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Abstract: Selenium is an essential trace element important for many physiological processes,
especially for the functions of immune and reproductive systems, metabolism of thyroid hormones,
as well as antioxidant defense. Selenium deficiency is usually manifested by an increased incidence
of retention of placenta, metritis, mastitis, aborts, lowering fertility and increased susceptibility to
infections. In calves, lambs and kids, the selenium deficiency demonstrates by WMD (white muscle
disease), in foals and donkey foals, it is associated with incidence of WMD and yellow fat disease,
and in pigs it causes VESD (vitamin E/selenium deficiency) syndrome. The prevention of these
health disorders can be achieved by an adequate selenium supplementation to the diet. The review
summarizes the survey of knowledge on selenium, its biological significance in the organism,
the impact of its deficiency in mammalian livestock (comparison of ruminants vs. non-ruminants,
herbivore vs. omnivore) and possibilities of its peroral administration. The databases employed were
as follows: Web of Science, PubMed, MEDLINE and Google Scholar.
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1. Methodology of the Review

This review is focused on the biochemical and molecular genetic nature of selenium, on
its physiological effects in mammalian livestock, on the possibilities of determining its status
in the organism and on the importance of its additon to animals. The methodology of the
choice used scientific studies from more than 2500 viewed articles based on the search phrases,
such as: physiological effects of selenium, antioxidant/antibacterial/anticancer effect of selenium,
selenium and oxidative stress/Staphylococcus aureus/immunity/thyroid hormones/reproduction,
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fertility/milk/rumen fermentation/gastrointestinal tract, glutathione peroxidase, epigenetic
effects of selenium, selenium status analysis, selenium and analytical methods, selenium and
cattle/sheep/goats/pigs/horses/donkeys; and the main findings of various studies were compared.

2. Biochemistry of Selenium

2.1. Importance of Selenium for Animal Health

Selenium (Se) is an essential trace element [1,2] that evinces antioxidant activity [2–14],
anti-inflammatory [2,15–25], antimutagenic [26,27], anticarcinogenic [28–37] or
chemopreventive [2,38–44], antiviral [2], antibacterial [45–48], antifungal [49,50] and antiparasitic
effects [51–53]. Furthermore, it is an integral component of selenoproteins participating in a whole
series of physiologically important processes [54]. The first proven selenoenzyme was glutathione
peroxidase (GPx) [55], which is an indispensable component of the antioxidant system in the
organism [56]. The selenoprotein family includes at least 25 eukaryotic proteins, whose expression is
characterized by high tissue specificity, which depends on selenium availability and can be regulated
by hormones [57–60]. Selenoproteins contain in their active site selenium in the form of 21st amino
acid selenocysteine [61,62]. The incorporation of selenocysteine into selenoproteins utilizes an unique
mechanism that requires decoding of the codon UGA [63] in mRNA, normally involved in the
termination of translation [64–66]. The UGA recoding is strictly dependent on an RNA stem-loop
structure, the selenocysteine insertion sequence (SECIS), which is found in the 3′ untranslated region
(3′ UTR) of eukaryotic selenoprotein messages [67,68].

Selenium is important for the synthesis [2,69], metabolism [63,69–71] and function of thyroid
hormones [72], that are crucial regulators of development, growth and differentiation. In addition,
they are also involved in many other physiological processes [54]. Selenium is a component of
enzymes deionidases [73], which are divided into three types (D1, D2 and D3) and have different
tissue distribution, gene expression regulation and function. D1 is primarily expressed in liver,
kidney and thyroid [74,75] and is able to deiodinate thyroxine (T4). It is also essential to provide
triiodothyronine (T3) for the circulation as well as serving as a scavenger enzyme for iodide in
peripheral tissues [74]. D2 is expressed in a large number of tissues, such as skeletal muscle, bone,
pituitary, retina, cochlea [76], CNS, thyroid and brown adipose tissue [75] and converts T4 into more
active T3 [73] by 5′-deiodination [77]. In contrast, D3 inactivates T3 and, to a lesser extent, prevents
T4 from being activated [78]. The level of T3 in blood increases with higher selenium intake [79,80].
The thyroid hormones, on the other side, affect directly the metabolism of selenium and its serum
status as well as regulating the expression of some selenoproteins [81]. The physiological significance
of selenium is shown in Figure 1.

Selenium is also important for the regulation of immunity functions [82], plays an essential role
in non-specific immune response [83] and its low level is related to weakened immune system [84].
In inflammatory diseases, the selenium concentration declines and the biosynthesis of selenoproteins
is disturbed [85]. The application of selenium decreases inflammatory activity [82]. Selenium is very
important for chemotactic and phagocyte activity and respiratory burst activities. Selenium deficiency
leads to GPx enzyme activity decreasing and the drop in neutrophil activity [86] as well as the cells
becoming more susceptible to oxidative damage.

Selenium is involved in growth and development, as well as taking part in the regulation processes
related with production [87–103], and reproduction abilities of animals [104–125].
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Figure 1. Physiological effects of selenium. Selenium is known for its antioxidant, antimutagenic and 
anticarcinogenic properties, it also acts against microbes as well as parasites and has antiinflammatory 
effects, engages in metabolism, growth and development, protects organs from oxidative stress, 
affects immune function and improves fertility [2,47–50,53,54,60,82,87,104,126–138]. 

2.2. Biochemical and Molecular Biological Activities of Selenium in Organism 

Selenium is a metalloid with the atomic number 34 which belongs to the group 16 in the periodic 
table. It was discovered in 1817 by the Swedish chemist Jöns Jacob Berzelius. Selenium has six valence 
electrons, two of them being unpaired ([Ar]3d104s24p4). However, due to 4d orbitals, it is capable of 
formation of six covalent bonds. In oxygen-containing compounds it possesses +6, +4, and +2 oxidation 
states. With the majority of other elements, it forms binary compounds with an oxidation state of −2, 
e.g., in hydrogen selenide (H2Se) and organic selenides such as selenomethionine (SeMet) [127]. 

2.2.1. Role of Selenium in Oxidative Stress 

Up to now, many genes that are related to the antioxidant properties of selenium have been 
identified: SEPP1, SEP15, TRXNRD1–2, PRDX1–6, SELENBP1, CAT, GPx1,3,4, SOD1,2,3 (Figure 2A) 
[139]. The enzyme superoxide dismutase contributes to the reduction of oxidative stress by efficiently 
quenching the superoxide radical and converting it into less toxic hydrogen peroxide which the 
subsequent enzyme catalase (CAT) breaks down into water and oxygen to prevent DNA damage. In 
the case of reduced dietary intake of selenium and other antioxidants, its activity decreases and free 
radicals lead to the process of tumorigenesis. The cancer cells are shown to have increased reactive 
oxygen species (ROS) levels in comparison to their normal counterparts [129]. 

Figure 1. Physiological effects of selenium. Selenium is known for its antioxidant, antimutagenic and
anticarcinogenic properties, it also acts against microbes as well as parasites and has antiinflammatory
effects, engages in metabolism, growth and development, protects organs from oxidative stress, affects
immune function and improves fertility [2,47–50,53,54,60,82,87,104,126–138].

2.2. Biochemical and Molecular Biological Activities of Selenium in Organism

Selenium is a metalloid with the atomic number 34 which belongs to the group 16 in the periodic
table. It was discovered in 1817 by the Swedish chemist Jöns Jacob Berzelius. Selenium has six valence
electrons, two of them being unpaired ([Ar]3d104s24p4). However, due to 4d orbitals, it is capable of
formation of six covalent bonds. In oxygen-containing compounds it possesses +6, +4, and +2 oxidation
states. With the majority of other elements, it forms binary compounds with an oxidation state of −2,
e.g., in hydrogen selenide (H2Se) and organic selenides such as selenomethionine (SeMet) [127].

2.2.1. Role of Selenium in Oxidative Stress

Up to now, many genes that are related to the antioxidant properties of selenium have
been identified: SEPP1, SEP15, TRXNRD1–2, PRDX1–6, SELENBP1, CAT, GPx1,3,4, SOD1,2,3
(Figure 2A) [139]. The enzyme superoxide dismutase contributes to the reduction of oxidative stress
by efficiently quenching the superoxide radical and converting it into less toxic hydrogen peroxide
which the subsequent enzyme catalase (CAT) breaks down into water and oxygen to prevent DNA
damage. In the case of reduced dietary intake of selenium and other antioxidants, its activity decreases
and free radicals lead to the process of tumorigenesis. The cancer cells are shown to have increased
reactive oxygen species (ROS) levels in comparison to their normal counterparts [129].
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Figure 2. Biochemical and molecular biological scheme of selenium action (adapted from [139,140])—
(A) Involvement of selenoprotein genes in the antioxidant metabolic pathway with modification of 
the selenium effect on the risk of carcinogenic process; (B) Spontaneous methylation of selenide to 
methylselenol. SEPP1—selenoprotein P gene; SEP15—selenoprotein 15 gene; TRXNRD1–2—
thioredoxin reductase 1/2 genes; PRDX1–6—peroxiredoxin 1–6 genes; SELENBP1—selenium binding 
protein 1 gene; SOD1,2,3—superoxide dismutase 1,2,3; SOD1,2,3—superoxide dismutase 1,2,3 genes; 
O2—dioxygen; H2O2—hydrogen peroxide; O2−—superoxide anion; GPx1,3,4—glutathione peroxidase 
1,3,4; GPx1,3,4—glutathione peroxidase 1,3,4 genes; CAT—catalase; CAT—catalase gene; NADP+—
nicotinamide adenine dinucleotide phosphate; NADPH—reduced form of NADP+; TrxR – 
thioredoxin reductase; Trx—thioredoxin; GSH—reduced glutathione; GR—glutathione reductase; 
Grx—glutaredoxin; SeO32−—selenite; HSe−—hydrogen selenide ion; CH3Se—methylselenol; SAM—S-
adenosylmethionine; AdoHcy—S-Adenosyl-homocysteine; Hcy—homocysteine; Met—methionine; 
TSP—transsulfuration pathway. 

2.2.2. Relationship of Selenium to Cancer  

Selenium exhibits toxicity against cancer cells [141]. It was reported that selenite stimulates 
apoptosis in cultured cancer cells [142–146], showing greater toxicity towards malignant compared 
to benign cells [147,148]. This also inhibits the development of mammary tumours in rat cells [149]. 
The anticancer action mechanism of selenite is based on the induction cancer cell death and apoptosis 
by producing superoxide radicals especially in or adjacent to mitochondria. Superoxide radicals 
trigger the mitochondrial pathway of apoptosis. It was found that selenite-induced superoxide 
production, cell death, and apoptosis were inhibited by overexpression of manganese superoxide 
dismutase (MnSOD; SOD2). The levels of MnSOD in cancer cells may influence the efficacy of 
administered selenium in cancer chemoprevention. Since cancer cells usually have lower levels of 
MnSOD, they should be more sensitive to selenium than their normal cell counterparts. Therefore, in 
cancer prevention, selenium may be found to selectively induce apoptosis of cancer cells without 
causing significant damage to normal cells [150]. Other researchers have also shown that selenite 
treatment damages mitochondria, leading to cell death [141,151]. 

Figure 2. Biochemical and molecular biological scheme of selenium action (adapted
from [139,140])—(A) Involvement of selenoprotein genes in the antioxidant metabolic pathway
with modification of the selenium effect on the risk of carcinogenic process; (B) Spontaneous
methylation of selenide to methylselenol. SEPP1—selenoprotein P gene; SEP15—selenoprotein
15 gene; TRXNRD1–2—thioredoxin reductase 1/2 genes; PRDX1–6—peroxiredoxin 1–6
genes; SELENBP1—selenium binding protein 1 gene; SOD1,2,3—superoxide dismutase 1,2,3;
SOD1,2,3—superoxide dismutase 1,2,3 genes; O2—dioxygen; H2O2—hydrogen peroxide; O2

−—superoxide
anion; GPx1,3,4—glutathione peroxidase 1,3,4; GPx1,3,4—glutathione peroxidase 1,3,4 genes;
CAT—catalase; CAT—catalase gene; NADP+—nicotinamide adenine dinucleotide phosphate;
NADPH—reduced form of NADP+; TrxR – thioredoxin reductase; Trx—thioredoxin; GSH—reduced
glutathione; GR—glutathione reductase; Grx—glutaredoxin; SeO3

2−—selenite; HSe−—hydrogen
selenide ion; CH3Se—methylselenol; SAM—S-adenosylmethionine; AdoHcy—S-Adenosyl-homocysteine;
Hcy—homocysteine; Met—methionine; TSP—transsulfuration pathway.

2.2.2. Relationship of Selenium to Cancer

Selenium exhibits toxicity against cancer cells [141]. It was reported that selenite stimulates
apoptosis in cultured cancer cells [142–146], showing greater toxicity towards malignant compared
to benign cells [147,148]. This also inhibits the development of mammary tumours in rat cells [149].
The anticancer action mechanism of selenite is based on the induction cancer cell death and apoptosis
by producing superoxide radicals especially in or adjacent to mitochondria. Superoxide radicals trigger
the mitochondrial pathway of apoptosis. It was found that selenite-induced superoxide production, cell
death, and apoptosis were inhibited by overexpression of manganese superoxide dismutase (MnSOD;
SOD2). The levels of MnSOD in cancer cells may influence the efficacy of administered selenium in
cancer chemoprevention. Since cancer cells usually have lower levels of MnSOD, they should be more
sensitive to selenium than their normal cell counterparts. Therefore, in cancer prevention, selenium
may be found to selectively induce apoptosis of cancer cells without causing significant damage to
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normal cells [150]. Other researchers have also shown that selenite treatment damages mitochondria,
leading to cell death [141,151].

With regards to other antioxidant enzymes, Xiang et al. [150] found that overexpression of
Cu/Zn-SOD (SOD1), CAT and GPx1, in contrast to SOD2, did not suppress apoptosis in selenite-treated
prostate cancer cell, while Kim et al. [152] reported that overexpression of SOD1 enhanced cell viability
in malignant glioma cells exposed to selenite. The different effects of selenite on SOD1/2 expression,
and SOD1/2 overexpression on selenite mediated cell death may be due to the multiple pathways
by which selenite treatment induces ROS generation. Thus, a picture of the response of superoxide
dismutases to selenite supplementation seems to be inconsistent [141].

The individual role of selenite, thioredoxin and the system of glutaredoxin and
S-adenosylmethionine (SAM) in the redox cycle of selenium intermediate metabolites is shown in
Figure 2B. The selenite is reduced to hydrogen selenide by thioredoxin, or glutaredoxin system.
This reaction can also be catalysed by glutathione or cysteine to produce the same final products.
Hydrogen selenide can be sequentially oxidized to a superoxide radical or undergo a redox
cycle mediated by thioredoxin or the glutaredoxin system [153,154]. Hydrogen selenide can
spontaneously react with SAM to form methylselenol (CH3Se). Subsequently, the thioredoxin and
glutaredoxin system participate in the redox cycle of methylselenol with hydrogen selenide and
generate reactive oxygen species. Under reductive conditions, monomethylselenol can, thanks to
its extraordinary nucleophilicity, be compared to its counterpart hydrogen selenide and act as a free
radical scavenger [140].

2.2.3. Antioxidative Role of Selenium against the Toxic Effect of Heavy Metals

In the metabolic pathways of selenium, numerous proteins, including metallothioneins
(MTs), [155], which play a role in heavy metal detoxification, are involved. The exposure to
heavy metals, e.g., mercury (Hg) is often associated with the induction of metallothioneins [156].
Intraperitoneal selenium administration to rats exposed to mercury resulted in a complete recovery
of mercury-altered levels of oxidative stress parameters, to returning of the mercury-induced
mRNA expression levels of MT-I (metallothionein-I) and MT-II (metallothionein-II) in the liver
to their original state, and had also partial protective effect on the kidneys [157]. Selenium is
considered to be an antidote in the treatment of mercury intoxication [158], it may modulate Hg
toxicity through the influence on Hg deposition in tissues, as well as Hg-induced oxidative stress,
inflammation, excitotoxicity, and other pathways [127]. Studies by Orct et al. [135] demonstrated the
protective effect of selenium on oxidative lipid damage in the brain, which is extremely sensitive to
mercury during the early postnatal period. Severe selenium deficiency causes irreversible brain
injury [159]. Experimental data demonstrate that selenium treatment modifies brain mercury
retention, and modulates neurotoxicity and oxidative stress in the nervous tissue of animals [127].
Selenium counteracts the neurotoxicity of mercury presumably through the formation of nontoxic
complexes [160]. The circulating selenium transporter, selenoprotein P (SEPP), appears to have a
special role in the delivery of selenium to the brain and neurons by entering via the multifunctional
apolipoprotein E receptor 2 (ApoER2), a member of the lipoprotein-receptor family that is expressed
in neurons in the brain [161].

A protective effect of selenium was also reported against toxicity of other heavy metals, such as
chromium (against chromium-induced oxidative and cellular damage in thyroid gland [162], chromium
toxicity in the brain [163] and chromium-induced nephrotoxicity [164]), cadmium (the protection of
jejunal epithelial cells from cadmium-induced DNA damage [165], an antagonistic effect of selenium
on cadmium-induced damage of kidney [166], ameliorative effect against cadmium chloride-induced
neuro- and nephrotoxicity [167]), and lead (against lead toxicity on the antioxidant system [168]),
or also overabundance of iron. Selenium reduces the adverse impacts of excess iron intake. Iron is
important for many biological processes, it is distributed to the cells bound to serum protein transferrin
and the iron transport into the cells takes place via the internalization of the transferrin bound to the
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transferrin receptor. The expression of the transferrin and ferritin genes is strictly regulated by the
iron responsive element (IRE) and the iron regulatory protein (IRP) [169]. Free iron generates ROS
that damage lipids, proteins and DNA [170]. Chronic iron excess was associated with a decrease in
selenium concentration and GPx activity in the heart tissue in mice, and the addition of Na2SeO3 to
mice reduced the concentration of iron in the heart tissue and oxidative stress [171,172].

2.2.4. Epigenetic Effects of Selenium and Their Implications for Prevention of Carcinogenic Process

Selenium has been found to modify epigenetic marks [65]—mitotically stable chromatin-based
mechanisms that modulate gene expression without altering the genomic DNA sequence.
These mechanisms include modifications to DNA and to histones (acetylation, methylation and many
others) [173], which interfere with chromosomal packaging and the binding of trans-acting factors [174].
Changes in the epigenome are associated with a great variety of diseases [175–177], including also
inflammatory disease [178] or the onset and progression of carcinogenic process [179,180].

The role of selenium for health is based on its biological functions that are presented
by the members of the selenoprotein family encoded by more than tens of genes and
containing cotranslationally inserted selenocysteine [65]. It is also a non-selenoprotein pool
of low-molecular-weight selenium compounds contained in the diet or derived from selenium
metabolism [174]. The importance of selenoproteins for development and health has been clearly
demonstrated in transgenic mice with single [181] or total [182] selenoprotein depletion.

Research studies performed on rats [37,183,184], mice [185] and cell lines [186] have shown that
selenium intake affect global DNA methylation. However, the rodent studies gave inconsistent results
regarding an increase or decrease of global DNA methylation in response to dietary selenium [174].

In mouse embryonic stem cells (ESCs), after their exposure to selenium, was found a reversible
alteration of the cell heterochromatin status and also the changed DNA methylation status of genes with
crucial roles in fetal development, such as Aebp2 (AE binding protein 2), Prickle2 (prickle homolog 2)
and Rnd2 (Rho family GTPase 2), without compromising cellular potential for embryonic development.
This implies that the genes with various functions regulated by DNA methylation are affected in ESCs
as an in vitro model for early embryos [187].

Selenium deficiency resulted in less DNA methylation in rat liver [184] and colon [183] in contrast
to the later study, that found significantly less global liver genomic DNA methylation in rats with
supranutritional dose of selenium than those fed with selenium-deficient diet. These differences could
be due to various rat inbred strains and selenium content of the basal diets as potential modifiers of
selenium effects [188]. Another possibility to influence the differences [174] is using various techniques
applied for the assessment of global DNA methylation [185].

Besides of global genomic DNA methylation, the regulation of site-specific DNA methylation of
tumor suppressor genes is important and it has been considered as a leading mechanism by which
some nutrients exert their anticancer property [188]. Alterations in DNA methylation, which are
associated with DNA methyltransferase abnormalities and result in silencing of tumor-related genes
and chromosomal instability, are involved in precancerous changes in various organs [179]. The study
whether selenium affects the methylation of the p53 gene was investigated, and it was found that
supranutritional dose of selenium significantly increased the exon-specific DNA methylation of the
p53 gene (in exons 5–8) in liver and colon mucosa of rats compared with this in animals fed with the
selenium-deficient diet [188].

Selenium has been shown to be associated with changes to histone marks [174]. Interference of
selenium with histone marks can principally occur through modulation of histone modifying enzyme
activity/expression and via interference with substrate availability. In consideration of the large variety
of marks and participating enzymes, the situation is even more complex than for DNA methylation;
moreover crosstalks exist between DNA methylation and histone marks, thus a complicated network of
epigenetic regulation is formed [189]. The abnormal function and/or expression of histone deacetylases
(HDACs) is linked to cancer and some neurologic and immune disorders. Numerous synthetic HDAC
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inhibitors have been developed and are currently tested in clinical trials [190]. Studies have confirmed
that dietary and synthetic selenocompounds inhibit HDAC activity [191–193].

Selenium also affects the microRNA (miRNA) expression. The regulation of gene expression by
targeting of mRNA through non-coding RNA molecules such as miRNA is considered an additional
epigenetic mechanism. Microarray analysis (comprising of 737 miRNAs in total) of the miRNA
profiles of Caco-2 cells grown in selenium-deficient or selenium-supplemented medium revealed
that the expression of 12 miRNAs was affected by selenium supply [194]. Expression levels of
50 mRNAs were also selenium-responsive, and numerous of the mRNAs were predicted to be targeted
by the selenium-responsive miRNAs. One of these, miRNA-185, whose expression decreased under
selenium deficiency, was confirmed to regulate expression of glutathione peroxidase 2 (GPx2) and
selenophosphate synthetase 2 (SPS-2) genes. As the protein product of SPS-2 is component of the
selenoprotein biosynthesis process, it indicates that selenium intake affects the selenoproteome in part
through epigenetic mechanisms involving miRNA-185 and possibly also other miRNAs. miRNA-185
is an especially interesting target of selenium, because it has been recently introduced as a tumor
suppressor that is often downregulated in various type of cancer [195,196].

Finally, selenium has been shown to act anticarcinogenic in various epigenetic studies, but the
research of the detailed role in cancerogenic process is still in its infancy, it still requires a lot of
experimental studies in the future, especially it will be very interesting to reveal the role of miRNAs as
mediators of selenium-dependent tumor protection against malignant transformation.

2.3. Health Disorders of Animals Associated with Selenium Deficiency

2.3.1. Described Diseases Associated with Selenium Deficiency

Many selenium deficiency diseases are often referred to the lack of another important nutrient
with antioxidant function such as vitamin E. The variety of the antioxidant defense system components
of the body allows it to profit from different types of antioxidants. This is especially known in these
two nutrients in the etiology of certain diseases in which a nutrition deprivation of either one or the
other can be asymptomatic, whereas the deficiency of both causes the disease. For example, animals
fed with low-selenium diets commonly require higher amounts of vitamin E than animals sufficiently
supplemented with selenium [197]. In addition to their joint involvement in the antioxidant system,
the presence of both for the proper function of the immune system and resistance against infections is
just as important [198,199].

The known manifestation of selenium deficiency in calves [200,201], lambs, kids [201],
foals [201,202] and donkey foals [203] is white muscle disease (WMD) or nutritional muscular
dystrophy (NMD). The disease can be also caused by the lack of vitamin E or a combined lack
of selenium and vitamin E. The clinical symptoms include stiffness, weakness and recumbency [201].
The disease involves hyaline degeneration of muscle cells in various skeletal muscles, including
the diaphragm and the heart [204]. In ruminants, WMD is also manifested by changes in the
frequency and quality of heartbeat [205]. In lambs with WMD, the arrhythmia was diagnosed using
electrocardiography (ECG) [206]. The arrhythmia is observed at early stages of cardiomyopathy.
The electrocardiograms of diseased calves revealed elevated heart rate, accelerated sinus rhythm,
increased P wave amplitude, shorter PR, QT and ST interval, narrower QRS complex, shorter T wave
duration and insignificantly increased T wave amplitude [205].

The deficiency of selenium and vitamin E in horses [207] and donkeys [203,208] caused a
yellow fat disease or steatitis, provoking the degeneration of the adipose tissue that is replaced
by connective tissue and calcium deposits, and can be associated with dystrophic myodegeneration
(white muscle disease) [203]. The symptoms are inertia, recumbency, decreased appetite, weight loss,
fever, ventral oedema, stiff gait and painful neck. It is also very common to find low hematocrit,
decreased selenium and vitamin E concentrations as well as elevated levels of creatine kinase and
lactate dehydrogenase [207].
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In pigs, the deficiencies of selenium and vitamin E caused the so-called VESD (vitamin E/selenium
deficiency) syndrome, of which the most frequent manifestation is mulberry heart disease, which also
included hepatosis dietetica and nutritional myopathy [209].

2.3.2. Effect of Selenium on Female Reproduction

The selenium administration in selenium-deficient cows can reduce the number of services
per conception, improve the pregnancy rates at first service and result in fewer days to conception.
The increase of selenium concentration prepartum in blood correlates with anoestrus/silent oestrus
decreasing postpartum [104]. The selenium deficiency caused abortions [111,210] and stillborn [211].
Giadinis et al. [111] reported that the selenium deficiency in grazing beef cattle was the sole cause of
abortion in cows. The findings of lesions on fetal heart and skeletal muscle were consistent with WMD.
The most probable mechanism of the abortifacient effect of selenium deficiency is, among others,
fetal heart failure [212]. Another mechanism could be an insufficient progesterone concentration
required to maintain the pregnancy in the late gestation [210]. The administration with selenium to
pregnant cows contributes to adequate progesterone secretion [210] and also promotes its postpartum
production [213].

The selenium and vitamin E administration reduces the incidence of retained placenta [121].
Selenium also has an effect on the decrease in the incidence of metritis and ovarian cysts [214].
The significant increase in the expression of the glutathione peroxidase 1 gene (GPx1) in granulosa cells
of healthy follicles points to antioxidant role of GPx1 during the ovarian follicular development [215].

2.3.3. Effect of Selenium on Male Reproduction

Antioxidant protection plays a key role in maintaining the integrity of the sperm membrane
and their fertilizing ability [60]. Selenium involved in the antioxidant defense of the organism
substantially modulates the quality of the male ejaculate [123]. In testes, several selenoproteins
such as selenophosphate synthase (SPS-2) and mitochondrial capsule selenoprotein (MCSeP) were
localized [216,217]. Oxidative stress (OS) is an important factor that negatively affects the fertility
potential of spermatozoa by lipid peroxidation [218]. Sperm plasma membrane is extremely susceptible
to lipid peroxidation due to the presence of high concentration of polyunsaturated fatty acids
(PUFAs) [219–221]. Those PUFAs give to the membrane a high level of fluidity and elasticity necessary
for sperm motility and their fusion with oocytes. Lipid peroxidation can lead to loss of membrane
fluidity and integrity, and thus to reducing of sperm-oocyte fusion ability [221]. The number of
spermatozoa and their motility are fundamental indicators of sperm functional ability [218].

Under physiological conditions, ROS are key for sperm function [222]. In small amounts, they
are necessary for fertilization, acrosomal reaction, hyperactivity, motility and capacitation [223].
Under pathological conditions, however, excessive ROS levels may negatively affect their quality [222].
Spermatozoa, as cells living in aerobic conditions, face an oxygen paradox: O2 is vital for them, but its
metabolites, such as ROS, can alter sperm functions and endanger their survival. ROS cause an
infertility with two key mechanisms. Besides sperm membrane damage, which results in decreased
sperm motility and their ability to fuse with oocytes, they can also damage sperm DNA, leading to
the transmission of defective paternal DNA to fetus [108]. ROS may attack DNA by modification of
nitrogenous bases, DNA strand breaks, DNA cross-links, and chromosomal rearrangements [221].

One of the markers of oxidative stress are the TBARS (thiobarbituric acid reactive
substances) [224,225], of which the most widely used is malondialdehyde (MDA), the product of
aldehydic lipid peroxidation generated by the action of ROS on membrane lipids [226]. MDA is
one of the reactive and mutagenic aldehydic lipid peroxidation products in seminal plasma [227],
and can be considered as a diagnostic tool in male infertility [228]. Breininger et al. [229] found a
high negative correlation between TBARS and sperm motility in boars. An increased level of MDA in
stored boar semen was associated with a rapid loss of motility and integrity of the plasma membrane
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of spermatozoa [230]. The reduction of motility may be due to ROS-induced impairment of ATP
(adenosine triphosphate) utilization or contractile apparatus of the sperm flagella [231].

Reference values for MDA and other oxidative stress parameters in mammalian livestock are
shown in Appendix A Table A1.

2.3.4. Effect of Selenium on Reduction of Intramammary Infection and Milk Quality

Selenium deficiency is also associated with an increased incidence of mastitis [60,232,233]. Dietary
intake of selenium and vitamin E reduces their incidence [121]. The primary defense mechanism
against mastitis is the phagocytic activity of neutrophils [233]. In dairy cows with selenium deficiency,
the phagocytic ability of the blood and neutrophils decreased [234]. Selenium affects the innate and
the adaptive immune responses of the mammary gland through humoral and cellular activities [235].
The dietary selenium intake at the dose of ≥4 mg·day−1 prepartum was negatively associated with
the likelihood of bovine intramammary infections due to coagulase-negative staphylococci [236].
The higher content of selenium in bulk milk tank samples was linked with the lower risk of
Staphylococcus aureus-positive herd. Increasing bulk tank milk selenium by 0.2 µmol·L−1 reduced the
odds by a factor of 0.95 [237]. The effect of selenium on mammary pathogens is mediated by several
mechanisms: a faster and more massive influx of polymorphonuclear leucocytes (PMN) into the
udder [238], the more effective killing of bacteria (such as S. aureus) by PMN [239], high antibacterial
activity of whey inhibiting growth of S. aureus [240] and high expression of selenoproteins with
antioxidant properties in the mammary gland [241].

The administration of selenium to heifers and cows before calving reduced the prevalence of
intramammary infections and high somatic cell count (SCC) during early lactation [242,243]. Injection
application of Se together with Zn, Mn and Cu had a positive impact on reductions of somatic cell
scores (SCSs) and mastitis incidences [244]. In goats, that were administered with selenium and
vitamin E, significantly lower somatic cell counts were observed compared to the control group [101].

The dietary addition of selenium increases the selenium concentration and the percentage of
favourable PUFAs and cis-9, cis-12 linoleic acid in cow’s milk [245]. In milk, most of the selenium is
present in whey (47.2–73.6%) and least in the fat-phase of milk (4.8–16.2%) [246]. The dietary addition
of selenium along with vitamin E increased the percentage of crude protein and lactose [247].

2.3.5. Effect of Selenium on Rumen Fermentation

Selenium can influence rumen microbial fermentation. Administration of SeMet increased in vitro
production of short-chain fatty acids (SCFAs) by rumen microflora. On the contrary, the effects
of selenite and elemental selenium on the increasing amounts of these acids were not significant.
The fermentation rate was faster in the presence of SeMet when compared to elemental selenium and
selenite; the plateau of fermentation of SeMet was reached within 30 h, whereas for other two mineral
forms it was not reached until at least 36 h. The ratio of acetate:propionate:butyrate was differently
according to the selenium source. In the presence of SeMet, the increased proportion of acetate was
observed, which could be explained by the probable utilization of SeMet by rumen bacteria as an
energy source [248]. In case of limiting carbohydrate sources, proteins are degraded to NH3, amines,
gas and SCFAs, and acetate predominantly produces fatty acids [249,250]. In the presence of selenite,
there was found contrarily the increased proportion of butyrate [248].

Rumen microorganisms alter the bioavailability of received selenium [251]. Selenite or selenate
delivery to ewes decreased whole blood and serum selenium concentrations compared with ewes
receiving the same selenium dosage in form of SeMet as Se yeast [252]. Incorporation of selenium into
microbial biomass was ex vivo greater for SeMet (13.2-fold higher than for control group) compared
with inorganic selenium addition (selenite, selenate) [251]. A large amount of amino acids, which are
released by microbial proteolysis in the rumen, are re-utilized for microbial protein synthesis. SeMet is
not absorbed in situ to any appreciable extent in the rumen [253]. Bacteria reduce selenate (SeO4

2−)
through selenite (SeO3

2−) to elemental Se (Se0). Selenium can also become incorporated into proteins
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as part of the amino acids selenocysteine (SeCys) or SeMet. This occurs as a result of the reduction
of selenite with reduced glutathione to make selenodiglutathione, which is subsequently reduced
to glutathioselenol (GS-SeH), which is further reduced to hydrogen selenide (H2Se) providing the
necessary reactive intermediates for selenium incorporation into amino acids, or further reduction
to elemental selenium [254]. When a high selenium diet is administered to beef cattle, the number of
selenium-reducing microorganisms increases [255].

Dietary supplement of selenized yeast at the dose of 150–300 mg·kg−1 (which provided
0.15-0.30 mg Se·kg−1) of feed dry matter to cows increased the volatile fatty acid (VFA) concentration
and altered the rumen fermentation towards higher propionate production compared with the control
group. The dose of about 300 mg·kg−1 of dry matter of food stimulated the digestive microorganisms
and enzymes [higher digestibilities of dry matter, organic matter, crude protein, ether extract, aNDF
(amylase-treated neutral detergent fiber) and ADF (acid detergent fiber) in the total tract compared to
the control group [87].

Supplementation of selenium to sheep influences the development of some ciliates: the use of
selenized yeast has a more pronounced effect on Ophryoscolex and Diploplastron populations than the
equivalent amount of sodium selenite. The first-mentioned genus is the most sensitive to selenium in
the diet, and in sheep with its deficient intake it is not even found [256]. The selenium form also affects
the enzymatic activity in the rumen fluid of the sheep. GGT (gamma-glutamyl transferase) and GDH
(glutamate dehydrogenase) activities were significantly higher after administration of selenized yeast,
AST (aspartate aminotransferase) and ALP (alkaline phosphatase) than when sodium selenite was
used [257].

2.3.6. Effect of Selenium on Hair Production

Selenium intake is important for the bioactivity of IGF-1 (insulin-like growth factor 1) [258],
which stimulates the proliferation, migration and morphogenesis of hair follicle cells through specific
cell-surface receptors (IGF-1 receptor, IGF-1R) during ontogenetic development [259]. IGF-1 represents
peptide hormone produced in the liver, which is formed as a consequence of growth hormone (GH)
release from the pituitary gland, which stimulates subsequently IGF-1 production in the liver. IGF-1
is therefore a mediator for some of the GH functions, thus involved in growth and anabolism. IGF-1
mediates its effects by binding at the specific receptor [260].

Wu et al. [102] reported that selenium administration to pregnant goats increases the antioxidant
defense of fetal skin and improves the growth and development of fetuses and the development of
their hair follicles by up-regulating IGF-1.

The growth of hair is a cyclic process in which every follicle proceeds from an active phase
(anagen) through a regression phase (catagen) to a resting phase (telogen). During catagen, hair
follicles undergo apoptosis and there is a decline in the level of an anti-apoptotic protein Bcl-2, and an
increase in a pro-apoptotic protein Bax [261]. The effect of IGF-1 on hair growth appears to be related
to the upregulation of PDGF-A and PDGF-B and to the anti-apoptotic effect of IGF-1 [262] (Figure 3).
IGF-1 stimulates hair follicle growth, maintains the anagen stage and postpones the catagen stage
by increasing the expression of the platelet-derived growth factors (PDGF-A, PDGF-B) as well as the
expression ratio of Bcl-2/Bax [262]. PDGF is a potent mitogen produced in a variety of cell types
including keratinocytes and endothelial cells, and is important for cell growth [263].
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Figure 3. Role of IGF-1 in stimulation of hair follicle cell proliferation. Insulin like growth factor 1
(IGF-1) is produced by mesenchymal cells and binds to the insulin like growth factor 1 receptor (IGF-1R).
This binding (1) activates the receptor tyrosine kinase (RTK) (2) [264], increases the expression of
platelet-derived growth factors (PDGF-A, PDGF-B) (3) and the expression ratio of Bcl-2 (anti-apoptotic
protein)/Bax (pro-apoptotic protein) (4), and thus stimulates the proliferation of hair follicle cells [262].

IGF-1 activates two signaling pathways: (1) the extracellular signal related kinase/mitogen
activated kinase pathway and (2) the phosphatidylinositol 3′-kinase/protein kinase B (PI3K/Akt)
pathway [262]. To exert its biological effects, IGF-1 must activate cells by binding to specific cell-surface
receptors. The type I IGF receptor (IGF-1R) is the only IGF receptor to have IGF mediated signaling
functions [265]. IGF-1 is produced by mesenchymal type cells and acts in a paracrine fashion and/or
an autocrine fashion by binding to the IGF-1R. This binding activates the receptor tyrosine kinase
that triggers the downstream responses and finally stimulates cell division [264]. IGF-1 may therefore
be able to stimulate the proliferation of hair follicle cells through cellular signaling pathways of its
receptors [262].

An in vitro study showed a significant difference in cumulative hair follicle elongation between
the control group (0.97 ± 0.09 mm) and the 10−7 M IGF-1 treated hair follicles (1.24 ± 0.09 mm) over a
period of 12 days [262]. On the 2nd day, the IGF-1 treated group showed more prominent expression of
PDGF-A, and PDGF-B also showed a significant increase in expression. Among the apoptosis related
molecules, Bax and Bcl-2 showed differences in expression. On the 8th day, Bax was weakly expressed
in the IGF-1 treated group. On the 2nd day, Bcl-2 was more strongly expressed in the IGF-1 treated
group compared with the control group [262].

3. Selenium Status Assessment in Animals

3.1. Selenium Status Assessment

The selenium status in the organism can be evaluated directly based on the determination
of selenium content, or using the indirect method—based on the activity of selenium-dependent
glutathione peroxidase. The reference values (RVs) are given in Appendix A Table A1.

3.2. Total Selenium Concentration

The status of selenium can be assessed based on its content in blood, urine, tissues, excrements,
and in lactating females in milk. Selenium content is usually detected by hydride generation-atomic
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absorption spectrometry (HG-AAS) [266–268]. The HG-AAS method can be used to determine the
content of selenium in whole blood [266,269–272], blood plasma, serum [268,272,273] and also in
tissues (e.g., liver, skeletal muscle, myocardium, kidneys) [272,274]. For all these samples (taken from
cows) after wet mineralization using HNO3 and H2O2 and subsequent reduction by HCl, the detection
limit (around 0.8 µg·L−1) and the measurement errors (4.6–15%) of this method corresponded to the
requirements for use in research and clinic as well as preventive veterinary medicine [272].

The selenium concentration in whole blood and milk can also be determined by the ICP-MS
method (inductively coupled plasma-mass spectrometry) [275], which enables to determine the
absolutely accurate concentration of the chemical element in samples compared to AAS, which is
contrarily suitable for routine analysis with lower cost. The ICP-MS method is also usable for analyzing
the total amount of selenium in feed samples [276,277], urine and faeces [277].

Selenium can be also analysed using ICP-OES (inductively coupled plasma-optical emission
spectrometry), specially serum selenium [278] as well as analysing the selenium content in diet and
tissue of muscle [279]. This method is considered to be less sensitive than ICP-MS. The fluorometric
method has been succesfully employed to analyse selenium in feed [280,281], excrements, blood
and tissues [281]. The FIA-GF-AAS (flow injection analysis-graphite furnace-atomic absorption
spectrometry) system coupled with a hydride generation has been utilised to detect selenium in
plasma and spleen samples [282]. VG-ICP-MS (vapor generation-inductively coupled plasma-mass
spectrometry) has also been used as an analytical tool to analyse selenium content in feed, milk and
whole blood [275].

The mere knowledge of the total concentration of the element in biological materials is not
sufficient for the evaluation of its effects, it is also necessary to know the distribution between individual
binding forms—species [283]. Data on the concentration of individual selenium species are obtained
in the speciation analysis process [284], which is usually performed by the combination of separation
methods and trace element analysis methods [285].

Selenium species are most commonly detected by the combination of liquid chromatography
(LC) and ICP-MS—LC-ICP-MS [286,287], or the HPLC-ICP-MS [288–293]. HPLC (high-performance
liquid chromatography) is also usable for detecting selenium species in plant feed [276]. Speciation
selenium analysis is most often performed at the level of individual seleno-amino acids and other
low-molecular substances: selenite (Se+IV), selenate (Se+VI), selenomethionine (SeMet), selenocystine
(SeCys2), Se-methylselenocysteine (MeSeCys) and others, which are released into the solution by
enzymatic hydrolysis by non-specific proteases [288–290,292,294–297]. Separation of these substances
is performed by various LC modes, in particular ion exchange chromatography (IEC) [290,293–297],
and reversed-phase chromatography (RPC) [288,289,292,293,298].

Serum or plasma selenium concentrations more accurately reflect the current level of
supplementation and are more sensitive to short-term changes in selenium administration than
its whole blood level, reflecting more of its earlier supplementation because selenium (in glutathione
peroxidase) is incorporated into erythrocytes during their formation (erythropoiesis). The whole blood
selenium responds slowerly to changes in supplementation (with supplementation increases more
slowly, without supplementation decreases more slowly than serum or plasma selenium levels) [299].

Although different methods are used to determine the selenium content in blood, they seem
to be comparable, e.g., the detection limit in ICP methods is similar to that of fluorometric method
using 2,3-aminonaphthalene [300,301], in an interlaboratory study the mean concentration of selenium
in the blood in cattle using a fluorometrical analysis was similar to that of HG-AAS method [302].
However, the concentration of selenium varies according to the sample type, there are the differences
in its content in whole blood [270,303], serum [304,305] and plasma [102,306].

When HG-AAG and inductively coupled argon plasma emission spectroscopy using hydride
generation (ICP) are compared, a relatively similar correlation coefficient between the content of
selenium in whole blood and serum in cattle was found to be: 0.79 (r2 = 0.62) for HG-AAS, and 0.88 for
ICP (r2 = 0.77 (simple linear regression model), and adjusted R2 = 0.82 (expanded regression model)).
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However, the prediction intervals were relatively wide and the diagnostic accuracy for estimating
blood selenium concentration based on its serum level is therefore very limited. For example at
serum values of 0.01–0.05 µg·mL−1, the predicted selenium concentration in blood ranged from a
significant deficiency (<0.05 µg·mL−1) to a normal value (>0.10 µg·mL−1). Measurement of serum
selenium level may not indicate whether blood selenium is within the reference range or at toxicity
level. For diagnostic and clinical use, serum selenium levels must allow to distinguish normal selenium
status from its deficiency. Approximately 67% of the normal distribution of the population could use
the ratio blood selenium:serum selenium of 1.6–3.4:1 for data obtained from HG-AAG, and 1.1–3.4:1 for
ICP. Practical use of these ratios for diagnostic purposes, whether blood selenium is in the reference
range or deficiency range, is not appropriate. This fact cannot be determined based on serum selenium
concentrations. The reason for the failure of this methodology is probably the variability of the
hemolysis rate between the samples, and as a result of this, selenium releases from the erythrocytes
into serum. Thus, a short-term change in selenium intake in the diet, reflected in blood serum but
not yet in the erythrocyte selenium concentration (incorporation of selenium into erythrocytes lasts
from days to weeks). In addition, genetic variability could influence selenium metabolism and the
relationship between selenium in serum and blood [307].

The concentration of selenium in blood or serum is influenced by the selenium content in the
diet [114,308–311] and by form of received selenium [309,312]. The content of selenium in blood also
differs according to the breed—Jovanović et al. [270] vs. Pavlata et al. [267] (Appendix A Table A1),
sex [313] and the age of the animal [314] as well as geographical area, which is related to the selenium
content in the soil and thus also in plants [315,316]. Generally, most soils in many countries are poor
in selenium [317–320], sometimes even below 0.2 mg·kg−1 [321]. The soil selenium concentration
depends on soil-climate interactions. The low-selenium soils are most likely to occur in arid regions and
in areas with high pH and low clay content. Conversely, the areas with low to moderate precipitation
but relatively low aridity (e.g., cool and moist climates) and high clay content are likely to have higher
soil selenium concentrations [322]. In addition to the total soil selenium content, soil physical-chemical
conditions are also important, because can cause lower bioavailability of selenium and thus its lower
uptake by plants, which can ultimately lead to its deficiency in animals [321]. For example, the negative
influence of sulfate (SO4

2−) and phosphate (PO4
3−) has been recently described [323]. The selenium

bioavailability in soil is influenced also by the presence of organic acids, important components
founded in the rhizosphere soil [324].

The reference values of selenium (Appendix A Table A1) in blood are different depending on
the species and age of the animal, but also according to the used author’s methodology, for example
Constable et al. [304] stated a range of 0.08–0.30 µg·mL−1 for blood serum in adult cattle, while
Stowe and Herdt [314] published a 3-fold lower upper limit (100 ng·mL−1). However, many authors
use the value of the lower limit of RV, according to different publications, ranging from 50 to
100 µg·L−1 [269,314].

3.3. Enzymatic Methods of Assessment of Selenium Status

Besides the direct detection of selenium status by determining its concentration in blood,
an indirect method based on glutathione peroxidase activity assessment can be used. Approximately
11.8% of total selenium in the body is bound to this protein [325]. GPx contains, with the
exception of phospholipid-hydroperoxide GPx (PHGPx), which is monomeric [326], four selenium
atoms and positively correlates with the amount of selenium in blood [269]. The high correlation
coefficient between selenium and GPx activity in whole blood was found to be r = 0.82 [269],
r = 0.93 [313], r = 0.97 [327], respectively. Despite this significant correlation between these parameters,
the relationship between their values reported in various publications is often very inconsistent [269],
e.g., Hogan et al. [328] presented a blood selenium value in cows of 270 µg·L−1 and a corresponding
GPx activity of 80 IU·L−1, while Ellison [329] reported a concentration of 19.75 µg·L−1 selenium and
GPx activity of 2000 IU·L−1 as the lower limit of the physiological range.
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GPx activity depends on selenium content in the diet [303] and is positively correlated with
the selenium intake [330]. This is due to the fact that most of the glutathione peroxidases (GPxs)
(GPx1, GPx2, GPx3 and GPx4) contain selenocysteine at their catalytic site and therefore the activity
of these enzymes is dependent on the accessibility of selenium [331]. Thus, the measurement of
seleno-dependent glutathione peroxidase activity (SeGPx) in blood is a widely used indicator of
selenium status [332,333], antioxidative status and potential [334,335], as well as a parameter for
evaluating the response to its therapeutic administration [174,336]. However, GPx activity response to
dietary selenium intake is very inconsistent in various studies [114,337–340]. Although GPx activity
is a useful biomarker of selenium status for a particular individual, substantial heterogeneity can be
observed in various publications [341]. Appendix A Table A1 also shows a considerable variability in
values. This is due to the use of various measurement units and, in particular, by a wide variety of
analytical methods used [269]. The authors do not indicate enzymatic activity in blood only in µkat·L−1

of whole blood [270], but also in µmol·g−1 of hemoglobin (Hb) [304], U·g−1 of hemoglobin [342],
mmol·L−1 of serum [343], IU·L−1 serum [344], U·mL−1 of serum [102]. There is a vast variety of other
reference units found in the literature such as: IU·L−1 of whole blood, IU·mL−1 PCV (packed cell
volume) [269], per mg of blood plasma protein, mg of hemoglobin, mL of whole blood as well as mL
of blood plasma [345]. Different units appeared even at defined reference limits in various countries,
the activity value also depends on the chosen method of calculation (linear vs. polynomial regression):
RV for sheep bred in Iran 191.67–196.52 U·g−1 of Hb [346] vs. in the Czech Republic >637 µkat·L−1

(LR), resp. 677 µkat·L−1 (PR) of whole blood [271]. For this reason, literary data can usually not
be compared. The individual methods of analysis differ in different reaction temperatures in vitro
and in the use of various anticoagulants [269]. The evident differences in RV determination are even
reflected within the same author for one animal species in the same state (RV for GPx activity in cattle
in the Czech Republic: 472.20–665.40 [267] vs. 760.23 µkat·L−1 of whole blood [313]). According to
Esworthy et al. [347], a quantitative determination of protein or DNA content for the standardization
of analytical data used to express GPx enzymatic activity, is necessary.

The interpretation of GPx activity values is also affected by the stage of reproductive cycle of the
animal (e.g., estrous cycle phase, pregnancy) and the selected reference unit. Different SeGPx activity
profiles per mg of hemoglobin vs. mL of whole blood, or per mL of blood plasma vs. mg of blood
plasma protein during peri-oestrus period in sows reflect metabolic changes induced by the ovulation
process and with this associated conditions for oxidative stress, which can play a role in the change of
enzymatic activities [345]. Likewise, different SeGPx profiles were obtained (mL of blood plasma vs.
blood plasma protein—expressed per unit of blood plasma protein) in sows during early gestation.
This is probably due to a decrease in blood plasma protein concentration during the first month of
gestation, most likely due to a decrease in plasma albumin concentration [348].

It follows from the above that while for the lower limit of the physiological range of selenium
in whole blood of cattle a more uniform standard is used (50–100 µg·L−1), the unified reference limit
for GPx activity practically does not exist. Lacking standardization in determining GPx activity and
interpretation of results leads to the study of this issue. It is recommended that each laboratory
establishes its own regression equation [269].

GPx activity in serum or whole blood shows a similar time relation, with regard to
supplementation, as selenium level (in serum vs. whole blood), i.e., serum activity reflects short-term
supplementation and whole blood activity of previous supplementation levels [349]. Approximately
98% of GPx activity in peripheral blood is associated with erythrocytes and about 73% of selenium in
blood is contained in the cellular component of the blood [350]. The life span of erythrocytes in adult
cattle is approximately 160 days [351]. Bovine erythrocytes contain only selenium-dependent GPx
activity [352], therefore selenium concentrations in blood or erythrocytes and GPx activity in blood or
erythrocytes are excellent indicators of long-term selenium status in cattle [307].

Dalto et al. [353] observed that SeGPx activity response in blood plasma on selenium
supplementation during the peri-oestrus period was more pronounced under similar experimental
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conditions than in whole blood [334]. Such influence of blood fractions cannot be seen in long-term
profiles of SeGPx activity, SeGPx in blood plasma is therefore a better indicator of acute response to
oxidative stress. The main metabolic changes induced by the physiological state of the animal may
play an important role in the homeostasis of this enzyme [345].

The SeGPx activity value also depends on the estrous phase of females [345]. In the longer term,
it affects the SeGPx activity as well as the level of vitamin B6 [353–355], which plays a central role
in amino acid metabolism. B6-dependent enzymes catalyze most reactions of the transsulfuration
pathways, ensuring the conversion of homocysteine to cysteine and further into GPx proteins. Because
mammals metabolize sulfur- and seleno-amino acids similarly, vitamin B6 plays an important role in
the fate of sulfur-homocysteine and its selenium counterpart between transsulfuration and one-carbon
metabolism, especially in conditions of oxidative stress. This is extremely important in reproduction
because ovarian metabolism can generate excessive amounts of ROS during a peri-estrus period that
can disturb ovarian function and early embryo development. At a later stage of gestation, placentation
increases embryo oxygen tension and may cause higher expression of ROS markers and lead to embryo
death. Metabolic accumulation ROS surprisingly positively regulates the flow of one-carbon units to
transsulfuration and negatively regulates remethylation. However, in the embryos, the transsulfuration
pathway is not functional [355].

The GPx activity in samples is most often measured by the method of Paglia and
Valentine [356]—([102,267,271,303,306,342,344,346,357–360]) (Appendix A Table A1), which is based
on the measurement of the decrease in light absorbance at 340 nm after oxidation of glutathione by
cumene hydroperoxide catalyzed by glutathione peroxidase [306].

Besides the detection of GPx activity in various tissues and organs (whole blood [270], serum [48],
liver [357,361], testes [362], skin [102]), various types of this enzyme [(erythrocyte GPx [304], GPx1 [303],
GPx3 [360], GPx4 [363] (Appendix A Table A1)] are also detected. The clinical relevance of determining
the activity of different types of GPx in various tissues is very different. As a selenium status
marker, glutathione peroxidase 3 (GPx3) [364], a glycosylated protein secreted to extracellular
compartments [365], is also often used as a selenium status marker [364]. It uses a wide range of
substrates—H2O2, fatty acid hydroperoxides and phospholipid hydroperoxidases, and is an effective
antioxidant of blood plasma [365].

The activity of erythrocyte GPx in sheep is the dominating component (97.3%) of whole blood GPx
activity; on the contrary, the proportion of serum GPx3 activity (2.7%) has a very low significance [366].

Cellular GPx (GPx1) and extracellular GPx (GPx3) are expressed in the liver, heart, placenta,
gastrointestinal tract (GIT), thyroid gland, kidneys and erythrocytes in many species, including human,
rat and mouse [56,367]. GPx1 and GPx3 are also expressed in bovine mammary epithelial cells [368].
In addition to GPx1 and GPx3, GPx4 mRNA was also detected in bovine mammary tissue [369].
Enzyme GPx2 is found primarily in the GIT, on the contrary, in the mammary gland, its amount is
very low [370].

4. Dietary Addition of Selenium

4.1. Intake Recommendations for Selenium in Animals

An adequate dietary selenium intake helps to prevent disease caused by its deficiency, prevents
the accumulation of lipid hydroperoxides in organs and tissues and thus protects them from damage
by ROS [371–373]. The daily recommended dose of selenium for the animals is shown in Table 1.
When determining the dose, the presence of some other food components that antagonize selenium,
e.g., sulfur (S), should be taken into account. Higher dietary sulfur intake reduces plasma selenium
concentration and its bioavailability in the organism [374]. Other antagonistic relationships have been
described between selenium and other essential or toxic elements: As, Cu, Ni, Co, Cr, Mn, Zn, Cd, Sn,
Pb, Hg, Bi, Mo, Ag, Au [375].
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Table 1. Recommended daily intake of selenium for animals.

Animal Species RDI of Se Reference

pigs 0.15–0.30 mg·kg−1 of feed [123]

beef cattle (*) 100 µg·kg−1 of DM of feed [376,377]

dairy cattle 300 µg·kg−1 of DM of feed [376,377]

cattle—calves 100 µg·kg−1 of DM of feed [376,377]

sheep 0.1–0.2 mg·kg−1 of DM of feed [378]

goats 0.1 mg·kg−1 of DM of feed [379]

horses
0.1 ppm of DM of feed for idle horses [380,381]

0.3 ppm of DM of feed for exercising horses [380,381]

donkeys ~2 mg·day−1

0.1–0.15 mg·100 kg−1 BW
[382]
[380]

RDI—recommended daily intake; DM—dry matter; (*) hypermuscular breeds (e.g., Belgian Blue) 300 µg·kg−1 of
DM of feed [73,383]; BW—body weight. The maximum tolerable level of Se in the feed (mg·kg−1 of DM): pigs—4,
cattle, sheep, goats, horses and donkeys—5 [384].

4.2. Dietary Forms of Selenium

Besides traditional forms of selenium—inorganic (selenite [308,316,385–388], selenate [387]),
organic (selenomethionine [387,389], dimethylselenide, and others [387]), in the form of selenized
yeasts [277,316,386,388,390] or selenium bound to Chlorella algae biomass [391,392], the use of its
nanoform, which substantially increases its biological utilization in the organism, has recently come to
the forefront of interest.

5. Conclusions

Selenium is an important essential element that interferes through selenoproteins in many
physiological processes of the organism and affects the production and reproductive properties
of mammalian livestock. By adequate supply of selenium in the feed, it can effectively prevent
health problems from its deficiency. Knowledge of the importance of selenium in the body is not yet
sufficiently comprehensive, and even less so in animal species, and a deeper study of the effects of
selenium may reveal a number of new biologically significant processes.

Acknowledgments: The review article has been funded by the grant of The European Technology Platform for
Nanomedicine. This work was supported by the project for conceptual development of the research organization.

Author Contributions: All authors participated in discussion and interpretation of the data and results.
Bozena Hosnedlova performed the literature search, wrote the manuscript, and drew figures; Marta Kepinska,
Sylvie Skalickova, Carlos Fernandez, Branislav Ruttkay-Nedecky, Thembinkosi Donald Malevu, Jiri Sochor,
Magdalena Melcova and Jarmila Zidkova participed in its writing and critically revised the manuscript;
Mojmir Baron secured funds for publishing of manuscript; and Rene Kizek conceived the idea for this topic,
proposed its concept, performed the literature search, participed in its writing and critically revised the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

AAS atomic absorption spectroscopy
ABTS+ 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)
ADF acid detergent fiber
AdoHcy S-Adenosyl-homocysteine
Aebp2 AE binding protein 2 gene
ALP alkaline phosphatase
aNDF amylase-treated neutral detergent fiber
ApoER2 apolipoprotein E receptor 2
AST aspartate aminotransferase
ATP adenosine triphosphate
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Bax pro-apoptotic protein Bax, Bcl-2-associated X protein
Bcl-2 anti-apoptotic protein Bcl-2 (B-cell lymphoma 2)
BHT butylated hydroxytoluene
BW body weight
Caco-2 caco-2 cell line—heterogeneous human epithelial colorectal adenocarcinoma cells
CAT catalase
CAT catalase gene
cGPx cellular glutathione peroxidase; GPx1
CH3Se methylselenol
CNS central nervous system
Cu copper
Cu/Zn-SOD copper/zinc superoxide dismutase; SOD1
D1,2,3 deionidase 1,2,3
DM dry matter
DNA deoxyribonucleic acid
DTNB 5-5′-dithiobis[2-nitrobenzoic acid]
ECG electrocardiography
EDTA ethylenediaminetetraacetic acid
ELISA enzyme-linked immunosorbent assay
ESCs embryonic stem cells
Ex/Em excitation/emission
FIA-GF-AAS flow injection analysis-graphite furnace-atomic absorption spectrometry
FOX xylenol orange
GDH glutamate dehydrogenase
GGT gamma-glutamyl transferase
GH growth hormone
GIT gastrointestinal tract
GPx glutathione peroxidase
GPx1,2,3,4 glutathione peroxidase 1,2,3,4
GPx1,2,3,4 glutathione peroxidase 1,2,3,4 genes
GR glutathione reductase
Grx glutaredoxin
GSH reduced glutathione
GS-SeH glutathioselenol
GSSG oxidized glutathione
GS-TNB glutathione adduct of GSH
Hb hemoglobin
HCl hydrochloric acid
Hcy homocysteine
HDAC histone deacetylase
Hg mercury (hydrargyrum)
HG-AAS hydride generation-atomic absorption spectrometry
HNO3 nitric acid
H2O2 hydrogen peroxide
HPLC high-performance liquid chromatography
HPLC-ICP-MS high-performance liquid chromatography-inductively coupled plasma-mass spectrometry
HSe− hydrogen selenide ion
H2Se hydrogen selenide
HT hematein
HTH2 hematoxylin
ICP inductively coupled plasma
ICP-MS inductively coupled plasma-mass spectrometry
ICP-OES inductively coupled plasma-optical emission spectrometry
IEC ion exchange chromatography
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IGF-1 insulin-like growth factor 1
IGF-1R insulin-like growth factor 1 receptor
INT 2-(4-iodophenyl)-3-(4-nitrophenol)-5-phenyltetrazolium chloride
IRE iron responsive element
IRP iron regulatory protein
LC liquid chromatography
LC-ICP-MS liquid chromatography-inductively coupled plasma-mass spectrometry
LR linear regression
MCSeP mitochondrial capsule selenoprotein
MDA malondialdehyde
MDA-TBA2 adduct formed by reaction of MDA with TBA
MeSeCys Se-methylselenocysteine
Met methionine
min–max minimum-maximum
miRNA microRNA—a small non-coding RNA molecule
Mn manganese
MnSOD manganese superoxide dismutase; SOD2
mRNA messenger ribonucleic acid
MTs metallothioneins
MT-I metallothionein-I gene
MT-II metallothionein-II gene
NaBH4 sodium borohydride
NAD nicotinamide adenine dinucleotide
NADP+ nicotinamide adenine dinucleotide phosphate
NADPH reduced form of NADP+

NaOH sodium hydroxide
Na2SeO3 sodium selenite
NBT nitroblue tetrazolium
NH3 ammonia
NMD nutritional muscular dystrophy
O2 dioxygen
O2
− superoxide anion

OD optical density
OS oxidative stress
p53 p53 gene encoding the tumor suppressor protein p53
PCV packed cell volume
PDGF-A platelet-derived growth factor A
PDGF-B platelet-derived growth factor B
pH potential of hydrogen (pondus hydrogenia)
PHGPx phospholipid-hydroperoxide GPx
PI3K/Akt pathway phosphatidylinositol 3′-kinase/protein kinase B (serine/threonine-protein kinase) pathway
PMN polymorphonuclear leucocytes
PO4

3− phosphate ion
PR polynomial regression
PRDX1–6 peroxiredoxin 1–6 genes
Prickle2 prickle homolog 2 gene
PUFAs polyunsaturated fatty acids
r correlation coefficient
R2, r2 coefficient of determination (r2 for simple linear regression)
RDI recommended daily intake
RNA ribonucleic acid
Rnd2 Rho family GTPase (guanosine triphosphatase) 2 gene
ROH lipid hydroxide
ROOH lipid hydroperoxide
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ROS reactive oxygen species
RPC reversed-phase chromatography
RTK receptor tyrosine kinase
RV reference value
S sulfur
SAM S-adenosylmethionine
SCC somatic cell count
SCFAs short-chain fatty acids
SCS somatic cell score
SD standard deviation
SE standard error
Se selenium
Se0 elemental selenium
Se+IV selenite
Se+VI selenate
SECIS selenocysteine insertion sequence
SeCys selenocysteine
SeCys2 selenocystine
SeGPx selenium-dependent glutathione peroxidase
SeH4 tetrahydridoselenonium dication
SELENBP1 selenium binding protein 1 gene
SEM standard error of mean
SeMet selenomethionine
SeO3

2− selenite
SeO4

2− selenate
SEP15 selenoprotein 15 gene
SEPP selenoprotein P
SEPP1 selenoprotein P gene
SO4

2− sulfate ion
SOD superoxide dismutase
SOD1,2,3 superoxide dismutase 1,2,3
SOD1,2,3 superoxide dismutase 1–3 genes
SPS-2 selenophosphate synthase-2
SPS-2 selenophosphate synthase-2 gene
T3 triiodothyronine
T4 thyroxine
TBA thiobarbituric acid
TBARS thiobarbituric acid reactive substances
TBH tertiary butyl hydroperoxide
TNB 5-thio-2-nitrobenzoic acid
Trx thioredoxin
TRXNRD1–2 thioredoxin reductase 1/2 genes
TrxR thioredoxin reductase
TSP transsulfuration pathway
UGA nucleotide triplet UGA encoding selenocysteine
3′ UTR 3′ untranslated region
UV ultraviolet
VESD vitamin E/selenium deficiency
VFA volatile fatty acid
VG-ICP-MS vapor generation-inductively coupled plasma-mass spectrometry
WMD white muscle disease
x mean
XOD xanthine oxidase
Zn zinc
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Appendix A

Table A1. Values of selenium concentration, GPx activity and oxidative stress parameters (SOD, CAT, MDA) in animals in different research studies, or their
reference values.

Animals Selenium Concentration GPx Activity SOD Activity CAT Activity MDA Level
Reference

Specification (Region, Breed, Sex, Age, Weight) Units Units Units Units Units

Pigs

— RV: 0.12–0.30 µg·mL−1

(in serum)
RV: 100–200 µmol·min−1 at 37 ◦C·g−1 Hb

(erythrocyte GPx)
— — — [304]

Pigs
- age of < 1 day

- 1–9 days
- 10–29 days
- 30–70 days
- 71–180 days

- 181–300 days
- 301–700 days

- > 700 days

RV:
70–90

70–120
70–120

100–160
140–190
180–220
180–220
180–220
ng·mL−1

(in serum)

— — — — [314]

7-day-old piglets (Duroc × Landrace)—control group — ~222 U·mg−1 protein (in liver) *1 ~265 U·mg−1 protein
(in liver) *1

— ~2.4 nmol·mg−1 protein
(in liver) *1

[361]

Piglets from crossbred pregnant sows (Large White ×
Landrace) on day 107 of gestation—control animals

— 621.69 ± 24.93 mmol·L−1

(x ± SEM)
(in serum) *2

— 7.38 ± 0.27 U·mL−1

(x ± SEM)
(in serum) *2

— [343]

Crossbred (Yorkshire × Landrace × Duroc) weaned
pigs (28 ± 2 days of age)

— 0.13 U·g−1 Hb
(erythrocyte GPx) *3

443.3 U·g−1 Hb
(erythrocyte Cu/Zn-SOD) *3

1.74 U·g−1 Hb
(erythrocyte CAT) *3

4.29 µM
(in plasma) *3

[342]

Cattle

— RV: 0.08–0.30 µg·mL−1

(in serum)
RV: 19–36 µmol·min−1 at 37 ◦C·g−1 Hb

(erythrocyte GPx)
— — — [304]

Cattle
- age of <1 day

- 1–9 days
- 10–29 days
- 30–300 days

- 301–700 days
- >700 days

RV:
50–70
50–70
55–75
60–80
65–90

70–100
ng·mL−1

(in serum)

— — — — [314]

Holstein-Frisian cows 12 h postpartum—control group 129.0 ± 18.0 ng·mL−1

(x ± SD)
(in blood) *4

90.6 ± 16.1 µkat·L−1

(x ± SD)
(in whole blood) *4

— — 5.71 ± 0.94 µM
(x ± SD)

(in serum) *4

[270]

Cattle—control group — 172.5 ± 30.7 U·g−1 Hb
(x ± SD)

(erythrocyte GPx);
24.3 ± 4.8

U·g−1 protein
(x ± SD)

(hepatic GPx) *5

— — — [357]
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Table A1. Cont.

Animals Selenium Concentration GPx Activity SOD Activity CAT Activity MDA Level
Reference

Specification (Region, Breed, Sex, Age, Weight) Units Units Units Units Units

Cattle

Cattle (dairy cows, bulls, heifers) in Czech Republic 78.25 ± 46.67 (1.33–212.40)
µg·L−1

(x ± SD; min–max)
(in whole blood) *6

525.51 ± 335.56 (0.41–1521.1)
µkat·L−1

(x ± SD; min–max)
(in whole blood) *6

RV of GPx activity: 472.20–665.40 *
µkat·L−1

— — — [267]

Cattle—(a) bulls
(b) heifers
(c) cows

56.9 ± 43.2
39.0 ± 20.8
83.2 ± 20.0
µg·L−1

(x ± SD)
(in whole blood) *6

368.7 ± 343.4
227.4 ± 130.8
741.7 ± 233.5
µkat·L−1

(x ± SD)
(in whole blood) *6

RV of GPx activity: 760.23 ** µkat·L−1

— — — [313]

Sheep

— RV: 0.08–0.50 µg·mL−1

(in serum)
60–180 µmol·min−1 at 37 ◦C·g−1 Hb

(erythrocyte GPx)
— — — [304]

Sheep
- age of < 1 day

- 1–9 days
- 10–29 days
- 30–70 days
- 71–180 days
- 181–300days
- 301–700 days

- >700 days

RV
- 50–80
- 60–90
- 70–100
- 80–110
- 80–110
- 80–110
- 90–120

- 120–160
ng·mL−1

(in serum)

— — — — [314]

Iranian fat-tailed sheep — RV: 191.67–196.52 U·g−1 Hb
(in blood) *** *7

RV: 948.65–1011.50 U·g−1 Hb
(in blood) *** *7

RV: 1834.29–1915.63 U·g−1 Hb
(in blood) *** *7

RV: 0.53–0.60 µmol·L−1

(in blood) *** *7
[346]

Sheep in the Czech Republic (Suffolk or
Merinolandschaft breeds)

123.42 ± 57.84 µg·L−1

(x ± SD)
(in blood) *8

814.34 ± 463.64
µkat·L−1 (x ± SD)

(in blood)
RV:

>637 µkat·L−1 (LR), resp. > 677 µkat·L−1 in
whole blood (PR) **** *8

— — — [271]

Grazing ewes in Serbia (Wirtenberg × Cigaja crossbred
sheep)—control group

— 157.4 ± 61.9 µkat·L−1

(in whole blood) *9
— — — [393]

1
2 Dorper (♂) × 1

2 Small thin-tailed (♀) crossed ram
lambs (4 months old, 25 ± 1 kg)

(a) in free-range conditions
(b) in individual stalls

— (a) 84.01 ± 4.33
(b) 71.56 ± 2.06 U·mg−1

(x ± SEM)
(GPx4 in testes) *10

(a) 6.05 ± 0.03
(b) 5.88 ± 0.12 U·mg−1

(x ± SEM)
(in testes) *10

(a) 5.28 ± 0.11
(b) 4.29 ± 0.08 U·mg−1

(x ± SEM)
(in testes) *10

(a) ~0.65
(b) ~1.2 nM·mg−1

(in testes) *10

[363]
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Table A1. Cont.

Animals Selenium Concentration GPx Activity SOD Activity CAT Activity MDA Level
Reference

Specification (Region, Breed, Sex, Age, Weight) Units Units Units Units Units

Sheep

Akkaraman sheep, weight 20–25 kg, age 6–12
months—control group

— 18.71 ± 1.11 U·mg −1

protein (x ± SD)
(in liver) *11

5.00 ± 0.21
U·mg−1 protein

(x ± SD)
(Cu/Zn-SOD in liver) *11

849.24 ± 23.83 k·g−1

(x ± SD)
(in liver) *11

45.26 ± 1.15 nmol·g −1

(x ± SD)
(in liver) *11

[394]

Goats

Goats
- age of <1 day

- 1–9 days
- 10–29 days
- 30–70 days
- 71–180 days

- 181–300 days
- 301–700 days

- >700 days

RV
- 50–80
- 60–90,
- 70–100
- 80–110
- 80–110
- 80–110
- 90–120

- 120–160
ng·mL−1

(in serum)

— — — — [314]

Red Sokoto goats of about 1-year-old, weighing
10–14 kg—control group

— ~54 IU·L−1

(in serum) *12
~2.4 IU·L−1

(in serum) *12
~47.4 IU·L−1

(in serum) *12
~1.25 nmol·L−1

(in serum) *12
[344]

Weanling Boer goat bucks (2 months old) from
selenium deficiency region in central

China—control group

0.6491 mg·kg−1

(in testes) *13
13.55 ± 3.15 U·mL−1

(x ± SD)
(in semen); 65.20 ± 5.89 U·mg−1

(x ± SD) (testicular GPx) *13

— — — [362]

Cashmere goats, aged 3-year-old and weighing
34.35 ± 0.94 kg from selenium deficiency region in

China—control group

85.24 ng·mL−1

(in serum); 32.6 ng·mL−1

(in skin) *14

264.82 U·ml−1

(in serum); 113.89 U·mL−1

(in skin) *14

72 U·mL−1

(in serum); 9.29
U·mL−1

(in skin) *14

2.31 nmol·ml−1

(in serum)
0.46 nmol·ml−1

(in skin) *14

[102]

Horses

— RV: 0.14–0.25 µg·mL−1

(in serum)
RV: 30–150 µmol·min−1 at 37 ◦C·g−1 Hb

(erythrocyte GPx)
— — — [304]

Horses
- age of <1 day

- 1–9 days
- 10–29 days
- 30–70 days
- 71–180 days

- 181–300 days
- 301–700 days

- >700 days

RV:
70–90
70–90
80–110
90–110
90–110
90–110

100–130
130–160
ng·mL−1

(in serum)

— — — — [314]

Arabian mares—healthy (control group), age of
15 ± 1.5 months

— 32.07 ± 5.10 U·g−1 Hb
(x ± SE)

(erythrocyte GPx) *15

— — 1.50 ± 0.13
nmol·mL−1

(x ± SE)
(in plasma) *15

[395]
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Table A1. Cont.

Animals Selenium Concentration GPx Activity SOD Activity CAT Activity MDA Level
Reference

Specification (Region, Breed, Sex, Age, Weight) Units Units Units Units Units

Horses

Standardbred horses (mares, geldings)—control group ~0.052 ppm
(in plasma);

0.15 ppm (in red blood cells)
*16

~100 U·g−1 Hb
(in whole blood) *16

— — — [306]

Polish Sztumski, Polish Lidzbark, and Sokolski
horses (geldings and mares), age: 4–10 years

— 36 ± 14 (9–67) U·g−1 Hb
(x ± SD; min–max) *17

— — — [359]

Italian Saddle horses from herd in Piacenza province
(Italy), age: 13.6 ± 4.8 years—control group

174.7 ng·g−1

(in blood); 87.7 ng·g−1

(in plasma) *18

23,085 U·L−1

178.0 U·g−1 Hb
(GPx1 in blood); 839.6 U·L−1

(GPx3 in plasma) *18

— — — [303]

Horses under maintenance care (females, Arabians,
~380 kg, ~14 years) and athlete animals (both genders,

Mangalarga Marchador, ~365 kg, ~7 years)—values
before test

— 328.37 ± 10.29 UL·g−1 Hb
(x ± SD)

(in blood) *19

1983.05 ± 140.84 UL·g−1 Hb
(x ± SD)

(in blood) *19

— — [396]

Slovenian warm-blooded horses (both genders), age of
2–10 years, body weight of 389.7 ± 126.1 kg

— 53.2 ± 1.4 U·g−1 Hb
(x ± SE)

(in whole blood) *20

1330.3 ± 20.8 U·g−1 Hb
(x ± SE)

(in whole blood) *20

— — [358]

Arabian mares (4–6 years old)—control group — — — — 1.006 ± 0.078 (0.870–1.100)
µmol·L−1

(x ± SD; min−max)
(in blood) *21

[397]

Male Arabian horses (4–6 years old)—control (healthy)
group

— — 110.00 ± 6.26 U·mL−1

(x ± SE)
(in erythrocyte hemolysate) *22

1480.66 ± 543.00 U·mL−1

(x ± SE)
(in erythrocyte hemolysate) *22

1.00 ± 0.12 µmol·L−1

(x ± SE)
(in erythrocyte hemolysate) *22

[398]

Standardbreds trotters (mares, stallions), age 16–20
months—healthy animals

— 51.2 ± 1.93
U·g−1 Hb
(x ± SEM)

(in whole blood) *23

— — — [399]

18-month-old horses (fillies, geldings) of American
Quarter Horse, American Paint Horse, and grade-stock

type horses—control group

0.108 µg·mL−1

(in plasma)
10.0 mU·mg−1 protein

(GPx3 in plasma); 233 mU·mg−1 Hb
(GPx1 in red blood cells) *24

— — — [360]

Donkeys

Female donkeys, 2–5 years of age and 130–190 kg in
weight—control group

120.62 ± 4.07 (mg·kg−1)
(x ± SEM)

(in serum) *25

— — — — [305,400]

SOD—superoxide dismutase; RV—reference value; Hb—hemoglobin; x ± SE/SD/SEM—mean ± standard error/standard deviation/standard error of mean;

min-max—minimum-maximum; ~—the value was subtracted from the graph. * The references values of GPx activity (y) were calculated for the use in diagnosis of insufficient selenium in

cattle in the Czech Republic as equivalent to reference range of selenium concentration in whole blood of cattle 70–100 µg·L−1 according to the regression equation (x—whole blood

selenium concentration): y = 6.44x + 21.40. ** The references value of GPx activity (y) was calculated as equivalent to reference value of selenium concentration in whole blood of cattle

100 µg·L−1 according to the regression equation (x—whole blood selenium concentration): y = 8.29x − 68.77. *** All reference values were determined for Iranian fat-tailed sheep.

**** The references values of GPx activity (y) for sheep breeded in the Czech Republic were calculated as equivalent to selenium concentration in whole blood of sheep 100 µg·L−1

according to the following regression equations (x—whole blood selenium concentration): y = 7.5857x − 121.87 (linear regression; LR) or y = −0.0167x2 + 11.993x − 355.57 (polynomial
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regression; PR). *1—colorimetric methods according to the commercial kits (Nanjing Jiancheng Bioengineering Institute, Nanjing, Jiangsu, China)—GPx: by measuring the reduction of

glutathione per min after the subtraction of the nonenzymatic reaction; SOD: using the hydroxylamine method, absorbance was recorded at 550 nm; MDA: enzymatic colorimetric method

according to the commercial kit (Nanjing KeyGEN BioTech, Nanjing, China) using the thiobarbituric acid (TBA) method to generate a colored product with an absorbance at 532 nm.

*2—GPx, CAT: colorimetric methods using assay kits from the Nanjing Jiancheng Bioengineering Institute, Nanjing, Jiangsu, China. GPx—see *1; CAT—the original methology was

not verified. *3—commercially available kits (Randox, Antrim, England)—GPx: the method is based on that of Paglia and Valentine [356]: GPx catalyzes the oxidation of glutathione

(GSH) by cumene hydroperoxide, in the presence of glutathione reductase (GR) and NADPH the oxidized glutathione (GSSG) is immediately converted to the reduced form with a

concomitant oxidation of NADPH to NADP+, the decrease in absorbance at 340 nm is measured; for a detailed description of the method, see *5. SOD: the method is based on a red

formazan dye formation: it employs xanthine and xanthine oxidase (XOD) to generate superoxide radicals which react with 2-(4-iodophenyl)-3-(4-nitrophenol)-5-phenyltetrazolium

chloride (INT) to form a red formazan dye. CAT: the method described by Aebi [401]—the original methology was not verified; MDA: the method according to the procedure of the ABTS+

(2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) scavenging assay according Yagi [402] with modifications described by Augustin et al. [403]: the susceptibility of plasma to

copper-induced lipid oxidation was determined by measuring thiobarbituric acid-reactive substances (TBARS) as MDA concentrations. The fluorescence of the supernatant was assayed

with a fluorometer (excitation = 532 nm, emission = 553 nm). *4—Se: HG-AAS, measuring of absorption at 196 nm was performed after SeH4 formation in the hydride system with NaBH4

and NaOH. GPx: the samples were hemolyzed using Drabkin’s reagent. GPx present in the samples reduces tertiary butyl hydroperoxide (TBH), glutathione (GSH) as the donor of

hydrogen becomes oxidized to GSSG, in the second phase of this coupled reaction GSSG is reduced to GSH by NADPH and glutathione reductase (GR), the low concentration of TBH

(under 2.32 mM) as used in this method, determines only the activity of SeGPx, the reduction of NADPH was measured at 366 nm. MDA: using orthophosphoric acid, thiobarbituric acid

and hydrated ferrous sulfate solution, the produced chromogen was extracted with n-butyl alcohol, the butanol layer was separated for spectrophotometric measurement at 535 nm.

*5—Erythrocytic GPx and hepatic GPx: using test kits supplied by Oxis Research (Bioxytech® GSH-PX-340) U.S.A. The GPx-340™ assay is an indirect measure of the activity of cGPx

(cellular glutathione peroxidase) [356]. Principle of the procedure: Oxidized glutathione (GSSG), produced upon reduction of an organic peroxide by cGPx, is recycled to its reduced state

by the enzyme glutathione reductase (GR): cGPx: R − O − O − H + 2GSH→ R − O − H + GSSG + H2O; GR: GSSG + NADPH + H+ → 2GSH + NADP+. The oxidation of NADPH to

NADP+ is accompanied by a decrease in absorbance at 340 nm (A340) providing a spectrophotometric means for monitoring GPx enzyme activity. The molar extinction coefficient for

NADPH is 6220 M−1·cm−1 at 340 nm. To assay cGPx, a cell or tissue homogenate is added to a solution containing glutathione, glutathione reductase, and NADPH. The enzyme reaction

is initiated by adding the substrate, tert-butyl hydroperoxide, and the A340 is recorded. The rate of decrease in the A340 is directly proportional to the GPx activity in the sample. *6—Se:

HG-AAS; GPx: the method developed by Paglia and Valentine [356], using the set supplied by Randox. *7—GPx: the method of Paglia and Valentine [356], using RANSEL Kit, (Randox,

UK), see *3; SOD: a modified method of iodophenyl nitrophenol phenyltetrazolium chloride (RANSOD Kit, Randox, UK), see *3; CAT: the method of Beers and Sizer [404], using the

ferrous oxidation in xylenol orange (FOX) assay. Samples containing CAT were incubated with H2O2 for varying time intervals prior to rapid mixing of aliquots of the incubation

mixtures with FOX reagent, which measures residual H2O2, absorbance was read at 560 nm. MDA: the thiobarbituric acid method was used to quantitate MDA-reactive products Plaser

and Cushman [405], TBA and MDA react to form a schiff base adduct under high temperature/acidic conditions to produce a chromogenic/fluorescent product that can be easily

measured employing various analytical techniques such as spectrophotometric or fluorometric methods. *8—Se: using HG-AAS according to the method described by Pechova et al.

[272]. GPx: the method developed by Paglia and Valentine [356], using a set supplied by Randox. *9—GPx: the blood samples were hemolysed in Drabkin’s reagent, GPx activity was

analyzed spectophotometrically by the coupled test [406] using tertiary butyl hydroperoxide (TBH) below 2.32 mM in order to measure only the activity of selenium dependent GPx [407].

*10—GPx, SOD, CAT and MDA: ELISA kits from Beijing SINO-UK Institute of Biological Technology (Beijing, China): glutathione peroxidase 4 (GPx4, No. HY-60005), superoxide

dismutase (SOD, No. HY-60001), catalase (No. HY-60015), and MDA (HY-60003). The methods were not verified. *11—GPx, Cu/Zn-SOD: by the use of commercially available kits
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(Randox Laboratory, Crumlin, Ireland); CAT: was determined according to Aebi’s method; MDA: was determined by the method according to Jain et al. [408]. *12—The GPx, SOD, CAT

and MDA assay protocols were based on methods described by Paglia and Valentine [356], Martin et al. [409], Aebi [401] and Janero [410], respectively. GPx, SOD, MDA: using assay kits:

NWK-GPx01, NWK-SOD02, and NWK-MDA01, respectively, purchased from Northwest Life Science Specialties, Vancouver, Canada. CAT: the activity was evaluated using catalase kit,

purchased from Abcam PLC, 330 Cambridge Science Park, UK. GPx: The NWLSS™ Glutathione Assay is a modification of the method first described by Tietze [411]. The general thiol

reagent, 5-5′-dithiobis [2-nitrobenzoic acid] (DTNB, Ellman’s Reagent) reacts with GSH to form the 412 nm chromophore, 5-thio-2-nitrobenzoic acid (TNB) and GS-TNB (glutathione

adduct of GSH). The GS-TNB is subsequently reduced by glutathione reductase and β-nicotinamide adenine dinucleotide phosphate (NADPH), releasing a second TNB molecule and

recycling GSH; thus amplifying the response. Any oxidized GSH (GSSG) initially present in the reaction mixture or formed from the mixed disulfide reaction of GSH with GS-TNB is

rapidly reduced to GSH. SOD: The NWLSS™ NWK-SOD02 method is based on monitoring the auto-oxidation rate of hematoxylin (HTH2) (which is converted to hematein - HT) as

originally described by Martin et al. [409], with modifications to increase robustness and reliability. Briefly, in the presence of SOD enzyme at specific assay pH, the rate of auto-oxidation

is inhibited and the percentage of inhibition is linearly proportional to the amount of SOD present within a specific range. Sample SOD activity is determined by measuring ratios

of auto-oxidation rates in the presence and absence of the sample and expressed as traditional McCord Fridovich “cytochrome c” units. The basic principal of the assay is shown

schematically by the following equation: O2 + HTH2 → H2O2 + HT. MDA: The NWK-MDA01 assay is based on the reaction of MDA with TBA forming an MDA-TBA2 adduct that

absorbs strongly at 532 nm. Butylated hydroxytoluene (BHT) and EDTA are added to the sample and reaction mixture to minimize oxidation of lipids that contribute artifactually during

sample processing and the TBA reaction [412,413]. The temperature of the reaction mixture has also been reduced to minimize the decomposition of lipid hydroperoxides. Because

much of the MDA protein is bound, mostly as a Schiff base, the pH of the reaction has been optimized to facilitate hydrolysis of the MDA [414]. Additionally, the reaction mixture is

subjected to derivative spectrophotometric analysis that resolves the problem of the variable and nonlinear baseline observed when attempting to measure the A532 absorbance in various

biological samples. CAT: Catalase Activity Assay Kit (Colorimetric/Fluorometric) (ab83464, Abcam, Cambridge, MA, USA) is a highly sensitive, simple and direct assay for measuring

catalase activity in a variety of biological samples such as cell and tissue lysates or biological fluids. In this assay, the catalase present in the sample reacts with hydrogen peroxide

(H2O2) to produce water and oxygen. The unconverted H2O2 reacts with the probe to produce a product that can be measured colorimetrically at OD 570 nm or fluorometrically at

Ex/Em = 535/587 nm. Therefore, the catalase activity present in the sample is reversely proportional to the obtained signal. The kit can detect as little as 1 µU of catalase activity. *13—Se:

with the procedure following the fluorometric method by Reaner and Veillon [415] with some modifications, the concentration was determined by atomic fluoro-spectrophotometry.

GPx—using hydrogen peroxide as a substrate [416]. *14—Se: using ASF-230E hydride generation atomic fluorescence spectrometer; GPx: according to the procedure of Paglia and

Valentine [356] using hydrogen peroxide as a substrate. SOD: using xanthine-xanthine oxidase and nitroblue tetrazolium (NBT) [417], one unit of SOD is defined as the amount of protein

that inhibits the rate of NBT reduction by 50%. MDA: using the procedure described by Wills [418] as nanomoles of MDA per milligram of protein. *15—GPx: spectrophotometry, using

cumene hydroperoxide as substrate [419]. Oxide glutathione (GSSG), produced by the action of erythrocyte GPx and cumene hydroperoxide, was reduced by glutathione reductase (GR)

and NADPH. The decrease in the concentration of NADPH was measured at 340 nm [419]. MDA: spectrophotometry (colorimetric changes at 532 nm with a spectrophotometer), MDA

level was measured on the basis of the reaction between MDA and TBA and detecting the colorimetric changes at 532 nm with a spectrophotometer [420,421]. *16—Se: AAS; GPx: the

activity was measured using a commercial assay (Ransel; RANDOX laboratories, Mississauga, Ontario) based on the method by Paglia and Valentine [356], which measures the decrease in

absorbance of light at 340 nm when glutathione is oxidized by cumene hydroperoxide catalyzed by glutathione peroxidase. *17—GPx: reduction of oxidized glutathione catalyzed by GR

with NADP formation and decrease of absorbance at 340 nm using reagents from Bioxytech (cat. nr 21017), OXIS International, Inc., and assay according Paglia and Valentine [356].

*18—Se in whole blood and in plasma: HPLC-ICP-MS; GPx1 in whole blood: according to the method of Paglia and Valentine [356] using a commercial kit (Ransel kit, Randox), and

GPx3 in plasma: the previous method. *19—GPx, SOD: using commercial kits (Randox®—Ransel: Crumlin, County Antrim, UK) and a semi-automatic biochemical analyser. *20—GPx:
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spectrophotometrically with an automated biochemical analyser using the commercial Ransel kit (Randox Laboratories, Crumlin, UK) based on the method of Paglia and Valentine [356];

SOD: spectrophotometrically with an automatic biochemical analyser using commercially available Ransod kit (Randox Laboratories, Crumlin, UK) based on the original method of

McCord and Fridovich [422]. *21—MDA: using commercial ELISA Kits (Cayman Chemical, Ann Arbor, MI, USA). The MDA in the sample reacts with TBA to generate the MDA-TBA

adduct. The MDA-TBA adduct can be easily quantified colorimetrically (λ = 532 nm) or fluorometrically (Ex/Em = 532/553 nm). This assay detects MDA levels as low as 1 nmol·well−1

colorimetrically and 0.1 nmol·well−1 fluorometrically. *22—SOD: the activity was assayed in erythrocyte hemolysate as described by Nishikimi et al. [423] using commercial available kit

(Bio-diagnostic, Kit number SD2520); CAT: the activity was assayed in the erythrocyte by the method of Aebi [401] using commercial available kit (Bio-diagnostic, Kit number CA2516);

MDA: the level was determined on the base of MDA reacted with TBA at 532 nm, according to Ohkawa et al. [424] using commercially supplied kits (Bio-diagnostic, Kit number MD2529).

*23—GPx: Kit Bioxytech cGPX-340 by OXIS Research, Portland, OR, USA. *24—Se: using a semiautomated fluorometric technique [425] with the modifications of Beilstein and Whanger

[426]; GPx: the activities of plasma GPx3 and red blood cell GPx1 were determined by the method of Paglia and Valentine [356], using a Bioxytech GPx-340 Assay Kit (OXIS Research,

Portland, OR, USA). The assay provides an indirect measure of GPx activity. The sample to be assayed for GPx was added to a solution containing glutathione (GSH), glutathione

reductase, and NAD phosphate (NADPH), to which tertbutyl hydroperoxide was added. Sample GPx catalyzed the reduction of tert-butyl hydroperoxide, using reducing equivalents

from GSH yielding oxidized glutathione. Oxidized glutathione was recycled back to GSH by glutathione reductase, using reducing equivalents from NADPH. The consumption of

NADPH was accompanied by a decrease in absorbance at 340 nm. The change in NADPH concentration upon initiation of the reaction just described was directly proportional to

GPx activity (i.e., 1 mU GPx activity·mL−1 is equivalent to a decrease of 1 nmol of NADPH mL·min−1). The NADPH concentration was calculated using the extinction coefficient

(6220 m·cm−1) at 340 nm. *25—Se: by using atomic absorption spectroscopy and the commercial kit (Pars Azmoon and Darman Kav, Co., Tehran, Iran).
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