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Background
The combination of protein and alkaline earth metal ion ligands affects many physiologi-
cal processes in the human body. For example, vascular smooth muscle must combine 
with  Mg2+ to play the role of dilating blood vessels and regulating blood pressure [1], 
and thrombin in blood must combine with  Ca2+ to perform in coagulation and hemo-
stasis [2]. A large number of studies predicted the binding residues of protein-alkaline 
earth metal ion ligands. But metal ion ligands are small, active and hard to be predicted, 
which leads to a generally large false positive in the research results. Therefore, the study 
of protein-alkaline earth metal ion ligand binding residues is challenging.

Uneven positive and negative data size limits the improvement of prediction accu-
racy. Generally, there are two kinds of data processing methods: one is to eliminate data 
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imbalance between positive and negative by putting different weight on them. For exam-
ple, in 2005, Lin et al. [3] used artificial neural network (ANN) method to predict  Ca2+ 
ligand binding residues. In 2016, Hu et al. [4] developed a method called Ionseq to pre-
dict  Ca2+ and  Mg2+ ion ligands. In 2016, Jiang et al. [5] used support vector machines 
(SVM) algorithm to predict  Ca2+ ligand binding residues. The other method is to pro-
cess the data set with undersampling. We selected negative segments with the equal 
number of positive segments from non-binding fragments to compose negative set to 
construct the data set with equal number of positive and negative sets for prediction. 
For example, in 2017, Cao et  al. [6] used SVM algorithm to predict the binding resi-
dues of  Ca2+ and  Mg2+ ion ligands. In 2019, Wang et al. [7] predicted the ligand binding 
residues of  Ca2+ and  Mg2+ ions by using sequential minimal optimization algorithm. In 
2020, Hu et al. [8] used Gradient Boosting Machine algorithm to predict  Ca2+ and  Mg2+ 
ion ligand binding residues.

In terms of algorithms, many machine learning algorithms have been widely used in 
the prediction of protein-metal ion ligand binding residues. For example, in 2004, Sodhi 
et al. [9] identified  Ca2+ and  Mg2+ ion ligand binding residues based on ANN. In 2006, 
Lin et  al. [10] predicted the binding residues of  Ca2+ and  Mg2+ ion ligands by using 
SVM algorithm. In 2010, Horst et al. [11] predicted  Ca2+-binding residues in proteins by 
multiple sequence comparison analysis. In 2012, Lu et al. [12] used the "fragment trans-
formation" method to predict  Ca2+ and  Mg2+ ion ligand binding residues. In 2020, Liu 
et  al. [13] used random forest (RF) algorithm to predict the binding residues of  Ca2+ 
and  Mg2+ ion ligands. Among various algorithms, the RF algorithm and SVM algorithm 
have relatively good prediction results. Although the Sp, ACC and MCC values obtained 
by the RF algorithm are high, the Sn values are low. While, SVM has more balanced 
performance. Sp, ACC and MCC values of SVM are slightly lower than those of RF algo-
rithm, but SVM is outstanding on sensitivity and reduces the number of false positives. 
It is more likely to predict the binding residues correctly in actual prediction. Overall, 
among traditional machine learning algorithms, SVM algorithm has better prediction 
performance.

Since the rise of deep learning algorithms in 2012, breakthroughs are made in natural 
language, speech processing, machine translation and other fields [14–16] of big data. 
There is a certain similarity between the processing of the natural language problem and 
the prediction of protein binding residue. Studies showed [17] that performing the fre-
quency analysis on amino acids, their distribution obey Zipf ’s law, which was considered 
to be one of the fundamental features of language. This meant that biological sequences 
can be considered as "natural language" existing in nature and suitable for deep learning 
algorithms. For example, in 2019, Cui et al. [18] used the Deep convolutional networks 
algorithm, based on entire amino acid sequences, controlled the size of the effective con-
text scope by the number of convolution layers, and captured the local information of 
binding residues and the long-distance dependence between amino acids layer by layer 
to predict the binding residues of six metal ion ligands. While we have processed the 
protein sequence into shorter amino acid fragments, and controlled the size of the effec-
tive context scope. Therefore, we adopted a more concise deep learning algorithm, i.e., 
deep neural networks (DNN) algorithm. It is built through the fully-connected layers, 
expresses the essential information contained in the data through multi-layer nonlinear 
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variation, and reduces the dimension of high-dimensional data, so that it can learn more 
effective features.

Therefore, in this paper, DNN algorithm was used to predict  Ca2+ and  Mg2+ ligand 
binding residues, and the results of fivefold cross-validation were better than those of 
Ionseq method [4] after optimization of hyper-parameters. To further verify the perfor-
mance of the proposed model, we used the method of undersampling to deal with the 
data set. By optimizing parameters, we adopted fivefold cross-validation and independ-
ent tests. The independent test results were better than those of SVM algorithm. The 
research showed that: DNN algorithm has certain advantages in predicting  Ca2+ and 
 Mg2+ ligand binding residues.

Methods
Establishment of dataset

To ensure the authenticity of the data and the accuracy of the experiment, we selected 
the data from BioLip database [19] and downloaded protein chain that interacts with 
 Ca2+ and  Mg2+ ligands. BioLip database is a semi-manual database, and the data are 
measured accurately by experiments. To build a non-redundant dataset, we filtered the 
data and eliminated protein chains with the sequence length of less than 50 amino acids, 
the resolution of more than 3 Å, and the sequence identity greater than 30%. Compared 
with Hu et al. [4], the amount of non-redundant data set obtained is obviously increased. 
The number of protein chains interacting with  Ca2+ ligand increases from 179 to 1237, 
and  Mg2+ ligand increases from 103 to 1461.

When a protein combines with a metal ion ligand, both the binding residues and the 
surrounding residues will be affected. In order to extract more comprehensive informa-
tion, we used the sliding window method to intercept fragments on protein sequences, 
and the length L of the intercepted fragments was taken as 9 according to references 
[6, 7] for the ligands of  Ca2+ and  Mg2+. To ensure that every amino acid appears in the 
center of the fragment, we added (L − 1)/2 pseudo amino acids at both ends of the pro-
tein chain. If the fragment center was a binding residue, it would be defined as a posi-
tive set fragment, otherwise it would be a negative set fragment. The data set of alkaline 
earth metal ion ligands obtained is shown in Table  1. It can be seen from the data in 
Table 1 that the fragments of negative set are much larger than those of positive set, the 
number of fragments of  Ca2+ ligand negative set is more than 58 times that of positive 
set, and that of  Mg2+ ligand negative set is more than 92 times that of positive set.

Table 1 Alkaline earth metal ion ligand data set

Note: Ligand represents the metal ion ligand; Chains represents the number of protein chains combined with metal ion 
ligands; P represents the binding residue of metal ion ligand; N represents the non-binding residue of metal ion ligand

Ligands Data set Chains P N

Ca2+  OUR’S 1237 6789 396,957

 HU’S [4] 179 1360 119,192

Mg2+  OUR’S 1461 5212 480,307

 HU’S [4] 103 391 76,382
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Selection of characteristic parameters

Based on the sequence of amino acids, this paper selected amino acids, physicochemi-
cal characteristics of amino acids and predicted structural information as characteristic 
parameters. Among them, the physicochemical characteristics of amino acids included 
the charge and hydrophobicity of amino acids. According to the charge properties of 
amino acids, 20 kinds of amino acids can be divided into 3 categories [20]. Amino acids 
K, R and H were positively charged, D and E were negatively charged, and other amino 
acids were not charged. According to the hydrophilic and hydrophobic properties of 
amino acids, 20 kinds of amino acids were divided into 6 categories [21]. The amino 
acids R, D, E, N, Q, K and H were strongly hydrophilic, L, I, V, A, M and F are strongly 
hydrophobic, S, T, Y and W were weakly hydrophilic, and P G and C each belongs to one 
category. The predicted structural information included secondary structural informa-
tion, relative solvent accessibility area and dihedral angle (phi angle and psi angle), all 
of which were obtained from the prediction of protein sequences by the ANGLOR [22] 
software. The secondary structure information included three types: α-helix, β-fold and 
random curl. Based on statistical analysis, the area information of solvent accessibility 
was divided into four intervals [6], x represented the value of relative solvent accessibility 
area and its threshold was expressed by r(x):

The dihedral angle information was reclassified in line with statistics [13], x repre-
sented the angle of the dihedral angle, the threshold value of phi angle was expressed by 
function g(x), and the threshold value of psi angle was expressed by function h(x):

Extraction of feature parameters

Extraction of component information

We extracted from each fragment for the following component information (37 
dimensions):

(1) The frequency of occurrence of amino acids to obtain 21-dimensional amino acid 
composition information.

(2) The frequency of occurrence of three secondary structures corresponding to amino 
acids to obtain 4-dimensional secondary structure composition information.

(1)r(x) =



















I , x ∈ (0, 0.2]
II , x ∈ (0.2, 0.45]
III , x ∈ (0.45, 0.6]
IV , x ∈ (0.6, 0.85]

(2)g(x) =
{

I , x ∈ [−180◦,−75◦]
II , x ∈ (−75◦, 180◦]

(3)h(x) =







I , x ∈ [−180◦, 15◦]
II , x ∈ (15◦, 135◦]
III , x ∈ (135◦, 180◦]
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(3) The frequency of 4 relative solvent accessibility area classifications corresponding 
to amino acids to obtain 5-dimensional relative solvent accessibility information.

(4) The frequency of occurrence of 2 phi angles classifications corresponding to kinds 
of amino acids to obtain 3-dimensional phi angle component information. Simi-
larly, the psi angle is counted to obtain 4-dimensional psi angle component infor-
mation.

Conservative characteristics of loci

We used the position weight matrix [23, 24] to extract the conservative features of sites, 
and the matrix element of the position weight matrix were expressed as follows:

The pseudo-counting probability Pi,j is expressed as:

In the formula, P0,j represents the background probability, and Pi,j represents the 
occurrence probability of the jth amino acid at the ith site. ni,j represents the fre-
quency of the j amino acid at the i site, Ni represents the total number of amino 
acids at the i site, and j represents 20 kinds of amino acids and vacancies. q repre-
sents the classification number, here 21. Two standard scoring matrices can be con-
structed from the positive and negative training sets, and each segment can obtain 
2L-dimensional feature vectors. Similarly, the predicted secondary structure, rela-
tive solvent accessibility area and dihedral angle (phi angle and psi angle) can also be 
extracted by this method, where q is 4, 5, 3 and 4 respectively.

Finally, we got the information of site conservation in each fragment (2L*5 
dimensions):

(1) 2L-dimensional position conservation information of 20 amino acids.
(2) 2L-dimensional position conservation information of 3 secondary structures.
(3) 2L-dimensional position conservation information of 4 relative solvent accessibility.
(4) 2*2L-dimensional position conservation information of phi and psi angle.

Information entropy

For the physicochemical characteristics of amino acids, we used information entropy 
[13, 25] to extract them in order to avoid the information "overwhelming" caused by 
imbalanced classification.

The information entropy formula is expressed as:

(4)mi,j = ln

(

pi,j

p0,j

)

(5)pi,j =

(

ni,j +
√
Ni
q

)

(

Ni +
√
Ni

)
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In which pj represents the probability of occurrence of the jth classification in a 
segment, nj represents the frequency of occurrence of the jth classification in a seg-
ment, and N is the segment length. For the value of q, if it represents charge classifi-
cation, q = 3; if it represents the classification of hydrophilic and hydrophobic, q = 6. 
Finally, we got the one-dimensional information entropy of hydrophilic and hydro-
phobic water and the one-dimensional information entropy of charge information.

Deep learning algorithm

Inspired by biological neural network, deep learning algorithm combines low-level 
features to form a deep neural network with abstract representation, and then simu-
lates the thinking of human brain for perception, recognition and memory, so as to 
realize high-level feature extraction and expression of complex structural data con-
taining complex information [26]. DNN is one of the common deep learning meth-
ods, and its multi-layer network structure expands the neural network’s ability to 
process complex data, processing big data effectively. The protein chain with  Ca2+ 
and  Mg2+ ligands contains hundreds of thousands of fragments of positive set and 
negative set, and its data amount is suitable for deep learning algorithm. Therefore, 
this paper choosed DNN algorithm as the prediction tool.

The deep learning algorithm modules used in this paper are all implemented in the 
keras framework:

(1) The normalization module was used to standardize the data to improve the conver-
gence speed and robustness of the training process.

(2) The Earlystop module was used to reduce invalid time cost. If Epoch precision did 
not rise for 10 consecutive times, it was considered that the best precision has been 
achieved, and training was stopped to prevent over-fitting.

(3) The Relu function is used as the hidden layer activation function, and the Sigmoid 
function as the output layer activation function.

Results
Evaluation index

For the evaluation of prediction results, we used the methods commonly used in pre-
diction research of protein-metal ion ligand binding residue [5, 7, 8]: sensitivity (Sn), 
specificity (Sp), accuracy (Acc), Matthew’s correlation coefficient (MCC). The expres-
sions are:

(6)H(x) = −
q

∑

j=1

pj log2 pj

(7)pj =
nj

N
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In which TP represents the number of metal ion ligand binding residues correctly 
identified; FN represents the number of metal ion ligand binding residues identified 
as metal ion ligand non-binding residues; TN represents the number of non-binding 
residues of metal ion ligands correctly identified; FP is the number of metal ion ligand 
non-binding residues identified as metal ion ligand binding residues.

The prediction results of fivefold cross‑validation

Based on the characteristics parameters of secondary structure, relative solvent accessi-
bility area, dihedral angle, charge and hydrophilicity as characteristic parameters, DNN 
algorithm was used to predict the binding sites. In the results of fivefold cross-valida-
tion, the Sn value of  Ca2+ and  Mg2+ ligands reached 13.1%, Sp and Acc value reached 
97.1%, MCC value reached 0.115, and the predicted results were not ideal. Therefore, in 
order to further improve the prediction accuracy, we optimized the DNN algorithm with 
hyper-parameters.

Optimization of hyper‑parameters

The hyper-parameters of deep learning algorithm include: the number of hidden layers, 
learning rate, the number of hidden layer nodes and batch sizes, etc. The hyper-param-
eters has great influence on the training and performance of the model. Therefore, we 
can optimize the hyper-parameters and select a group of hyper-parameters with the best 
prediction results, so as to improve the performance of the algorithm. When optimizing 
a certain kind of hyper-parameters, other hyper-parameters remained unchanged, then 
the exhaustive method was used in the range of hyper-parameters, and finally a group 
of parameters with the best prediction performance in the test set was selected. Con-
sidering the influence on model accuracy, computing resources and computing time, 
referring to previous studies [27, 28], we selected three hyper-parameters, namely, the 

(8)Sn =
TP

TP + FN
× 100%

(9)SP =
TN

TN + FP
× 100%

(10)Acc =
TP + TN

TP + TN + FP + FN
× 100%

(11)MCC =
(TP × TN )− (FP × FN )

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

Table 2 Value range of the hyper-parameter in DNN

Hyper‑parameters Value

Hidden layers 1, 2, 3, 4, 5, 6, 7, 8

Hidden neurons 2, 4, 8, 16, 32, 64, 128

Batch size 2, 4, 8, 16, 32, 64, 128
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number of hidden layers, the number of hidden layer nodes and the batch size, to opti-
mize, and gave the value range of optimized hyper-parameters, as shown in Table 2.

The impact of changes in the number of hidden layers on the prediction accuracy Hid-
den layer is the network layer between the input layer and the output layer, which has the 
greatest and most intuitive influence on the network structure, and its number of layers 
can be adjusted by the feedback of prediction results. Setting the number of hidden layer 
nodes and batch size as fixed values, the number of hidden layers is increased from 1. The 
results are shown in Fig. 1.

Figure 1a is a line chart showing the MCC value of  Ca2+ ligand changing with the 
number of hidden layers. With the increase of the number of layers, the MCC value 
of  Ca2+ ligand gradually increased, and reached the highest point of 0.128 when the 
number of layers was 3, while the MCC value continued to decrease when the number 
of layers continued to increase. At the same time, referring to the other three evalu-
ation indexes, it can be determined that the optimal layer value of  Ca2+ ligand is 3. 
Similarly, Fig. 1d is a line chart showing the MCC value of  Mg2+ ligand changing with 
the number of hidden layers. It can be seen from the figure that the optimal layer 
value of  Mg2+ ligand is 5.

The influence of the change of the number of hidden layer nodes on the prediction accu-
racy The number of hidden layer nodes need to be adjusted according to the actual 
situation of the data set. When the number of hidden layer nodes was small, it will be 
difficult for the network to learn features effectively. Too much hidden layer nodes 
will increase the complexity of the network structure and reduce the learning speed 
of the network, which will also lead to over-fitting. Like the process of optimizing the 
number of hidden layers, we fixed the number of hidden layers and batch size, and then 
changed the number of hidden layer nodes to find the optimal value. See Fig. 1b, e for 

Fig. 1 Curve of MCC value of  Ca2+ and  Mg2+ ligands with hyper-parameters
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the line chart of MCC value changing with the number of nodes. It can be seen that the 
optimal hidden layer node value of  Ca2+ ligand is 32, and  Mg2+ ligand is 64.

The impact of  batch size changes on  prediction accuracy The value of batch is the 
number of samples input for training once. Batch size has obvious influence on the 
data processing and convergence speed of the algorithm. In the previous article, the 
optimal number of hidden layers and hidden layer nodes had been determined, so we 
directly optimized the batch size under these two optimal parameters. See Fig. 1c, f for 
the line chart of MCC value changing with batch size. It can be seen that the optimal 
batch size of  Ca2+ ligand was 32 and  Mg2+ ligand was 16.

Finally, we got the optimized hyper-parameters and the optimized prediction 
results, as shown in Table 3.

In order to verify the reliability and practicability of DNN algorithm, we also com-
pared it with the results of Ionseq method [4], and the results of Ionseq method were 
also listed in Table 3.

Prediction results based on undersampling method

In order to reduce the influence of data imbalance, we also adopted the method of 
undersampling [22] to process the data set, and randomly selected the negative sequence 
fragments equal to the positive set; In order to ensure the stability of the prediction 
results, the negative set samples were randomly selected 10 times, and the average of 
the 10 results was taken as the final prediction result. Because the data set constructed 
by the undersampling method can not accurately simulate the actual forecast situation, 
we also constructed an independent test data set. The metal ion ligand binding protein 
chain was divided into two parts: one part accounted for 80% of the total protein chain 
number, which was used as the training set for the network model, and the other part 
accounted for 20%, which was used as the independent test set. See Table 4 for the inde-
pendent test data set of alkaline earth metal ion ligands.

Table 3 Comparison of fivefold cross-validation results

Ligand hyper‑parameter tuning Hidden 
layers

Hidden 
neurons

Batch size Sn (%) Sp (%) Acc (%) MCC

Ca2+ DNN (optimized) 3 32 32 26.4 98.6 97.4 0.231

IonSeq [4] – – – 22.7 99 98.2 0.211

Mg2+ DNN (optimized) 5 64 16 32.8 98.3 97.6 0.229

IonSeq [4] – – – 5.6 99.9 99.5 0.183

Table 4 Independent test data set

Ligand Training dataset Independent testing dataset

Chains P N Chains P N

Ca2+ 989 5256 312,876 248 1533 84,081

Mg2+ 1168 4069 384,365 293 1143 95,942
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Based on the characteristics parameters of secondary structures, relative solvent 
accessibility area, dihedral angle, charge and hydrophilic-hydrophobic as characteristic 
parameters, DNN algorithm was used to predict the binding sites. The results of fivefold 
cross-validation using training dataset are shown in Table  5. The independent testing 
dataset was input into the prediction model after the optimization of the hyper-parame-
ter, and the prediction results of independent testing were shown in Table 5.

It can be seen from the results of the fivefold cross-validation in Table  5 that the 
undersampling method effectively reduces false positives brought by imbalance between 
positive and negative sets. The Sn values of two ion ligands reach more than 80.1%, and 
their prediction performance is more balanced. In the results of the independent testing, 
Sn value of DNN algorithm reaches 71.7%, Sp and Acc value reached 79.1%, MCC value 
reached 0.163. In order to compare the prediction performance of DNN algorithm in 
the undersampling method, we compared the results with the results of SVM algorithm 
using the undersampling method [13], and the prediction results of independent test of 
SVM algorithm were also listed in Table 5.

Discussion
Comparison in Table 3 shows that the evaluation index of DNN algorithm and Ion-
seq method had the same characteristics, that is, the Sn value was smaller and the 
SP value was larger, which was related to the fact that the number of negative sets in 
the data set was much larger than the number of positive sets. However, Sn value and 
MCC value of DNN algorithm were better, and Sn value of  Mg2+ was 27.2% higher 
than Ionseq method. The Sp and Acc values of DNN algorithm were slightly lower 
than those of Ionseq method.

By comparison, it was found in Table  5 that DNN algorithm was better than 
SVM algorithm except that the Sn value of  Mg2+ ligand was slightly lower, and the 
Sn value of  Ca2+ ligand was 11.6% higher than that of SVM algorithm. This may be 
due to the fact that the number of positive sets of  Ca2+ ligands is more than that of 
 Mg2+ ligands, while the DNN algorithm is suitable for big data learning and the SVM 
algorithm for small sample learning. Therefore, the DNN algorithm has better per-
formance for  Ca2+ ligands, and the Sn value of the prediction for  Mg2+ ligand was 
slightly lower. Therefore, based on undersampling method, we think that the predic-
tion performance of DNN algorithm is better than that of SVM algorithm.

Table 5 Comparison of results of DNN algorithm and SVM algorithm

DNN① represents the results of the training dataset,  DNN② represents the results of independent testing dataset

Ligands Algorithms Hidden layers Hidden 
neurons

Batch size Sn (%) Sp (%) Acc (%) MCC

Ca2+ DNN① 2 16 32 80.1 74.6 77.4 0.563

DNN② 2 16 32 78.6 79.1 79.1 0.196

SVM 67.0 77.6 77.4 0.149

Mg2+ DNN① 3 32 32 80.9 82.8 81.9 0.658

DNN② 3 32 32 71.7 85.1 85 0.163

SVM 77.2 78.9 78.8 0.141
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Conclusion
In this paper, based on protein sequence information, six characteristic parameters 
were selected and DNN algorithm was used to predict  Ca2+ and  Mg2+ ligand bind-
ing residues. In order to improve the prediction performance of DNN algorithm, we 
optimized the number of hidden layers, the number of hidden layer nodes and the 
batch size of DNN algorithm. With the optimized parameters, the results of fivefold 
cross-validation were better than those of Ionseq method. At the same time, we also 
adopted the method of undersampling the data set, and used fivefold cross-validation 
and independent tests. With the optimized parameters, the independent test results 
of DNN algorithm were better than those of SVM algorithm. The good prediction 
results based on the DNN algorithm for predicting  Ca2+ and  Mg2+ ligand binding 
residues are due to the large data set of  Ca2+ and  Mg2+ ligand binding residues, which 
is suitable for the prediction by the DNN algorithm, and the optimized hyper-param-
eters of the model, which improves the performance of the algorithm.
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