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Abstract

Background: Due to the huge amount of information at genomic level made recently available by
high-throughput experimental technologies, networks of regulatory interactions between genes and
gene products, the so-called gene-regulatory networks, can be uncovered. Most networks of interest
are quite intricate because of both the high dimension of interacting elements and the complexity of
the kinds of interactions between them. Then, mathematical and computational modeling
frameworks are a must to predict the network behavior in response to environmental stimuli.
A specific class of Ordinary Differential Equations (ODE) has shown to be adequate to describe the
essential features of the dynamics of gene-regulatory networks. But, deriving quantitative predictions
of the network dynamics through the numerical simulation of such models is mostly impracticable as
they are currently characterized by incomplete knowledge of biochemical reactions underlying
regulatory interactions, and of numeric values of kinetic parameters.

Results: This paper presents a computational framework for qualitative simulation of a class of
ODE models, based on the assumption that gene regulation is threshold-dependent, i.e. only
effective above or below a certain threshold. The simulation algorithm we propose assumes that
threshold-dependent regulation mechanisms are modeled by continuous steep sigmoid functions,
unlike other simulation tools that considerably simplifies the problem by approximating threshold-
regulated response functions by step functions discontinuous in the thresholds. The algorithm
results from the interplay between methods to deal with incomplete knowledge and to study
phenomena that occur at different time-scales.

Conclusion: The work herein presented establishes the computational groundwork for a sound
and a complete algorithm capable to capture the dynamical properties that depend only on the
network structure and are invariant for ranges of values of kinetic parameters. At the current state
of knowledge, the exploitation of such a tool is rather appropriate and useful to understand how
specific activity patterns derive from given network structures, and what different types of
dynamical behaviors are possible.
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Background
Although, up to now, there is no model that efficiently
and accurately represents the gene interactions under-
lying regulatory mechanisms in their whole complexity,
recent experimental evidence seems to confirm the
adequacy of a specific class of ODEs to describe their
essential dynamical features. These models assume that
genes are controlled by transcriptor factors, and that the
effect of a transcription factor on the transcription rate of
a gene, the response function, is threshold-dependent. Such
switch-like behaviors across variable thresholds are
mathematically well represented by steep sigmoidal
functions.

Although these models provide detailed description of
gene regulatory molecular mechanisms [1-3], their
predictive usefulness, at quantitative level, is rather
limited even when the network at hand is very well
studied. In fact, the exploitation of classical numerical
approaches is mostly impracticable as precise and
quantitative information on (i) the biochemical reaction
mechanisms underlying regulatory interactions, and (ii)
kinetic parameters and threshold concentrations are
currently unknown and not identifiable from available
data. However, at the current state of knowledge,
qualitative predictions of the dynamical properties are
not make-shift solutions but rather appropriate to get
insight into the functioning of systems not completely
understood as molecular interaction networks are.

The application of generic qualitative simulation
approaches, as originally proposed in the Artificial
Intelligence research framework [4] under the label QR,
is not the proper solution. The mathematical tools they
are grounded on are too simple to compensate for
knowledge incompleteness. This results in a number of
drawbacks, e.g. their inability to upscalability, the
exponential growth of the generated behaviors, and the
generation of spurious behaviors, that seriously limit the
range of applicability of such methods to predict the
nonlinear dynamics of regulatory networks. A qualitative
study of GRNs dynamics could, in theory, be performed
by analytical methods [5-8] based on the classical theory
of qualitative analysis of dynamical systems, and
properly adapted to the specific class of models. But, in
practice, the network complexity makes quite hard or
even unfeasible traditional analysis.

Pioneering work towards automated qualitative analysis
and simulation of GRNs has resulted in a computational
tool, called GNA[9]. Although GNA has been successfully
applied to study real world networks, namely the
initiation of sporulation in Bacillus subtilis [10], and the
response to nutritional stress and carbon starvation in

Escherichia coli [11,12], it is not flawless. GNA circumvents
the hard problem of dealing with sigmoidal nonlinear
response functions by approximating them with step
functions, discontinuous in the threshold hyperplanes.
Such an assumption considerably simplifies the analysis
as the model results in piecewise-linear equations, but it
raises the problem to find a proper continuous solution
across the threshold hyperplanes, or, in other words, to
seek for generalized solutions of ODEs with discontinuous
right-side terms. The solution to this problem is not
straightforward as (i) there exist in the literature several
definitions of generalized solutions, (ii) it is not yet
completely understood what are the relationships
between different definitions, and then, (iii) it is not
clear how to choose the “right” definition for a particular
task [13]. GNA adopts the Filippov approach [14] that
results particularly convenient to deal with control
problems but it may present drawbacks when applied
to approximate the limit solutions of a continuous ODE

model: it might find “too many” solutions, and fail to
reach all stable ones. Thus, GNA suffers from the same
problems, that in addition to those raised by a further
approximation introduced to deal with computational
issues, might compromise its soundness and complete-
ness (Dordan O, Ironi L, Panzeri L, Some critical remarks
on GNA, in preparation).

The qualitative simulation algorithm we propose works
under the assumptions that (i) threshold-dependent
regulation mechanisms are modeled by continuous steep
sigmoid functions, and (ii) any two genes are never
regulated at the same threshold by a certain variable. The
sigmoidal-nonlinearities make the problem quite hard
to be tackled. But, the assumption that all sigmoids have
very high steepness allows us to apply a systematic way
of analysis. Let us observe that, due to the switch-like
behavior of the response functions around the thresh-
olds, the GRN dynamics occurs at different time-scales. To
be able to deal with both slow and fast nonlinear
dynamics we theoretically base our algorithm on a
classical singular perturbation analysis method properly
adapted to the assumed class of ODEs [8,15]. Such a
method suitably combined with QR key concepts
computationally drives, starting from initial conditions,
the construction of all possible state transitions, and
calculates the sets of symbolic inequalities on parameter
values that hold when specific transitions occur.

A class of models of GRN dynamics
As phenomenological model of the complex dynamics
of GRNs made up of n components, we consider the
following generic equations:

&x f x i ni i i i= − =( ) ,..., ,Z g 1 (1)
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where the dot denotes time derivative, xi is the
concentration of the i-th gene product, gi > 0 is the
decay rate of xi, Z is a vector with Zjk as components, and
Zjk = S(xj, θjk, q) is a sigmoid function with threshold θjk.
The response, or regulatory, function S : R+ Æ [0, 1] is a
continuous monotonic S-shaped map depending on the
parameter q (0 <q ≪ 1), that determines the steepness of
S around the threshold value θjk, such that for q Æ 0 we
have S(xj, θjk, q) = 0 (respectively 1) when the value of xj
is smaller (greater) than θjk (Fig. 1).

Each xi, with domain Ωi ⊂ R+, is associated with ni
thresholds ordered according to θij <θik if j <k. The state
equations describe the balance between the production
process fi(Z) and the degradation one, herein supposed
to be linear. The functions fi are multilinear polynomials
in the variables Zjk, and are frequently composed by
algebraic equivalents of Boolean functions. More pre-
cisely,

f Zi il

l

L

jk

j n
k n

i

jkl

j

( ) ,
,
,

Z =
= =

=

∑ ∏k a

1 1
1

(2)

where �il are real values that denote kinetic rate
parameters, Li is the possibly empty number of interac-
tions that synthesize xi, and, in accordance with the
network structure, ajkl assumes value either equal to 1
when Zjk takes part in the l-th interaction or equal to 0
otherwise.

The validity of the biological assumptions underlying
the model described by Eq. (1) has been confirmed by

recent experimental evidence [16-28] and theoretical
studies [29-32]. Thus, we can reasonably assume that
such a model is suitable to give a phenomenological
description of a wide range of regulatory systems in
which the combined effects of a series of genetic
processes, e.g. transcriptional and translational regula-
tion, protein-protein interactions, metabolic processes,
etc., can be properly described by threshold-dependent
response functions.

Let us represent the dynamics of the n state variables xi,
modeled by the Eq. (1) and associated with appropriate
initial conditions, in the phase space. The ordered sets Θi

of the ni threshold values θij associated with each xi
naturally induce a partition of the phase space into
qualitatively distinct domains. In the set Δ of all the
domains identified by the partition, we can distinguish
the set Δs ⊂ Δ of switching domains from the set Δr ⊂ Δ of
regular domains, such that Δ = Δs ∪ Δr (Fig. 2).

A regular domain Dr (also called a box) is an open
rectangular region between adjacent threshold hyper-
planes in which the values of all response functions Zjk

Figure 1
Response function shape. The sigmoid response function
S(x1, θ1, q) describes the relationship between the
concentration of a gene product x1 and the relative
production rate of the regulated gene. The parameter q
determines its steepness around the threshold θ1.

Figure 2
An example of phase space partition. Partition of the
phase space associated to a dynamical system with two state
variables, where each variable xi Œ [0, xi ], i = 1, 2 is
associated with two ordered thresholds θij, j = 1, 2. The
white rectangles denote regular domains. The gray rectangles
denote switching domains, whose width, δ > 0 is a
monotonic function of the parameter q with δ(q) Æ 0 for
q Æ 0. In the light gray regions one variable is switching and
the other one is regular, whereas in the dark gray ones both
variables are switching.
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equal either 0 or 1. A switching domain Ds is a narrow
region, whose width depends on the parameter q,
surrounding either a section of a threshold hyperplane
or an intersection of threshold hyperplanes. In a switch-
ing domain Ds we distinguish s (Ds) switching variables,
xs, from n - s (Ds) regular ones xr. The values of a
variables xs lies in the neighborhood of one of its
thresholds and Zsk takes values in (0,1), while the values
of a variable xr lies between two adjacent thresholds. The
network dynamics in each domain D Œ Δ is described by
different models. The motion in Dr Œ Δr is described by
linear ODEs, and its analysis is straightforward. The
motion in Ds Œ Δs, or equivalently around the thresh-
olds, is described by nonlinear equations, and occurs at
different time-scales. Therefore, to capture the salient
features of the nonlinear dynamics in a switching
domain, and to determine how the trajectories cross it
to move towards other domains, a specific mathematical
method is required.

Methods
Singular perturbation analysis in the switching domains
Singular Perturbation Analysis (SPA) is a classical
approach to study phenomena that occur at different
time-scales [33]. The dynamics of such phenomena are
described by ODEs, associated with appropriate initial
conditions, in which a small parameter (0 <q ≪ 1)
multiplies either one of the derivatives or higher order
derivative. Let us indicate this initial value problem by
ℳq, and by ℳ0 the same problem where q = 0. As q Æ 0,
the solution of ℳq identifies a “small” region, called
boundary-layer region, of non-uniform convergence to the
solution of the reduced systemℳ0. The region of uniform-
convergence of ℳq to ℳ0 is called outer region. Taken
together, the outer and boundary-layer solution approx-
imate the solution of ℳq for small nonzero values of q.

Such a general approach is not directly applicable to our
problem, but it must be tailored to it [8]. In outline, (i)
the Eqs. (1) related to the xs variables are rewritten into
the standard form of SPA through a change of coordinate
system, (ii) the boundary-layer and outer solutions are
calculated in the new coordinates, and (iii) they are
converted back into the usual frame of reference.

Let Σ: Ω ↦ [0, 1]n be the coordinate transformation that
converts the xs coordinates into the Zs ones. As under our
assumptions, ∂

∂ =Zs
x s q d Z xs s s

1 ( , ) , where ds is a contin-
uous and limited function, we can rewrite Eq. (1) as in
the following:
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where ZS, ZR are the vectors of switching and regular
variables Zs and Zr, respectively.

The fast dynamics in the boundary-layer is studied by
suitably scaling the time variable, namely τ = t/q. In the
limit, the fast dynamics is obtained by solving the
system:

′ = −
′ =

Z d Z f

x
s s s s s s s

r

( , )( ( , ) ),

,

q g qZ ZR S

0
(4)

associated with appropriate initial conditions, where the
prime denotes the derivative with respect to τ. As ZR is
constant in any Ds Œ Δs, we focus on the switching
variables Zs only. The system (4) has a manifold of
stationary points, called slow-manifold, given by the
solutions, for all s, of the stationary equations ′Z s = 0.
We call exit point set (EP) the set of points in the slow-
manifold that are stable and satisfy the Tikhonov-
Levinson theorem, and we call Z-cube Ƶ(Ds) =
[ , ] ( )0 1 s Ds the frame of reference where we search for
exit points.

The motion in the original time t along the exit points is
described by the reduced system ℳ0. Thus, under the
hypothesis that at least one exit point %ZS exists, the
motion equations of regular variables, or equivalently
the outer solution, is represented by:

& %x f xr r r r= −( , ) .Z ZS R g (5)

The problem (5) is linear, and then, given the initial
conditions, the outer solution, that determines how the
trajectories move along the xr directions, is easily calculated.

The calculation of the slow-manifold generally leads to
an heavy, nonlinear computational problem as it
consists in the solution of a set of polynomial equations.
In the current implementation we adopt a further
assumption that sounds realistic:

Assumption A . Every gene product only regulates one
gene at each of its thresholds

Such an assumption considerably simplifies the calcula-
tion of the slow-manifold. Mathematically, it implies
that each Zjk only occurs in one equation, and thus the
terms fs(ZR, ZS) are linear.

Remark 1

The location of each exit point is crucial in our analysis
as it indicates the next adjacent domains the trajectories
are moving towards along the xs directions.
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Let us observe that stationary points always exist on the
vertices of Ƶ(Ds) as they are the roots of ds(Zs, θs) = 0. The
computational cost of the search for all the other exit
points could be quite high, but it can be considerably
reduced by checking first a necessary condition for the
existence of a stationary point on the other elements of Ƶ
(Ds). Let F be a face or the interior of Ƶ(Ds). In [15], it has
been proved that necessary condition for the existence of
a stationary point in F is that the Jacobian matrix

JF
fi
Z j

= ∂
∂

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ restricted to the switching variables in F has

a complete loop. This holds if and only if there is a non-
zero loop involving all variables in JF, and can be
checked by using concepts from graph theory.

Let %Z be a stationary point located on %F Œ Ƶ(Ds), and
L %F = {l : l Œ {l,..., s (Ds)}, %Zl Œ {0, 1}}. %Z is an exit
point if (i) it is stable. If %F is on the boundary of Ƶ(Ds),
it is required, in addition to (i), that (ii) Zl, ∀ l Œ L %F ,
heads towards %F . The stability of %Z is checked by
analyzing the spectrum of the Jacobian matrix, and the
condition (ii) is verified when, ∀ l Œ L %F , the sign of ′Zl ,
in a neighborhood of %Z is in agreement with the motion
of Zl towards %F . More precisely, in a neighborhood of

′Zl , ′Zl > 0 and %Zl = 1 or ′Zl < 0 and %Zl = 0.

Remark 2

SPA works out in the limit qÆ 0, but the calculated solution
approximates the solution of Eq. (3) for sufficiently small q
(0 <q ≪ 1). Moreover, it can be proved that the Jacobian
matrix is stable for 0 <q < q ≪ 1. Thus, the exit points
calculated in the limit are also valid for values of q < q .

Remark 3

Under the Assumption A , the reduced equations are
always independent of the variables Zs in the Eq. (4), and
the two sets of equations aremutually independent. Thus,
the behavior of the variables xs in a Z-cube is completely
independent of the values of variables xr, and the motion
in a switching domain may be studied by first analyzing
the former variables, and then the latter ones.

Qualitative reasoning concepts
Among the generic qualitative approaches proposed in
the literature, QSIM provides both the most suitable
formalism and algorithm to represent and simulate
models qualitatively abstracted from ODEs [4]. Thus, we
revise and ad hoc tailor its key concepts to our specific
class of models.

Qualitative value
The real values of each state variable xi with domain Ωi =
[0, xi ] are discretized into a finite ordered set of values

qualitatively important from the biological point of
view. In our context, the qualitative value space of each xi is
defined by the ordered set Θi made up of both its ni
threshold symbolic values and the endpoints of Ωi. The
partition of the whole system domain, induced by the
sets θi, i = 1,..., n identifies qualitatively distinct hyper-
rectangles D that define all possible system qualitative
values.

Qualitative state
Let A(D) be the set of domains adjacent to D Œ Δ. The
qualitative state of D, QS(D), is defined by all of its
adjacent domains Dk towards which a transition from it
is possible:

QS D D D A D D Dk k k( ) { | ( ), }.= ∈ →

Each transition from D identifies a domain next
traversed by a system trajectory. More precisely, if we
number by i the domain D traversed at time ti, each
Dk Œ QS(D) will be traversed by different trajectories at
time ti+1.

State transition
Qualitative simulation of network dynamics is achieved
by iteratively applying local transition strategies from
one domain to its adjacent domains. The possible
transitions from any D are determined by different
strategies according to whether D Œ Δr or D Œ Δs.

In the case D Œ Δr, like in traditional QR methods and in
GNA[9], possible transitions are determined by the signs
of &xi . As &xi are defined by linear expressions, such signs
are easily determined by exploiting the inequalities that
define the parameter space domain.

In the case D Œ Δs, a sign-based strategy is not practicable
as the expressions for &xi are nonlinear. A convenient way
to proceed is given by SPA: transitions from D towards
adjacent Dk are determined by the locations of the exit
points on the boundary elements of the associated Ƶ(D).
Due to Assumption A , each boundary element of Ƶ(D)
may contain at most one exit point. But, as, in a
qualitative context, knowledge incompleteness on the
parameter values is expressed by coarse constraints, the
boundary element of Ƶ(D) where an exit point is located
is not, in general, uniquely determined. Thus, unless the
exit point is located in the interior of Ƶ(D) and a stable
solution is reached, the successors of D are not uniquely
determined. However, through symbolic computation
procedures, it is possible to calculate the set of inequal-
ities, I k

i , on parameter values that hold when the
transition from Di to Dk occurs. Then, the 3-tuple 〈Di,
Dk, I k

i 〉 clearly and uniquely identifies each path from Di

to Dk.
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Qualitative behavior
A finite sequence of paths, where each path is
clearly both linked and consistent with its predeces-
sor and successor, defines a qualitative behavior:
QB D I D D I D D I D Ik i i

k
F F= 〈 〉 〈 〉 〈 〉 〈 〉0 0 0 1 1

0, , , , , ... , , , ... , , where
D0 is the initial domain, and DF either contains a stable
fixed point or identifies a cycle, i.e it is an already visited
domain. I0 is the initial set of inequalities that defines
the parameter space domain, and IF the set of inequal-
ities on parameter values associated with DF.

Qualitative simulation
Starting from an initial domain D0 and a set, I0, of
symbolic inequalities on parameter values, qualitative
simulation generates all possible state transitions, and
represents them by a directed tree rooted in D0, BT(D0),
where the vertices correspond to Di, and the arcs, labeled
by the inequalities I j

i , to the transitions fromDi toDj. Each
branch in BT(D0) defines a qualitative trajectory QB from
D0, that traverses specific domains and occurs when the
values of parameters satisfy its related inequalities. Such a
trajectory abstracts all those numerical solution of the ODE

model with initial conditions x0 varying in D0, and with
kinetic parameter values fulfilling the inequalities.

Results
Given as input, (i) n symbolic state equations of the
form (1); (ii) n qualitative value spaces Θi = {θij} of the
state variables; (iii) D0 Œ Δ; (iv) a set of symbolic
inequalities I0 on parameters defining a parameter space
domain PSD0, the algorithm, through an iterative
procedure initialized by 〈D0, I0〉, provides as output the
entire range of possible network dynamics represented
by BT(D0). Its main steps are outlined in the following:

1. Define the qualitative values by partitioning the phase
space into regular and switching domains.

2. Calculate the qualitative state QS(Di) of the current
domain Di.

(a) Calculate the symbolic state equations in Di, and the set
A(Di);

(b) Determine constraints I k
i on parameters that need to be

fulfilled to have a transition from Di to Dk Œ A(Di);

(c) Check consistency of I k
i with I0, and build the path eik =

Di Æ Dk ;

3. Append 〈Di, Dk, I k
i 〉 to BT(D0), and mark Di as visited

domain.

4. Repeat from step 2 for each not visited Dk.

Step 2, and in particular the calculation of the conditions
on parameters I k

i , is the core of the overall algorithm. A
transition from Di to Dk actually occurs, and then Dk Œ
QS(Di), only if the set I k

i is consistent with the set I0, i.e.
when it defines a not empty parameter space domain
PSDk

i such that PSDk
i ⊆ PSD0. The calculation of an

inequality set I k
i is performed by two distinct algorithms

that implement a different transition strategy according
to whether Di Œ Δ r or Di Œ Δs.

Moving from a regular domain
The algorithm in charge of the construction of the possible
paths from regular domains is, in principle, similar to that
one proposed by GNA, but it is more informative as it
calculates the I k

i s. In the limit, we indicate Di Œ Δr by the

product Di ji j ij

n= +=∏ ( , )( )q q 11
where (θji, θj(i+1)) denotes

the interval of xj in Di.

(a) Symbolic state equations in Di Œ Δr. In each box Di, Zjk

equals either 0 or 1 in the step function limit. This
simplifies Eq. (1) as they reduces to linear equations:

&x x j nj j j j= − =m g , , ..., ,1 (6)

where μj depends on Di, and is given by the sum of some
�jls. From Eq. (6) we can easily find the focal point

x ∗ ∗= =⎧
⎨
⎩

⎫
⎬
⎭

x j
j

j

m
g the trajectories are heading towards.

Herein, we assume that focal points do not belong to
switching domains. If x* belongs to Di, there is a stable
point in it. Such a stable point exists in Di, i.e. Di Œ QS(Di),

if the set of inequalities ( )( )q qm
gji j i

i
j

< < +1 ∀j Œ {1,..., n}

exists and is consistent with I0. Otherwise, the trajectories
move towards a switching domain Dk adjacent to Di.

(b) Constraints I k
i on parameters. ∀ Dk Œ A(Di), the algorithm

calculates thesetof inequalitiesonparameters I k
i thatneedto

be fulfilled to have a transition fromDi toDk. As inDi all the
equations (6) are linear, and all the trajectories head towards
a focal point x* in a regular domain, such inequalities are
calculated by imposing that the signs of state variable rates
match the relativepositionofDkwith respect toDi.Wedefine
the relative position of Dk with respect to Di, indicated by
V D D vk i j j

n( , ) { }= =1 where vj Œ {-1, 0, 1}, through the
comparisonof the intervalsdefiningDiandDk. I k

i , initialized
to I0, is updated, ∀ j Œ {1,..., n}, with either the inequality

m
g qj

j j i>⎛
⎝⎜

⎞
⎠⎟+( )1 if vj = 1 or

m
g qj

j ji<⎛
⎝⎜

⎞
⎠⎟
if vj = -1.

(c) Possible transitions from Di to Dk. If the calculated
inequality set defines a not empty parameter space domain
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PSDk
i ⊆ PSD0 then a transition towards Dk is possible

and the qualitative state QS(Di) is updated accordingly.

To exemplify how the algorithm works we consider the
ODE model:

&

&

x Z Z Z x

x Z x
1 11 11 22 12 21 1 1

2 21 12 2 2

1 1 1

1

= − − + − −
= − −

k k g
k g

( )( ) ( ) ,

( ) ,
(7)

where the parameters are positive, and all the response
functions are expressed by the Hill function commonly
used in the literature.

Let us consider the domain D11 in Fig. 2 as current Di,
and let us define I0 as follows:

I0 11 21 22
11 12

1
21
2

: ( ) ( ).
k k

g
q q k

g
q+ > ∧ < < (8)

The conditions on parameters in Table 1 that are consistent
with I0 identify the possible transitions from D11 towards
adjacent domains in A(D11) = {D6, D7, D12, D16, D17}.
Among the inequalities in Table 1, I12

11 is the only one in
agreement with I0. Thus, QS(D11) = {D12} and the only
possible transition from D11 occurs when I12

11 ∧ I0 holds.

Moving from a switching domain
In a domain Di Œ Δs, the nonlinear dynamics is
characterized by fast and slow motions, respectively
associated with xs and xr, that are independently calculated.
Let us reindex the variables xj, Zj such that the switching
variables come first, and proceed first with the construction
of the fast motion by exploiting the SPA approach.

A – Fast motion
The study of the fast dynamics is performed in Ƶ(Di) in
the scaled time τ = t/q, and aims at localizing the set of
exit points in Ƶ(Di) rather than at detailing the dynamics
within it. Such points clearly identify the next adjacent
domains the trajectories are moving towards from Di

along the xs directions.

To this end, the algorithm defines, in the limit, the
mapping ΣDi

: Di Æ Ƶ(Di), where Di = Di ∪ A(Di), such
that the interior of Ƶ(Di), and its boundary are the images
of Di, and A(Di), respectively. More precisely, the domains
Dk Œ A(Di) are mapped into the faces of Ƶ(Di) when Dk Œ
Δs or into its vertices, otherwise. Let ℱ be the set of both the
faces and the interior of Ƶ(Di), and F its generic element.

To exemplify, let us consider the switching domain D7 in
Fig. 2. The set ℱ has five elements, the four faces
corresponding to D2, D6, D8, D12, and the interior of Ƶ
(D7) that correspond to D7. Moreover, the vertices of Ƶ
(D7) are the images, through the mapping Σ, of the
adjacent regular domains D1, D11, D3, and D13 (Fig. 3).

(a) 1. Symbolic state equations in Di Œ Δs

The algorithm symbolically calculates the boundary-
layer equations (4) in the Z variables associated with the
current switching domain.

As an example, let us consider the model (7), and the
domain D7, where both variables x1, x2 are switching in
it, respectively, around the thresholds θ11, θ21. In D7,
characterized by fast motion only, the boundary-layer
system is given by:

′ = − − + − −

′ =

Z
Z Z

Z Z

Z
Z

11 11 11 12 21 1 11

21

11 1 11
11

1 1

21 1

( )
( ( ) ( ) ),

(

q
k k g q

−− −Z21
21

21 2 21
)

( ).
q

k g q

(9)

Table 1: Example parameter inequalities

Inequality Constraints

I k
i Sign Constraints Parameter Inequalities

I6
11 &x2 < 0

k
g q21

2 21<( )
I12

11 &x1 > 0
k
g q11
1 11>( )

I7
11 &x1 > 0, &x2 < 0 I I6

11
12
11∧

I16
11 &x2 > 0

k
g q21

2 22>( )
I17

11 &x1 > 0, &x2 > 0 I I12
11

16
11∧

Figure 3
Mapping between Di and Ƶ(Di). (a) Mapping of D7 and its
adjacent domains in Fig. 2 into the elements of Ƶ(D7). The
empty circles on the boundary of Ƶ(D7) denote the candidate
exit points. (b) The filled circles denote the exit points from
Ƶ(D7), whereas the empty circles denote unstable stationary
points that correspond to possible entrance points to Ƶ(D7).
The single-headed arrows denote the direction of change of
Zl, ∀l Œ LF in a neighborhood of the exit points %Z11

%Z12 .
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2. Identification of the candidate next traversed domains Dk

Among all the domains Dk Œ A(Di) only those that
correspond to an element on the boundary of Ƶ(Di)
where a stationary point is located are possible domains
next traversed by the trajectories. Then, the algorithm
first builds the subset of elements of A(Di) that are
candidate successors of Di.

Let us denote by EP the set of stationary points, initially
made up of the vertices of Ƶ(Di). Under the Assumption A,
each element F Œ ℱ, may contain at most one stationary
point. A necessary condition for the existence of a
stationary point on F is the presence of a non-zero loop
in JF, the Jacobian matrix calculated on F. Then, ∀ F Œ ℱ,
the algorithm calculates JF and searches for a non-zero
loop involving all variables in JF. In case, it symbolically
calculates the stationary point on F, and updates
accordingly the set of candidate exit points EP. Let us
observe that one internal stationary point exists if all
variables in Ƶ(Di) are involved in a loop.

In the example, only JF2
and JF12

have a non-zero loop.
Then, the algorithm looks for the stationary state

o n F 2 a n d F 1 2 : %Z 2 = + −( , )1 k
k

g q
k

12
11

1 11
11

0 a n d

%Z12 = −( , )1 11 11
11

g q
k . Finally, the exit point candidate set

is updated with the points %Z 2 and %Z12 (Fig. 3(a)).

(b) Constraints I k
i on parameters

The inequality set I k
i , initialized to I0, is calculated for

each candidate exit point % %Z k = ∈{ }Z EPs
k by requiring

that each point is stable and fulfills other motion
conditions on parameters. More precisely, the algorithm:

1. analyzes the spectrum of the Jacobian matrix JF, and
imposes possible conditions I k s

i
, on parameters to

ensure stability of %Z k ;

2. imposes conditions Ik, l on the sign of ′Zl , ∀ l Œ LF, in
a neighborhood of %Z k so that the motion of Zl heads
towards %Z k ;

3. for those %Z k located on elements of ℱ, imposes the
further condition, Ik,(0, 1), 0 < %Z s

k < 1 for each %Z s
k that

does not take value 0 or 1.

Finally, %Z k is an exit point if I I I I Ik
i

k s
i

k l k= ∧ ∧ ∧0 0 1, , ,( , )
holds.

Conditions 2. and 3. are easily checked, while the
stability condition is checked by using concepts from
graph theory, and the usual definition of stability based
on the sign of the eigenvalues of JF. It follows from

Assumption A that the matrix JF is block-structured,
where each block is a permutation matrix associated with
a sub-loop. It can be proved that %Z k is stable if: (i) JFk

has no blocks with dimension strictly greater than 2; (ii)
in 1-dimensional blocks the elements are negative; (iii)
in 2-dimensional blocks the loop products are positive.

Remark 4

Let us consider the general case when Di Œ Δs is
characterized by both switching and regular variables.
The motion from an exit point located in the interior of
Di occurs in a sliding mode along a stable point in the
slow-manifold of the boundary-layer system, and is
described, in the normal time, by the reduced system.
Then, a stable stationary point exists in Di, i.e. Di Œ QS
(Di), if a stable point exists in the interior of Ƶ(Di), and
the regular variable rates are zero in a point inside Di. The
set of inequalities that checks the latter condition are
defined by q q

m
gji j i

j

j
< < +( )1 ∀j Œ {s (Di) + 1,..., n}.

(c) Possible transition from Di to Dk

The exit points located on Ƶ(Di) clearly identify the set of
all possible exit domains, i.e. those domains towards
which a transition from Di is possible. Such domains are
easily calculated by applying the map Σ-1 to each
element of Ƶ(Di) that contains an exit point. Let us
observe that the remaining unstable stationary points in
EP are possible entrance points to Di.

In the example, both JF2
and JF12

are 1-dimensional
block matrices with negative elements. Then, both exit
points %Z 2 and %Z12 fulfill the stability condition 1.
without further constraints imposed on the parameters.
The condition 2. on variable Zl, l = 2 imposes:

I f2 2 2 21 2 210 0, : ( ) ,%Z 2 < ⇒ − <k g q (10)

I f12 2 2 21 2 210 0, : ( ) .%Z12 > ⇒ − >k g q (11)

The inequality I12,2 defined by (11) is compatible with
(8), but the inequality I2,2 is not. Then, %Z 2 is removed
from the exit point set. To be an exit point %Z12 must
satisfy the condition 3.:

I Z12 0 1 1
12

11 1 110 1,( , ) : ( ).< < ⇒ −% k g q

Finally, %Z12 is an exit point if I12
7 , defined by I0 ∧ I12,2 ∧

I12,(0,1), holds.

As for vertices in the example, the conditions 1. and 2.
are fulfilled in the point %Z11 = (0, 1) that corresponds to
the vertex defined as image of D11 by the map Σ.
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Finally, the only exit domains are D12, D11, and then QS
(D7) = {D12, D11} (Fig. 3(b)).

B – Slow motion
The slow motion of regular variables xr along the exit
points is studied in the normal time t in the usual frame
of reference, and it is reconstructed from the reduced
system (5) through the same symbolic procedure given
for regular domains.

Qualitative simulation outcomes
Through the described iterative procedure, the algorithm
builds (i) a behavior tree, rooted in the initial domain,
and (ii) sets of inequalities on parameter values that
characterize specific state transitions. The behavior tree
captures the entire spectrum of network dynamical
behaviors that are invariant for ranges of parameter
values defined by the calculated inequalities.

To illustrate the type of output the algorithm produces,
let us consider the results of the simulation of the ODE

model (7) starting from D1 with the parameter space
defined by the inequalities I0 (8). Through the described
iterative procedure, the algorithm builds the behavior
tree, BT(D1), showed in Fig. 4, and calculates the
inequalities on the parameters, listed in Table 2, that
are associated with each path in BT(D1). As in the
example n = 2, the trajectories described by the tree are
also easily summarized in the phase plane (Fig. 5). Three
reachable stable states, located in D11, D12 and D5, are
identified by the final leaf of each branch in BT. As D12 Œ
Δs, one of them is a singular stable point whereas the
others are regular stable points. These stable states are
reached by different predicted qualitative behaviors,
each of them occurring under specific constraints on

parameters. For example, the trajectory QB13 starting
from D1, crossing D6, and reaching a stable point in D11

is allowed when the inequalities I I6
1

11
6, and I11,

consistent with I0, hold.

In general, for n > 2, due to graphical difficulties, each
branch in the tree is given a time representation. More
precisely, a specific qualitative behavior, e.g. QB4, is
described by the temporal evolution of each variable (Fig.
6). The behavior in Fig. 6 abstracts all numerical trajectories
of the ODEmodel (7) obtainedwith different initial values in
D1, and different sets of parameter values that fulfill the
same inequalities associated with QB4 (Fig. 7).

Discussion
The algorithm is currently under implementation. As for
symbolic calculus, the implementation requires to tackle
complex tasks, such as: (i) update an inequality set with

Figure 4
Behavior tree. Behavior tree rooted in D1, BT(D1), obtained by the simulation of the model Eqs.(7) with initial condition
〈D1, I0〉, where I0 is defined by Eq. (8). Each branch in the tree defines a qualitative trajectory that occurs when the inequalities
that characterize each path in the branch hold.

Table 2: Inequalities associated with BT(D1)

I12
7 , I12 I0 ∧

k
g q11
1 11>( )

I3
2 I0 ∧

k
g q12
1 11>( )

I I I I5
9

9
3

4
3

5
4, , , I0 ∧

k
g q12
1 12>( )

I I I11 11
7

11
12, , I0 ∧

k
g q11
1 11<( )

I7
2 I0 ∧

k
g q12
1 11<( )

I5 I0 ∧ q
k
g12
12
1 1< <( )x

I I I I

I I I I

2
1

16
1

7
1

8
3

11
6

18
8

12
13

13
9

, , ,

, , ,
I0
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an another one; (ii) check the consistency of two sets of
inequalities I1 and I2; (iii) solve systems of equations;
(iv) find cycles in the Jacobian matrix. As for (iii), the
original equations are multilinear in Zs, but due to
Assumption A they can be straightforward solved and
analyzed for stability. Also the solution of problems (i)
and (ii) benefits from Assumption A as the inequalities
are always linear. Then, thanks to the Assumption A , and
to algorithms proposed both by the literature and
common symbolic computation package, such as Math-
ematica [34], the tasks (i)-(iii) are simplified and
feasible. As for the task (iv), it is performed by using
cycle-detection algorithms and matrix graph theory
tools [35].

Soundness and completeness
Soundness
The algorithm guarantees that the behavior tree captures
all of the sound behaviors for values of q sufficiently
small. A closed-form expression of a symbolic upper
bound of q, q , in terms of model parameters guarantees
the Jacobian matrix stability. Then, the generated
behaviors are sound for values of q < q . However, for
a complete formal proof of soundness we need to
prove that assuming, in the limit, stability instead of
asymptotic stability does not affect the results for values
of q < q .

Figure 5
Representation of the qualitative trajectories
in the phase space. Phase space representation of
trajectories defined by BT(D1) in Fig. 4, filtered of the
spurious behaviors QB2 and QB11. Stable states are
denoted by ·. The labels I k

i denote the sets of inequalities
on parameter values that hold when transitions from
Di to Dk occur.

Figure 6
Temporal representation of a qualitative trajectory. Qualitative temporal representation of the behavior labeled QB4 in
Fig. 4, namely of the variables x1 (a) and x2 (b). On the horizontal axis, the discrete sequence of symbolic instants at which the
domains ( , , , , , )D D D D D D1 2

1
3
2

8
3

13
8

12
13 are sequentially traversed. On the vertical axis, the qualitative value space of each

variable is reported. The qualitative values (∘) abstract all real values in the related open and closed intervals, whose width is
highlighed by a dashed line. The stable states are denoted by ·. The continuous line connecting the qualitative values has been
introduced to give a hint of the qualitative profile.
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Completeness
At the current stage, the algorithm may generate spurious
behaviors. There is a twofold explanation for that. First, we
have not yet performed a thorough analysis with respect to
entrance-exit transition, or in other words, we have not yet
solved the problem of identifying the only admissible
connections between entrance and exit points. Moreover,
singular perturbation analysis is a local procedure that
works quite well in a quantitative context but that needs, in
a qualitative context, to be supported by a global criterion
when local paths are connected to produce a specific
trajectory. For example, the behaviorQB2 is spurious as I12

7

is not consistent with I11
12 . Similarly, QB11 is spurious.

The characterization of the paths from one domain to the
next ones by sets of inequalities constraining the model
parameters is quite new in the field of qualitative
simulation, as for both general-purpose and specifically
tailored algorithms. Such a strategy may reveal quite useful
in the definition of a “global criterion” that allows us to
distinguish sound behaviors from spurious ones by
requiring that the sets of inequalities that label the local
paths in a specific trajectory are consistent with each other.
Both the definition of such a criterion and its

implementation are not a trivial task, especially from
a computational point of view. As for algorithm complete-
ness, another essential methodological and computational
issue to be deepened deals with the definition of the
transition map that properly connects the entrance points to
the exit points associated with a switching domain.

Comparison between the algorithm and GNA
Until now, to the best of our knowledge, GNA is the only
computational counterpart of the algorithm herein pro-
posed. Unlike GNA, that simplifies the simulation problem
by approximating the sigmoid response functions by step
functions discontinuous in the thresholds, our qualitative
simulation algorithm tackles the problem in all of its
complexity, and works for models of GNAs with continuous
sigmoid response functions. As a matter of fact, it has been
designed to both provide a tool for a more realistic
modeling framework and overcome the limits of GNA.
Furthermore, in addition to more solid mathematical
grounds for soundness and completeness, our algorithm
differs from GNA as far as the required input information and
the output outcomes are concerned. In GNA, the trajectories
are constructed under the assumption that the locations of

Figure 7
Numerical simulation results. Time courses of the variables x1 (a) and x2 (b) obtained by numerical simulations of the
model (7). The different plots result from simulations with different initial numeric values in D1, and different sets of parameter
numeric values but fulfilling the same inequalities that characterize the qualitative trajectory QB4. The horizontal continuous
lines in correspondence to threshold values should facilitate the comparison with Fig. 6. All plots related to each variable are
qualitatively abstracted by the related plot in Fig. 6.
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the focal points associated with the regular domains,
symbolically expressed by a set of inequalities on para-
meters, are specified as input. But, as this precise knowledge
is unlikely available, a thorough study of the dynamics of
the system at hand might require several runs of the
algorithm to simulate the GNA dynamics under possible
different assumptions on focal point locations. Then, the
study could result quite heavy due to the high number of
possible scenarios, and the need to check, to avoid further
causes of generation of spurious behaviors, the consistency
of all the parameter inequalities that precisely localize a
specific focal point.

Our algorithm does not need precise information on the
location of focal points but, to be fired, it just requires
the parameter space domain, that is inequalities on
parameters that univocally determine the sign of direc-
tion of change of each state variable in the initial
domain. Afterwards, it is up to the algorithm to calculate
and refine the parameter inequalities that distinguish
each simulated behavior. Due to more relaxed con-
straints, a single run of our algorithm leads to a richer
and more informative set of behaviors than that one
obtained by GNA as it is highlighted by the comparison of
Fig. 5 with Fig. 8. Let us observe that any other possible

definition of parameter inequalities would not have led
to the set of behaviors in Fig. 5 but to one of its subsets.

A complete and fair performance evaluation of our
approach when compared with GNA would not disregard
its application to those real world networks successfully
simulated within the GNA framework, namely the
initiation of sporulation in Bacillus subtilis [10], and the
response to nutritional stress and carbon starvation in
Escherichia coli [11,12].

Application to Systems/Synthetic Biology
The qualitative simulation algorithm presented provides
powerful computational grounds for dry experiments to
be performed in both Systems and Synthetic Biology
contexts. It is an economic tool for hypothesis testing
and knowledge discovery as it allows us to understand
how specific activation patterns are derived from models
of fixed network structures, and which different dyna-
mical behaviors are possible.

In a Systems Biology context, its exploitation is useful in
the formulation phase of new hypotheses and theories
that explain, in both physiological and pathological

Figure 8
GNA simulation outcomes. Simulation outcomes of the example model obtained by the algorithm GNA given as input D1 and

the parameter inequalities, compatible with I0, 0 11
1 11< <k

g q ; 0 12
1 11< <k

g q ; q qk k
g11 12

12 11
1

< <+ ; q qk
g21 22
21
2

< < (panel

(a)), 0 11
1 11< <k

g q ; q qk
g11 12
12
1

< < ; q k k
g12 1

12 11
1

< <+ x ; q qk
g21 22
21
2

< < (panel (b)). The states generated by GNA, and

labeled Sn, have been located at their position in the phase space to make the comparison with the results in Fig. 5 possible.
Both sets of trajectories in (a) and (b) are subsets of the set of trajectories generated by our algorithm.
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situations, experimental data either previously unob-
served or not interpretable by the well-established
biological knowledge. The result of the comparison of
the simulated behaviors with the observed ones allows
us either to confirm or to refuse the model that
represents the new formulated biological hypotheses.
Moreover, as qualitative simulation derives the entire
range of network dynamics consistent with the initial
conditions, the simulation outcomes might capture
behaviors never observed. Such behaviors need to be
experimentally tested by ad hoc designed experiments to
possibly further confirm or suggest how to revise the
model, i.e. the underlying biological hypotheses. The
effective applicative potential of the proposed algorithm
within a model-based reasoning cycle for the deep
comprehension of complex real world biological systems
is currently under study. More precisely, it will be
applied (1) to explain and interpret the dynamics of
the complex regulatory network that controls motility in
Bacillus subtilis [36], and (2) to explore the molecular
mechanisms that regulate the transition of a normal cell
phenotype to an invasive-metastatic phenotype [37].

The model-based reasoning cycle results particularly
convenient and useful also when applied to Synthetic
Biology problems in the design phase. The construction
of a synthetic biological network in the cell, able to
perform specific tasks or to produce desired behaviors of
a biological process in response to external stimuli,
could benefit from a preliminary dry design of the
network. To this end, models of different network
structures can be simulated in correspondence to
different inputs, i.e signals either exogenous or cellular,
till the desired stable behaviors are obtained. Let us
remind that, in our simulation framework, each specific
simulated behavior is characterized by a chain of
parameter inequalities. Thus, the actual construction of
a synthetic network could benefit from such a piece of
information as it provides the admissible parameter
space domain for the target behaviors. The synthetic
network IRMA[38] built in the yeast Saccharomyces
cerevisiae is made up of a small number of components
but rather complex in their interconnections as it
includes multiple feedback loops generated by the
combination of transcriptional activators and repressors.
It offers a suitable benchmark for in vivo testing our
computational framework.

Conclusion
The assumption of continuous response functions makes
the simulation problem hard to be tackled but it is
crucial in view of the realization of tools that can be
gradually extended to tackle more and more realistic
models. Our algorithm is grounded on a set of symbolic

computation algorithms that carry out the integration of
qualitative reasoning techniques with singular analysis
perturbation methods: the former techniques allow us to
cope with uncertain and incomplete knowledge whereas
the latter ones lay the mathematical groundwork for a
sound and complete algorithm capable to deal with
regulation processes that occur at different time-scales.

The modeling framework and the simulation algorithm
proposed can be applied to predict the possible
qualitative behaviors of GRNs of any size and complexity,
both natural and synthetic. The range of applicability of
such a computational approach is quite large. First, it
makes possible the validation of hypothesized models of
GRNs by matching the simulated predictions against
observed gene expression profiles, the derivation of the
most plausible model, and the identification of para-
meter inequalities that account for the observations.
Then, it greatly facilitates the investigation of the effects
on the dynamics of a specific GRN in response to external
stimuli. Finally, it allows us to build a total envision-
ment of the model through the generation of all possible
state transitions, and to search, within them, for the
parameter constraints and initial conditions that allow
us to achieve a desired behavior, e.g. a stable solution. In
term of tasks, besides its undoubted contribution to the
comprehension of complex networks of genes and
interactions, the proposed computational approach
could be fruitfully used in the design of either new
drugs or synthetic regulatory networks.

The code will be freely available for non-profit academic
research by making a user licence request to ironi@i-
mati.cnr.it.
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