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Abstract

The interaction between complement fragment C3d and complement receptor 2 (CR2) is a key aspect of complement
immune system activation, and is a component in a link between innate and adaptive immunities. The complement
immune system is an ancient mechanism for defense, and can be found in species that have been on Earth for the last 600
million years. However, the link between the complement system and adaptive immunity, which is formed through the
association of the B-cell co-receptor complex, including the C3d-CR2 interaction, is a much more recent adaptation. Human
C3d and CR2 have net charges of 21 and +7 respectively, and are believed to have evolved favoring the role of
electrostatics in their functions. To investigate the role of electrostatics in the function and evolution of human C3d and
CR2, we have applied electrostatic similarity methods to identify regions of evolutionarily conserved electrostatic potential
based on 24 homologues of complement C3d and 4 homologues of CR2. We also examine the effects of structural
perturbation, as introduced through molecular dynamics and mutations, on spatial distributions of electrostatic potential to
identify perturbation resistant regions, generated by so-called electrostatic ‘‘hot-spots’’. Distributions of electrostatic
similarity based on families of perturbed structures illustrate the presence of electrostatic ‘‘hot-spots’’ at the two functional
sites of C3d, while the surface of CR2 lacks electrostatic ‘‘hot-spots’’ despite its excessively positive nature. We propose that
the electrostatic ‘‘hot-spots’’ of C3d have evolved to optimize its dual-functionality (covalently attaching to pathogen
surfaces and interaction with CR2), which are both necessary for the formation B-cell co-receptor complexes. Comparison of
the perturbation resistance of the electrostatic character of the homologues of C3d suggests that there was an emergence
of a new role of electrostatics, and a transition in the function of C3d, after the divergence of jawless fish.
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Introduction

The complement immune system is a vital component of innate

immunity that attacks foreign pathogens by covalently attaching to

pathogen antigens, directly lysing pathogen surface membranes,

and initiating inflammatory responses. In humans, one key result

of complement activation is the formation of B-cell co-receptor

complexes, which form a link between innate and adaptive

immunities, and increase B-cell sensitivity to an antigen by 1000–

10000 fold [1–4]. During B-cell co-receptor complex formation, a

critical interaction must occur between complement fragment

C3d, and the first two complement control protein domains of

complement receptor 2, CR2(CCP1-2) [referred henceforth as

simply CR2] (Figure 1A) [1–3]. Complement C3d is a domain and

cleavage product of complement protein C3, the central protein

involved in the activation and up regulation of the complement

immune system, while CR2 is a membrane protein that is

expressed on the surface of B-cells [1,2]. As a domain of

complement C3, C3d is involved in the opsonization of pathogens

through a highly reactive thioester bond, which can ultimately

result in pathogens being coated by covalently attached C3d [1,2].

Evolutionarily, C3d is of great interest since C3 can be found in

species that have been on the earth for 600 million years, while

CR2 and the C3d-CR2 interaction is believed to have been gained

much more recently after the appearance of adaptive immunity,

which first appeared in teleost fish [4]. Therefore, C3d has evolved

to be dual-functional, since C3d covalent attachment to pathogen

cell surfaces and the C3d-CR2 interaction must both occur

simultaneously in order to form B-cell co-receptor complexes. On

the other hand, CR2(CCP1-2) is believed to be mono-functional,

with its interaction with C3d being its sole function.

Due to the significance of the C3d-CR2 interaction and its role

in increasing B-cell sensitivity, extensive research has been

performed investigating the nature of the interaction [5–12], as

well as possible approaches for utilizing this interaction in the

design of new therapeutics and vaccines [1,13]. As has been

discussed for many complement protein interactions, electrostatic

forces contribute significantly to the C3d-CR2 interaction [11,12].

Often as a result of evolution many proteins, especially those of the

complement system, contain clusters of like-charged residues,

which generate regions of high electrostatic potential that are often

referred as electrostatic ‘‘hot-spots’’ [14,15]. These electrostatic
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‘‘hot-spots’’ tend to correspond with functional sites, since they can

result in acceleration of protein association, and can stabilize

protein complexes [16,17]. This definition of electrostatic ‘‘hot-

spots’’ differs from the typical definition of protein ‘‘hot-spots’’,

which refers to a residue that when mutated results in greater than

1 kcal/mol change in binding affinity [14,15], since our definition

involves the electrostatic contributions of numerous residues and

can be understood in the absence of a protein complex.

When referring to the functional sites of C3d, two opposing

surfaces have been described: 1) CR2-face, a highly acidic concave

surface known to be the binding site of several host/pathogenic

ligands (Figure 1B, top; see also Supporting Figures S1 and S2);

and 2) thioester-face, a basic surface surrounding the thioester

bond utilized in covalent attachment to pathogen cell surfaces

(Figure 1B, bottom). The acidic ‘‘patch’’ has been shown to be

involved in recognition and binding during the association of C3d

to CR2 [8,10], as well as to bacterial inhibitors of the complement

system [18–20]. The basic surface however, accelerates the

covalent attachment of C3/C3d to pathogenic cell surfaces. In

comparison, CR2 possesses a predominantly positive electrostatic

potential (Figure 1C), with the C3d binding site of CR2 having the

most positive potential (Figure 1C, top), which is complementary

to the acidic CR2 binding site on C3d.

Since electrostatics has been shown to play such a key role in the

dual functionality of C3d, we propose that the electrostatic

character of C3d has evolved to allow for optimal performance of

both functions simultaneously. This stems from the fact that

electrostatic forces contribute significantly to the C3d-CR2

interaction, and to covalent attachment of C3d to pathogen cell

surfaces, both of which must occur for this link between innate and

adaptive immunities to be activated. In this study, we investigate

the presence of electrostatic ‘‘hot-spots’’ on complement proteins

C3d and CR2 using a novel computational method involving

perturbation of electrostatic properties of proteins. Additionally we

probe the evolution of the electrostatic character of C3d and CR2,

through the use of homology modeling, to gain insight into the role

of electrostatics in the gained C3d-CR2 interaction, as well as the

surface of the conserved thioester bond.

Results/Discussion

Through the course of evolution, in addition to sequence,

electrostatic character is also often conserved. Conserved electro-

static potential can be responsible for acceleration and strength-

ening of protein-protein association, and is therefore indicative of

the location of functional sites. Wade et al. have proposed

computational methods utilizing homology modeling and Poisson-

Boltzmann electrostatic calculations to quantitatively identify

regions of conserved electrostatic character [21,22]. The approach

calculates electrostatic similarity indices (ESI) to determine the

cumulative spatial distribution of electrostatic similarity across a

Figure 1. Molecular representations of the C3d-CR2 interaction. (A) Surface representation of the C3d-CR2 interaction with C3d in gray and
CR2 in green (PDB Code: 3OED). (B) Electrostatic potential surface projection for C3d (PDB Code: 1C3D). (C) Electrostatic potential surface projection
for CR2 (PDB Code: 1LY2). The code for panels (B) and (C) are as follows: the color transitions from red – white – blue when going from negative (25
kT/e) – neutral (0 kT/e) – positive (+5 kT/e) electrostatic potential.
doi:10.1371/journal.pcbi.1002840.g001

Author Summary

Complement fragment C3d is a thioester-containing
protein that is a key component/domain in the comple-
ment system, an ancient line of defense, due to its ability
to covalently attach to pathogen cell surfaces, such as
bacteria. As the immune system evolved in complexity,
from acellular defense mechanisms to multicellular sys-
tems with memory, so has the function of C3d. In humans,
but not lower species such as invertebrates, C3d attached
to pathogen surfaces binds B-cell co-receptor CR2, in
conjunction with an antibody/antigen complex, forming a
link between the innate and adaptive immune systems.
The C3d-CR2 interaction ultimately increases B-cell sensi-
tivity to the C3d tagged pathogen by 1,000–10,000 fold,
and is known to be driven by electrostatic forces. Since
electrostatics are crucial to the C3d-CR2 interaction, it is
likely that probing the evolution of the electrostatics of
C3d and CR2 will provide insight into this gained function.
To this end, we employ a novel computational approach
for identifying the electrostatic ‘‘hot-spots’’ of C3d and
CR2, which are produced by clusters of like-charged
residues found on the surface of the protein. Electrostatic
‘‘hot-spots’’ are often evolutionarily favored and in this
study provide new insight into the evolution of C3d in its
role in a link between innate and adaptive immunity.

Evolution of Complement C3d Electrostatics
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family of homologous proteins. For this study, we have identified

24 homologues of C3d and 4 homologues of CR2, and the

isopotential contours for the corresponding electrostatic potentials

are provided in Figure 2. The C3d homologues were chosen from

a variety of species, at various evolutionary time points, and are

diverse both in sequence (,36–84% identity with human) and in

net charge (213 to +8). However, the 4 identified homologues of

CR2 are much more similar (net charge (+2 to +7) and ,54–92%

identity with human), and to the best of our knowledge, represent

all currently known sequences of CR2. ESI calculations, similar to

those proposed by Wade et al., were performed for the C3d and

CR2 homologues (Figure 2), and are illustrated by the ESI surface

projections of Figure 3. Despite large variations in the electrostatic

potentials of the C3d homologues, the analysis identified two

regions of high electrostatic similarity (Figure 3A; circled and

indicated in red), which corresponded to the two functional sites of

C3d. The ESI distribution for the CR2 homologues illustrate a

high level of overall conserved electrostatic potential, not limited to

the known functional site, as is indicated by the predominantly red

surface projections of Figure 3B. Conservation of the electrostatic

potential surrounding the functional sites of C3d and CR2 further

suggests a central role for electrostatics in their functions; however,

conserved electrostatic potential alone is not necessarily indicative

of the existence of electrostatic ‘‘hot-spots’’.

If through the course of evolution, electrostatics has become

crucial to protein function, it is plausible that the electrostatic

nature of the protein would be resistant to perturbation. This

stems from the assumption that a disruption in the protein

electrostatic character would result in a reduction or loss of

function. Furthermore, the necessity for electrostatic perturbation

resistance is already suggested by the presence of clusters of like

charged residues (‘‘hot-spots’’). To test this hypothesis, for the case

of human C3d, we generated two sets of perturbed electrostatic

potentials based on: i) molecular dynamics and ii) mutations. For

the dynamics, a 20 ns explicit-solvent molecular dynamics (MD)

simulation was performed, from which 200 conformations of C3d

were extracted. As for the mutations, a computational alanine-

scan was performed using the AESOP framework [23], in which

each charged residue was mutated to alanine, one at a time. For

both sets of perturbed structures, the procedure used to compare

the C3d homologues was also applied to generate ESI distributions

to identify regions of high electrostatic similarity, or those regions

least affected by perturbation. Surface projections of the ESI

distributions, referred henceforth as perturbation maps, were

generated for the two sets of perturbed structures. Both

perturbation maps, based on either dynamics or mutation, identify

two similar regions with resistance to perturbation (Figure 4;

circled and indicated in red). These regions correspond to the two

functional sites of C3d (Figure 1B), as well as the two regions of

evolutionarily conserved electrostatic potential (Figure 3A). This

resistance to electrostatic perturbation of the two functional sites,

suggest the presence on an electrostatic ‘‘hot-spot’’ at each site,

which compensate for changes in the character of these regions.

The two electrostatic ‘‘hot-spots’’ are slightly larger and more

distinct in the mutation-based perturbation map (Figure 4B), when

compared to the dynamics-based (Figure 4A), and this arises due

to the size of the perturbation. This is understandable since

depending on the amount of conformational change, dynamics

can have noticeable effect on electrostatic potential; however, both

perturbation types are still quite modest, yet are able to identify

these electrostatic ‘‘hot-spots’’.

An alanine-scan based perturbation map was also generated for

human CR2 using the AESOP framework, and is illustrated by

Figure S3. However, Figure S3A shows that no electrostatic

‘‘hot-spots’’ were identified on CR2 based on the same ranges of

similarity used for C3d (Figure 4; 0.5–0.7–0.9), since the entire

surface is colored blue indicating low electrostatic similarity. A

second visualization of the CR2 alanine-scan perturbation map

(Figure S3B), based on a much smaller range of similarities (0.47–

0.48–0.49), still suggests a lack of distinct electrostatic ‘‘hot-spots’’

on the surface of CR2. Therefore, despite CR2 possessing

excessive positive electrostatic potential, the charge residues of

CR2 are evenly distributed and do not generate electrostatic ‘‘hot-

spots’’, such as those observed for C3d.

Given the presence of perturbation resistance in the electrostatic

character of human C3d, the question of how exactly did this

characteristic come about arises. This question is even more

interesting, when considering that C3d has gained the CR2

interaction, which is driven by electrostatics, over the course of

evolution. It is possible that either the C3d electrostatic ‘‘hot-spot’’

has always been present and CR2 was simply opportunistic, or

that the ‘‘hot-spot’’ has come to existence through co-evolution

with CR2, which seems the most likely. To investigate whether the

C3d electrostatic ‘‘hot-spots’’ are present in homologues of human

C3d, we generated perturbation maps based on alanine-scan

mutations for the remaining 23 C3d homologues (Figure 5). When

comparing the perturbation maps for the CR2-face of the C3d

homologues (Figure 5A), we find that the mammals (dark-blue

box) are the only group of species in which all homologues exhibit

the CR2 ‘‘hot-spot’’. This indicates that the electrostatic ‘‘hot-

spot’’ of the CR2-face of C3d is something that has been gained

through evolution. On the other hand, the electrostatic ‘‘hot-spot’’

on the thioester-face of C3d (Figure 5B) is much more

predominant in lower species, such as the invertebrates (black

box) and jawless fish (purple box), when compared to higher

species like the mammals. The combination of these two results,

the gain of the CR2 ‘‘hot-spot’’ and the reduction of thioester

‘‘hot-spot’’, is quite interesting, since it suggests a transition in the

function of C3d. The two functions of C3d can be seen as

opposing one another, and in order to optimize the new

interaction with CR2, the conserved electrostatic ‘‘hot-spot’’ on

the thioester face was reduced or lost, such is the case for mouse.

There are exceptions to the mentioned trends, mainly the

invertebrates (Figure 5; black box), which exhibit large diversity

in net charge (ranging from 213 to +6) and electrostatic potential

(Figure 2). The invertebrates diverge first in the evolutionary tree,

and therefore, have been evolving under their own pressures for

much longer than any other group of species, which has most

likely been the cause of this increased diversity. Interestingly, this

increased diversity has resulted in the C3d of amphioxus having

very similar electrostatic character to human C3d, when

comparing net charge and electrostatic potentials/‘‘hot-spots’’,

despite being separated by hundreds of millions of years in

evolution. On a technical note, it should also be noted that due to

the small size of the charge perturbations introduced by the

alanine-scan mutations, electrostatic ‘‘hot-spots’’ could be overes-

timated in proteins with high net charge, which is most likely the

case for homologues like the sea urchin (net charge 213).

Sequence-based approaches are typically used when analyzing

the evolution of a protein, since conservation of amino acid

positions can identify functionally important regions of sequence.

As a comparison to our perturbation map approach, we have

performed clustering for the 24 C3d homologues based on

similarity of charged amino acid positions within the two

functional regions (Figure 6). The CR2-face charge clustering

(Figure 6A) identified two primary clusters: (1) contains all species

with cellular immunity [jawless fish, fish, amphibians, reptiles,

birds, and mammals]; (2) all invertebrate species. The appearance

Evolution of Complement C3d Electrostatics
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of jawless fish (lamprey and hagfish) in cluster 1 of the CR2-face

clustering, is quite interesting given that jawless fish could

hypothetically be the first group of species to exhibit a C3d-

CR2-like interaction, since they contain B-like and T-like cells

[24]. This is in contrast to the current hypothesis that teleost fish

are the first species to possess the C3d-CR2 interaction [4]. The

charge patterns of the species of cluster 1 are noticeably more

similar (darker region; Figure 6A), suggesting an emergence of a

new role of charge in the function of C3d in the species of this

cluster. Additionally, the mammals cluster separately from the

other species of cluster 1 in the CR2-face charge clustering.

Indicating that the CR2-face charge character of mammal C3d

homologues is unique, which correlates with the perturbation map

results (Figure 5A). In contrast, the thioester-face charge similarity

clustering (Figure 6B) produced a similar classification of the C3d

sequences as found using sequence percent identity (Supporting

Figures S4 and S5). It should be noted that the net charge of the

homologues has little to no effect on the charge similarity

clustering (Figure 6), and it’s the position of specific charged

residues that distinguishes the clusters of C3d homologues, which

is in agreement with the existence of electrostatic ‘‘hot-spots’’.

As has been discussed by McCammon [25], speed is often the

main evolutionary driving force, even at the molecular level.

Acceleration of biomolecular processes is achieved through long-

range electrostatic interactions, which guide the formation of

encounter complexes, increasing the diffusive rate [26]. Electro-

static ‘‘hot-spots’’, generated by clusters of like-charged residues,

are frequent in nature, since they provide rapid association of

Figure 2. Spatial distributions of electrostatic potential for homologues of C3d and CR2. (A) Electrostatic potential distributions for 24
homologues of C3d [red, negative (21.5 kT/e); blue, positive (1.5 kT/e)]. (B) Electrostatic potential distributions for 4 homologues of CR2 [red,
negative (21.5 kT/e); blue, positive (1.5 kT/e)]. The net charge (e) of each homologue is provided in the parentheses.
doi:10.1371/journal.pcbi.1002840.g002

Evolution of Complement C3d Electrostatics
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biomolecules satisfying the need for speed. However, there is a

penalty paid in the form of a loss in local protein stability, since the

presence of clusters of like-charged residues can result in numerous

unfavorable intramolecular Coulombic interactions, as has been

shown for the case of barnase-barstar [27]. Fersht and coworkers

have proposed that nature often selects for function over stability

[27], as is suggested by the presence of electrostatic ‘‘hot-spots’’ on

many proteins. In the case of human C3d, electrostatic ‘‘hot-spots’’

have evolved surrounding the thioester bond and CR2 binding

site, which when combined accelerate the formation of the B-cell

co-receptor complex, a link between innate and adaptive

immunity. Despite the lack of electrostatic ‘‘hot-spots’’ on human

CR2, the excessively positive nature of CR2 has likely been a

driving force in the evolution of the electrostatic ‘‘hot-spot’’ on the

acidic face of C3d (Figure 6). Similarly, the acidic nature of the

CR2 binding site on C3d is likely the reason why CR2 of higher

species has the highest net charge, as is seen in chimpanzees and

humans (Figure 2). Furthermore, we propose that the more even

distribution of charged residues observed on human CR2(CCP1-2)

is sufficient given the mono-functionality of CR2(CCP1-2), while

the electrostatic ‘‘hot-spots’’ of C3d have evolved to optimize the

dual-functionality of C3d.

The C3d-CR2 interaction greatly improves the immune

response to an antigen, and as a result has been selected by

nature as a target for immune evasion [18–20]. Structural

evidence has shown that virulence factors of Staphylococcus aureus

target the electrostatic ‘‘hot-spots’’ of human C3d (Supporting

Figure S2). For example, Staphylococcus aureus secretes the highly

cationic virulence factors EfbC and Ehp, which take advantage of

the CR2 electrostatic ‘‘hot-spot’’ through the use of long-range, as

well as short-range, electrostatic interactions (Supporting Figure

S2A) [18]. Additionally, domain IV of the Staphylococcal

immunoglobulin-binding protein (Sbi) targets the thioester side

electrostatic ‘‘hot-spot’’ of C3d (Supporting Figure S2B), and in

conjunction with Sbi domain III results in futile consumption of

C3 through the formation of covalent adducts [19]. The

electrostatic nature and binding sites of the Staphylococcus aureus

virulence factors is further evidence for the key role of

electrostatics in the function and evolution of complement C3d.

In general, electrostatic calculations, such as those presented

here, can provide insight into the evolution of protein function;

however, electrostatic similarity alone cannot be used to derive

evolutionary (phylogenetic) relationships. Due to the long-range

nature of electrostatics, proteins with very different sequences can

result in very similar electrostatic potentials, such is the case when

comparing the human and amphioxus C3d homologues. The

similarity observed in the electrostatic potentials/’’hot-spots’’ of

human and amphioxus C3d, suggests that both homologues have

evolved to have similar function, and we even predict that

amphioxus C3d could bind human CR2; that said, these

electrostatically similar proteins have resulted from different sets

of evolutionary pressures and our current understanding would

Figure 3. Conservation of electrostatic potential for homologues of C3d and CR2. (A) Cumulative electrostatic similarity distribution for 24
homologues projected onto the surface of human C3d. (B) Cumulative electrostatic similarity distribution for 4 homologues projected onto the
surface of human CR2. The color transitions from blue – green – red when going from low to high similarity, and corresponds to ESI values of 20.10–
0.15–0.40.
doi:10.1371/journal.pcbi.1002840.g003

Figure 4. Electrostatic similarity distributions for perturbed
human C3d structures. (A) Perturbation map for a 20 ns explicit-
solvent MD simulation, based on 200 snapshots (extracted every
100 ps). (B) Perturbation map based on a theoretical alanine scan,
consisting of 64 charged residue to alanine mutations. Color scheme is:
blue – green – red; low to high similarity, corresponding to ESI values of
0.5–0.7–0.9.
doi:10.1371/journal.pcbi.1002840.g004

Evolution of Complement C3d Electrostatics
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suggest that there is not an amphioxus CR2 homologue. In this

study, our perturbation map analysis is intended to complement

standard sequence-based analysis by providing insights into the

evolution of function according to electrostatics-based arguments.

When comparing the homologues of complement C3d, a weak

CR2 ‘‘hot-spot’’ doesn’t necessarily imply an absence of the C3d-

CR2 interaction, but implies a less optimized interaction,

specifically with respect to electrostatics. Therefore, based on

our analysis we cannot conclude which homologues of C3d

interact with a CR2 homologue, but we have identified the onset

of a new role of charge/electrostatics in the function of C3d after

the divergence of jawless fish. We propose that this new role of

charge corresponds with the appearance of the first multi-

functional homologue of C3d. It should be noted that conserved

Figure 5. Mutation-based perturbation maps for 24 C3d homologues. The cumulative electrostatic similarity distributions for alanine-scan
charge perturbations are projected onto the surface of each respective structure with two rotations: (A) CR2-face and (B) thioester-face. Perturbation
map color scheme is: blue – green – red; low to high similarity, corresponding to ESI values of 0.5–0.7–0.9. Colored boxes are used to group
homologues from similar species. The box color code is as follows: mammals, dark-blue; birds, orange; reptiles, red; amphibians, green; fish, light-
blue; jawless fish, purple; invertebrates, black.
doi:10.1371/journal.pcbi.1002840.g005

Figure 6. Charge similarity clustering for the two sides of C3d. Dendrograms with distance matrix heatmaps illustrate clustering of the 24
C3d homologues based on the number of positions with the same charge within the two functional regions: (A) CR2-face and (B) thioester-face. Net
charge of each homologue is provided in parentheses.
doi:10.1371/journal.pcbi.1002840.g006

Evolution of Complement C3d Electrostatics
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electrostatic potential is not necessarily indicative of a conserved

electrostatic ‘‘hot-spot’’, as can be seen when comparing the

homologues of C3d (Figures 3A and 5). Our novel methods based

on perturbation maps identified the electrostatic ‘‘hot-spots’’ of

C3d and have potential utility in the identification of functional

sites of other highly-charged biomolecular systems, as well as in

drug design.

Methods

All calculations for human C3d, as well as all homology

modeling, was based on the crystal structure of unbound human

C3d (PDB Code: 1C3D) [10]. The sequence for human

complement C3d was extracted from 1C3D and was used as a

Blast query to identify C3d homologue sequences from the

UniProt database [28]. The 23 C3d homologues were selected to

optimize the range of sequence similarity when compared to

human C3d (,37–85% identity with human), but were chosen

while keeping in mind that ,40% similarity is needed to ensure

accuracy when performing homology modeling (Supporting Table

S1). Similarly, a crystal structure of unbound CR2(CCP1-2) (PDB

Code: 1LY2) was used for all CR2 related homology modeling and

electrostatics calculations. The sequences for the 4 CR2 homo-

logues were obtained from the NCBI UniGene Project, and to the

best of our knowledge represent all known CR2 sequences to date.

As an initial comparison, a multiple sequence alignment

comparing the 24 C3d homologues was generated using MUS-

CLE [29] and Bio3D [30] (Supporting Figure S6). The resulting

alignment was used to populate a pairwise sequence identity

matrix comparing the 24 C3d homologues. A second matrix

comparing pairwise charge similarity was also generated by

identifying the number of amino acid positions with a like charged

amino acid for each pair of sequences, meaning the number of

positions where both sequences have either K/R or D/E. The

generated similarity matrices were used as input for hierarchical

clustering using the R statistical language [31], and the results

were visualized using heatmaps with dendrograms. The functional

regions for sequence clustering were defined based on the x-

coordinates of the residues as illustrated by Supporting Figure S7.

In this study, homology modeling was utilized to generate

structures for the 23 non-human C3d homologues based on

1C3D, as well as for the 3 non-human homologues of CR2 (details

in Text S1). Additionally, perturbed structures of the 24 C3d

homologues were generated using a combination of alanine-scan

mutagenesis and a molecular dynamics simulation (details in Text

S1). All electrostatic potential calculations were performed using

APBS [32], based on a grid with 12961296129 grid points and

lengths of 98 Å6116 Å6116 Å and 102 Å678 Å6116 Å for C3d

and CR2, respectively. The solvent environment was represented

by a dielectric constant of 78.57 with a counterion concentration

of 0 mM, while the protein dielectric constant was 20. An ionic

strength of 0 mM was selected, since in previous studies [23]

involving similar alanine-scan perturbations of barnase-barstar

and electrostatic clustering, we found that 0 mM calculations

performed better when considering the effects of dynamics.

Additionally, the same study showed that electrostatic free energies

calculated at 0 and 150 mM ionic strength had near identical

correlations with experiment. Similarly, we have also shown that

when considering alanine mutations of ionizable amino acids for

highly charged proteins, that correlations between calculated and

experimental free energies improved using a protein dielectric of

20 rather than the typical value of 2 [33], which is the motivation

for selecting a protein dielectric of 20 for this study. A probe serve

with a radius of 1.4 Å was used to define the dielectric boundary.

Protonation states of ionizable amino acids were assigned

according to model pKa values at a pH of 7.4. Each electrostatic

potential calculation was centered on either 1C3D or 1LY2 to

ensure proper alignment of electrostatic potentials prior to

similarity calculations. For each set of electrostatic potentials,

cumulative distributions of electrostatic similarity (ESI) were

calculated using the AESOP framework, according to the

following expression:

ESI(i,j,k)~
1

N

XN

n~1

1{
wA(i,j,k){wB,n(i,j,k)
�� ��

max wA(i,j,k)j j, wB,n(i,j,k)
�� ��� �

Here, QA represents the electrostatic potential to which all other

potentials are compared (parent), while QB,n represents the N

members of the family of electrostatic potentials to be compared.

The ESI is calculated at each grid point (i,j,k), and normalized by

N, the number of electrostatic potentials comparisons. This

measure of electrostatic similarity only describes the similarity of

the electrostatic potential of a set of proteins to one particular

protein at a given grid point. For example, the ESI distribution for

the C3d homologues (Figure 3A) was calculated by comparing the

electrostatic potentials of the 23 homology models to the

electrostatic potential of 1C3D. The surface projections of

electrostatic similarity were generated using UCSF Chimera [34].

Supporting Information

Figure S1 Complement regulators and receptors bind the acidic

‘‘hot-spot’’ of complement C3d. Cumulative electrostatic similarity

distribution for 24 homologues projected onto the surface of

human C3d (same as Figure 3A) [blue – green – red; low to high

similarity] with host ligands superimposed. Ribbon representations

are used for the host ligands: FH 4 – white (PDB: 2WII); FH 19/

20 – gray (PDB: 2XQW); CR2 – black (PDB: 3OED). Two

rotations of C3d (180 degrees about the y-axis) are provided to

show the two electrostatic ‘‘hot-spots’’: (A) CR2-face and (B)

thioester-face.

(TIFF)

Figure S2 Pathogenic inhibitors of the complement system

target the conserved electrostatic ‘‘hot-spots’’ of complement C3d.

Cumulative electrostatic similarity distribution for 24 homologues

projected onto the surface of human C3d (same as Figure 2B)

[blue – green – red; low to high similarity] with S. aureus virulence

factors superimposed. Ribbon representations are used for the S.

aureus virulence factors: Ehp – white (PDB: 2NOJ); Efb-C – gray

(PDB: 2GOX); Sbi – black (PDB: 2WY7). Two rotations of C3d

(180 degrees about the y-axis) are provided to show the two

electrostatic ‘‘hot-spots’’: (A) CR2-face and (B) thioester-face.

(TIFF)

Figure S3 Electrostatic similarity distributions for perturbed

human CR2 structures. Perturbation maps based on a theoretical

alanine scan, consisting of 24 charged residue to alanine

mutations. Color scheme is: blue – green – red; low to high

similarity, corresponding to ESI values of: (A) 0.5–0.7–0.9 and (B)

0.47–0.48–0.49.

(TIF)

Figure S4 Sequence and charge clustering of C3d homologues

using whole sequences. Dendrograms with distance matrix

heatmaps illustrate sequence clustering based on: (A) percent

identity and (B) number of positions with the same charge. Net

charge of each sequence is provided in parentheses.

(TIFF)
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Figure S5 Sequence similarity clustering for the two sides of

C3d. Dendrograms with distance matrix heatmaps illustrate

clustering of the 24 C3d homologues based on percent identities

within the two functional regions as defined by Supporting

Figure 6: (A) CR2-face and (B) thioester-face. Net charge of each

homologue is provided in parentheses.

(TIFF)

Figure S6 Multiple sequence alignment of 24 C3d homologues.

A consensus sequence, as well as bars indicating conservation and

charge variation per position, are included for comparison. The

Clustal X coloring scheme (as implemented in UCSF Chimera),

which is dependent on amino acid and conservation, was used to

color the sequences.

(TIF)

Figure S7 Illustration of the two functional regions used for

sequence analysis of complement C3d. Residues were assigned to

the two regions according to their x-coordinates. The CR2-face

(colored in red) includes residues that contain at least one atom

with an x-coordinate # (mean(x) 25 Å), while thioester face

includes residues that contain at least one atom with an x-

coordinate . (mean(x)+5 Å).

(TIFF)

Table S1 List of complement C3d homologues with UniProt

accession ID, human C3d percent identity, and net charge.

(TIFF)

Text S1 Details of homology modeling and molecular dynamics

simulations.

(DOCX)
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