with hydrodynamic interactions. Furthermore,
particularly for λb = 2√3kBT, membrane viscosity, ηm, is also
important. Especially for SRD results, decreasing ηm shifts the
point at which the finite-time yield begins to decrease to lower
εms. Interestingly, the effect of hydrodynamic interactions and
membrane viscosity are much stronger for λb = 2√3kBT than
for λb = √3kBT.
In the second regime, for εss = 7.38kBT, at about the bulk-

assembly optimal value, increasing εms tends to decrease the
finite-time yield. Here, there is no strong dependence on
membrane viscosity or hydrodynamic interactions and, addi-
tionally, results are quite similar for all three membrane
stiffnesses. This suggests membrane deformation is not crucial,
rather the decrease in yield may occur because attraction to the
membrane promotes the faster assembly of partial cores,
bringing the system into the monomer starvation trap that is
only seen in the bulk for higher εss.
Finally, for the highest εss, εss = 8.02kBT, where there is a

monomer starvation kinetic trap for bulk assembly, there is no
clear effect of the membrane on finite-time assembly. Since
assembly, at least of partial cores, occurs very quickly in the
bulk, results here are likely dominated by nonmembrane-
associated assembly.
In Figure 8, we show snapshots of final configurations from

simulations with λb = 2√3kBT and ηm = 133.3m/t0. For εms =

kBT and εss = 7.38kBT, Figure 8a, for which the average yield
was reduced compared to the low εms value, three of the four
cores encapsulated in a bud that are depicted are incomplete.
This snapshot corresponds to the optimal εss regime. In
contrast, for εms = 0.6kBT and εss = 6.42kBT, Figure 8b, for
which the average yield was enhanced compared to low εms

value, only one of the four cores encapsulated, or partially
encapsulated, in a bud that are depicted is incomplete. This
snapshot corresponds to the low εss regime. Although these
snapshots only depict the situation in two individual runs, they
illustrate how the membrane may block assembly completion
when its deformation rate is too high by preventing partial
cores from being accessed by subunits or other partial cores.
A useful quantity to indicate the amount of membrane

deformation is rframe, the distance from the edge of the
simulation box of the frame to which the edge of the membrane
is bound, which increases as the membrane distorts its shape
out of the plane. To show how changing membrane viscosity,
and including hydrodynamic interactions, alters the rate and
extent of membrane deformation, we plot, in Figure 9, ⟨rframe⟩
as a function of time with λb = 2√3kBT and εss = 6.42kBT for
different εms from 0.36kBT. Apart from the lowest εms, the
membrane deformation occurs faster and to a greater extent for
simulations with hydrodynamics. Hydrodynamic interactions
increase the rate of budding. Since budding requires the whole
of the membrane to move, correlations mediated by hydro-
dynamics promote it. Furthermore, for SRD simulations at the
highest two εms, there are also significant differences between
membrane viscosities with a trend as expected: ⟨rframe⟩ is largest
for the smallest viscosity.
We next consider the distributions of cluster size, nc, in our

SRD simulations, H(nc). In Figure 10, we plot distributions for
λb = 2√3kBT and ηm = 35.1m/t0 at three different times. For εss
= 6.42kBT, the lowest εss for which, in dynamical simulations,
there is bulk assembly, there are few clusters with intermediate
sizes when εms is low. At all times considered, the majority of
clusters are of size two; at later times there is an additional peak
at size 12, corresponding to complete cores. In contrast, when
εms is high, the attraction to the membrane stabilizes
intermediate cluster sizes at early times. At later times, the
clusters have grown but the peak near 12 is less sharp, with
similar numbers of cores of size 10 and 11, and also some larger
ones. This shows the effect of the membrane blocking the
completion of partial cores. It also seen for higher εss, εss =
7.38kBT, where the distribution for low εms is much flatter at
early times with many clusters of intermediate sizes.
In Figure 11, we show the effect of membrane viscosity on

the cluster size distribution. We plot results from the end of the
simulations, at time t = 5 × 104t0, again for λb = 2√3kBT. With
εss = 6.42kBT, we see that, for the highest viscosity, increasing
εms leads to a distribution that is more strongly peaked at 12. In
contrast, for the lowest viscosity, although increasing εms does
lead to more larger clusters, it also gives a much broader
distribution around 12. A similar effect occurs for εss = 5.46kBT:
for this εss too, when membrane viscosity is low, high εms causes
the membrane to encapsulate the assembling capsids too
quickly, blocking their completion.
As in similar previous models,5 the concentration of our

subunits is relatively high compared to experimental systems,
and furthermore the number of subunits in a completed core is
low. These choices are necessary for computational tractability
but have the consequence that the assembly rates in our
simulations are much higher than experimental ones. Assuming
that subunits correspond to capsomers of size on the order of
10 nm, and matching the drag coefficient of our subunits, we
estimate that our simulation length is around 5 ms, whereas in
vitro24 and in vivo52 experiments have observation times on the
order of minutes. Thus, a direct quantitative comparison cannot
be made. Our results rather demonstrate how the rate of

Figure 8. Snapshots from simulations with SRD at t = 5 × 104t0 with
membrane stiffness, λb = 2√3kBT and membrane viscosity, ηm =
133.3m/t0: (a) Membrane-subunit interaction strength, εms = kBT and
inter-subunit interaction strength, εss = 7.38kBT; (b) εms = 0.6kBT, εss =
6.42kBT. Subunits are shown in yellow and membrane particles in
green. Only subunits within 6l0 of a membrane particle are plotted.
Membrane particle size has been reduced to make structures within
buds more visible. Completed cores are circled in blue, while partially
assembled ones are circled in red.
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membrane deformation compared to the assembly rate may
affect the success of the latter. Furthermore, they show how
properties such as membrane viscosity, which might be varied
experimentally by changing lipid composition53 are expected to
impact on the assembly process. The interactions between
assembling viral capsomers are typically relatively weak54 as this
aids the avoidance of kinetic traps and thus the first, low εss
regime identified is most likely to be relevant to these systems.

6. OTHER TARGET CORES

We have investigated the effect of a membrane on core
assembly of icosahedral cores. It is expected that many of the
qualitative features of the results, such as the interplay between
the membrane promoting assembly by confining subunits and

hindering it by blocking additional subunits or other partial
cores from approaching partial structures, will be general to
other target structures. To gain more insight into the
transferability of the findings to other core shapes, we finally,
in Figure 12, present results on the yield obtained in SRD
simulations when the target structure is changed from the
icosahedral core. As for icosahedra, we define a cluster to be a
complete structure when it contains the correct number of
subunits for the target structure and each subunit patch on each
subunit forms a bond with another member of the cluster. We
choose subunits with patches such that their interactions are
minimized for cubic and dodecahedral structures.6 Otherwise,
parameters such as patch width are unchanged, with the
membrane patch still lying on the symmetry axis as defined by
the subunit patches and pointing outward in a complete

Figure 9. Plots of the average position of the frame, ⟨rframe⟩, as a function of time, t, for membrane stiffness, λb = 2√3kBT and inter-subunit
interaction strength, εss = 6.42kBT. From simulations with SRD (solid lines, filled symbols) or LD (dashed lines, open symbols), for different
membrane viscosities: ηm = 35.1m/t0 (blue, ▲/Δ); ηm = 133.3m/t0 (green, ●/○); ηm = 1190m/t0 (red, ■/□); and subunit-membrane interaction
strengths: (a) εms = 0.36kBT; (b) εms = 0.6kBT; (c) εms = 0.84kBT; (d) εms = kBT.

Figure 10. Results from SRD simulations. Histograms, H, of cluster size, nc, for membrane stiffness, λb = 2√3kBT and membrane viscosity, ηm =
35.1m/t0 at different times, t: t = 1 × 104t0 (red); t = 3 × 104t0 (green); t = 5 × 104t0 (blue); with different parameters: (a) Membrane-subunit
interaction strength, εms = 0.12kBT and inter-subunit interaction strength, εss = 6.42kBT; (b) εms = kBT, εss = 6.42kBT; (c) εms = 0.12kBT, εss =
7.38kBT; (d) εms = kBT, εss = 7.38kBT.
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structure. In both cases, the subunits only have three patches
for bonding with other subunits and thus form fewer bonds in a
complete structure than the icosahedral subunits. Correspond-
ingly, the range of εss was shifted up by about 2kBT but the
range of εms remained the same.
We simulated for λb = 2√3kBT and ηm = 133.3m/t0. For

both cubes and dodecahedra, as for icosahedra, budding of the
membrane occurred for high εms. In Figure 12a, many of the
features of the finite-time assembly of icosahedra are
reproduced for cubes. For high εms, there is finite-time
assembly at lower εss than for low εms. There is also an
increase in finite-time yield with increasing εms for the lowest εss
for which assembly occurs without significant attraction to the
membrane. Unlike for icosahedra, at least for these membrane
parameters, the yield does not drop off again as εms is increased
further. This may be because, since they are composed of less
subunits, cubes assemble faster than icosahedra. For the highest
εss, however, there is a reduction in finite-time yield with εms,
similar to results for icosahedra.
As observed in previous work,6 finite-time yields of

dodecahedra, Figure 12b, were low. However, here again,
there is evidence that attraction to the membrane may promote
assembly for εss for which it would otherwise not occur.
Although it is not apparent in our results, as seen in previous
work with a very similar model,6 it is expected that, if the

subunit interaction strength were increased sufficiently, the
same nonmembrane-related kinetic trap that is observed for
icosahedra would also be seen for cubes and dodecahedra.

7. CONCLUSIONS

To summarize, we have applied a simple patchy-particle model
to investigate the effect of interactions with a fluctuating
membrane on the dynamics of the assembly of core structures
with the same symmetry as many viral cores. As well as
interaction strengths, the key parameters we varied were
membrane stiffness and viscosity. We also considered the effect
of hydrodynamic interactions by simulating both with SRD and
LD. As at equilibrium, for assembly with realistic dynamics,
attraction to a membrane may promote finite-time assembly,
also for subunit interaction strengths, εss, for which it does not
occur in the bulk. Furthermore, for εss less than the optimal
bulk value, attraction to the membrane also decreases the
single-core assembly time.
Membrane budding occurred in dynamically realistic

simulations and its rate was strongly increased by hydro-
dynamic interactions, as well as by lowering the membrane
viscosity. The rate of membrane deformation is important in
determining the assembly yield after finite time. Relatively high
rates may promote assembly by increasing the envelopment of

Figure 11. Results from SRD simulations. Histograms, H, of cluster size, nc, for membrane stiffness, λb = 2√3kBT at time, t = 5 × 104t0 for different
membrane-subunit interaction strength values: εms = 0.12kBT (red); εms = 0.6kBT (green); εms = kBT (blue); with different parameters: (a)
Membrane viscosity, ηm = 1190m/t0 and inter-subunit interaction strength, εss = 6.42kBT; (b) ηm = 35.1m/t0, εss = 6.42kBT; (c) ηm = 1190m/t0, εss =
5.46kBT; (d) ηm = 35.1m/t0, εss = 5.46kBT.

Figure 12. Results from SRD simulations. Plots of the average yield of complete structures, ⟨yield⟩, as a function of membrane-subunit interaction
strength, εms and inter-subunit interaction strength, εss at time t = 5 × 104t0 for membrane stiffness, λb = 2√3kBT and membrane viscosity, ηm =
133.3m/t0: (a) Subunits with interactions to form a cube. (b) Subunits with interactions to form a dodecahedron. Note the different scales for ⟨yield⟩
and also the higher values of εss as compared to the results for icosahedral cores.
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assembling cores and thus decreasing the entropic penalty and
also by guiding subunits toward each other. However, if the rate
is too high, the membrane may block partial cores from being
completed. Three regimes with different effects of the
membrane were identified. For εss less than the bulk optimum,
finite-time yields depend intricately on a combination of all
parameters and may both increase and decrease as attraction to
the membrane is increased. For εss about equal to the bulk
optimum, finite-time yields do not depend strongly on the
membrane deformation rate and tend to decrease as attraction
to the membrane is increased. For εss higher than the bulk
optimum, assembly in the bulk is affected by a monomer
starvation kinetic trap and the membrane has little influence.
Finally, results with qualitative similarities were also found for

core structures with cubic and dodecahedral symmetries. In
future work it would be interesting to investigate more different
structures, in particular much larger cores.
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