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Abstract

Trypanosoma cruzi is a protozoan parasite that comprises different phylogenetic groups and is the causative agent of
Chagas’ disease. Different T. cruzi strains present differences in infectivity in in vitro and in vivo experimental models, which
are likely related to the expression of different virulence factors. Amastin is a surface glycoprotein abundantly expressed on
the intracellular mammalian amastigote form of the parasite. In this study, we showed that a highly infective strain (G strain)
of extracellular amastigote (EA) invasive forms expressed reduced RNA levels of amastin compared to a less infective strain
(CL). The treatment of HeLa cells with recombinant d-amastin reduced infectivity of EA forms. However, the ectopic
expression of d-amastin accelerated amastigote differentiation into trypomastigotes. Corroborating the virulence behavior
in association with amastin expression, the EAs overexpressing amastin were precociously and robustly observed in the liver
of susceptible mouse strains (A/JUnib), whereas parasitemia was never detected in in vivo assays. This is the first report on
the regulatory role of amastin in the course of both in vitro and in vivo T. cruzi infection.
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Introduction

Trypanosoma cruzi, the flagellated protozoan that causes Chagas

disease in the Americas, is able to invade different mammalian

cells in order to complete its life cycle [1,2]. Metacyclic and

bloodstream trypomastigote forms are the classic infective forms

that initiate and spread infection between hosts [3]. Trypomas-

tigotes of distinct T. cruzi isolates have been shown to possess

highly distinct levels of infective capacity towards cultured

mammalian cells and in animal models [4–6]. Amastigotes

generated (extracellular amastigotes or EAs) by the extracellular

differentiation of bloodstream or the corresponding tissue culture

derived trypomastigotes are also capable of sustaining an infective

cycle in the mammalian host and cells [7–10].

EA forms of some T. cruzi strains (such as G and CL strains)

display the opposite pattern of infectivity of trypomastigote forms

[11,12]. Whereas both metacyclic and tissue culture derived

trypomastigotes from G strains exhibit very low infectivity both

in vitro and in vivo [6], EAs are highly infective in vitro [11,12]. By

contrast, little is known regarding the elements involved in EA

entry into mammalian cells [reviewed in 13]. Carbohydrate

epitopes expressed on the surface of EA have been shown to play a

role in entry, probably in the initial steps of parasite attachment

[12]. A 21 kDa protein expressed in all developmental stages of

the parasite up-regulates cell invasion by EAs and metacyclic

trypomastigotes [14]. However, the molecular basis of the

remarkable capacity of EA parasites to invade mammalian cell

in vitro still remains unknown.

Other groups have studied amastigote specific factors involved

in intracellular infection. The involvement of molecules such as

Asp-1 and Asp-2 in colonization of host cells as well as protective

immunity has been experimentally demonstrated [15–17]. Also,

mannose residues on transialidase-like molecules in amastigotes

have been implicated in their invasion of macrophages through

mannose receptors [18].

It is conceivable that the T. cruzi protein repertoire changes in a

stage-specific manner, with up- and down-regulation of several

factors involved in the exacerbation or arrest of intracellular

infection. This repertoire varies from strain to strain, as proteins

are isolated from different host organisms, and serves as different

evasive/infective parasite factors [19].

One of the families of T. cruzi surface proteins is the amastin

multi-gene family, which consists of small proteins of about 200

amino acids and was first identified by its higher expression in

amastigotes from the Tulahuen strain [20] There are also

approximately 45 members of the amastin gene family dispersed

throughout the genome of all Leishmania species, showing different

expression patterns [21,22]. By contrast, the amastin gene family is

reduced in the T. cruzi genome, but is present in all tested T. cruzi

strains [23]. Some of its members are organized in large clusters

containing alternating copies of tuzin genes. Phylogenetic analysis
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of trypanosomatid amastins defined four subfamilies (a, b, c and d)

with distinct genomic organization as well as patterns of expression

during the cell cycle of T. cruzi and Leishmania spp. [24].

The amastin N-terminal signature peptides are among the most

immunogenic of all leishmanial surface antigens in mice [25] and

generate strong immune responses in humans with visceral

leishmaniasis [26]. Thus, amastin proteins seem to operate at

the host–parasite interface and are likely to be involved in disease

prognosis. The putative role of amastins in intracellular survival

has been suggested by DNA microarray analysis data, which

indicates that amastin genes are predominantly expressed in L.

donovani amastigotes of different isolated from patients with post-

kala-azar dermal leishmaniasis and visceral leishmaniasis [21], and

was also shown for laboratory strains [28]. Although the exact role

of amastin proteins in disease progression has not yet been

determined and the biological function of amastins remains

unknown, it has been hypothesized that Leishmania amastins may

play a role in proton or ion traffic across the cell membrane to

adjust cytoplasmic pH under the harsh conditions of the

phagolysosome [21].

In this study, we report for the first time both in vitro and in vivo

roles for amastin in T. cruzi-host interplay. By using both

recombinant d-amastin protein and transgenic parasites overex-

pressing amastin in in vitro and in vivo models, we were able to

demonstrate that recombinant amastin can adhere to host cells

and inhibit mammalian cell invasion by T. cruzi EAs. Constitutive

overexpression of a d-amastin in the G strain led to enhanced

differentiation into metacyclic trypomastigotes. Interestingly,

although parasites (EAs) overexpressing d-amastin had a lower

infection capacity in vitro, they differentiate faster in vitro into

trypomastigotes and, correspondingly, their amastigote nests are

detected very early during in vivo infections.

Materials and Methods

Parasites, Mammalian Cells and Invasion Assays
G and CL T. cruzi strains were used in the study according to

[12]. The CL Brener T. cruzi strain [29] was also used in this study.

EAs were obtained after differentiation of tissue culture trypo-

mastigotes (TCTs) in LIT medium as previously described [12].

Epimastigotes were obtained as previously described [14].

Vero and HeLa cells (obtained from Instituto Adolfo Lutz, São

Paulo, SP, Brazil) were cultured in Dulbecco’s minimal essential

medium (DMEM) (Sigma Chemical Co., St. Louis, MO, USA)

supplemented with 10% fetal bovine serum (FBS, Cultilab,

Campinas, SP, Brazil), 10 mg/mL streptomycin (Sigma, USA),

100 U/ml penicillin (Sigma, USA) and 40 mg/mL gentamycin

(Sigma, USA) at 37uC in a 5% CO2 humidified atmosphere.

HeLa cell invasion assays were performed in 24 wells plates

containing sterile glass coverslips in which 500 mL of cell

suspension (26105 cells) were added to each well to seed overnight.

EA suspensions (10 parasites/cell) were added and the plates were

incubated for 2 h at 37uC in a CO2 (5%) humidified incubator.

After incubation, the cells were gently washed eight times with

PBS, fixed with Bouin’s reagent and stained with Giemsa stain

[30].

Cell invasion assays in the presence of recombinant amastin

were performed by treating host cells with 5 mg/mL of GST

(glutatione S-transferase)-d-AmastinH or GST for 1 h before

addition of parasites.

Cloning and Purification of Recombinant GST-AmastinH
A region of a delta-amastin gene (GenBank XP_812391)

encoding for a hydrophilic portion of the protein (AmastinH)

was chosen to be cloned and expressed in fusion with a GST tag in

the plasmid pGEX-4T2. A DNA fragment derived from the CL

Brener strain total genomic DNA was amplified by PCR using the

following primers: forward BamHI-59AAG GAT CCC TGG

TTG GGA CGC CGA TAG ACC AG 39 and reverse BamHI -

59AAG GAT CCA CAT TCA CGA AAA TCT TCC CAA AA

39. The insert was cloned into the plasmid pGEX-4T2 (GE

Healthcare, USA) and the plasmid was used to transform

Escherichia coli BL-21 to produce recombinant GST-d-AmastinH.

Recombinant GST-d-AmastinH was purified using glutathione

(GSH) agarose beads (Pierce, USA) then dialyzed against PBS for

48 h at 4uC. The amount of purified protein was determined using

the Coomassie Plus assay reagent (Pierce, USA) and measuring the

optical density at 620 nm, and the purified protein was analyzed

by Coomassie Blue stained SDS-polyacrylamide gels.

Figure 1. Delta-amastin is more abundant in less infective T. cruzi extracellular amastigotes. A. mRNAs in EAs of the G strain are less
abundant when compared to EAs of the CL-Brener clone T. cruzi. Transcript levels were determined by quantitative real-time PCR using
SYBRH Green I chemistry. qRT-PCR was performed on RNA samples from EAs of G and CL strains. The comparative mRNA levels were determined after
normalization with GAPDH amplicons. Standard deviations are derived from three replicates. *p,0.05 B. mRNA corresponding to amastin is
preferentially expressed in amastigotes from CL Brener clone. Northern blot analyses of total RNA (10 mg) from T. cruzi epimastigotes (E),
trypomastigotes (T) and amastigotes (A) from CL-Brener clone or the G T. cruzi strain was submitted to electrophoresis and blotted on nylon
membranes by standard procedures. Each blot was hybridized with amastin probe previously labeled with [a-32P]-dCTP. To determine equal loading
of RNA, the 1.2% agarose/MOPS/formaldehyde gel was stained with ethidium bromide (bottom panel).
doi:10.1371/journal.pone.0051804.g001

Amastin: A Virulence Factor in T. cruzi Infectivity
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Real-time Quantitative PCR
RNA was extracted from parasites with TRIzolH Reagent and

treated with RNase-free DNase (Invitrogen, USA). First strand

cDNA was synthesized using the ThermoScriptTM Real-Time

PCR System according to the manufacturer’s instructions

(Invitrogen, USA). Specific forward and reverse primers designed

based upon the nucleotide sequences of the amastin gene were

used to amplify sequences of this gene by PCR. Quantitative real-

time PCR (qRT-PCR) was performed with 2.0 mL of the cDNA

reaction in 20 mL of SYBRH Green PCR Master Mix (Applied

Biosystems, Foster City, CA, USA) with the primers described

below (500 nM). Amastin cDNA was measured using the

Figure 2. Reactivity of anti-recombinant d-amastin antibodies. A: Representation of full length amastin amino acids: The sequence
illustrates the expressed d-amastinH region (gray/boxed) cloned in fusion with GST to produce the recombinant protein GST-d-AmastinH. B:
Western blot analysis with polyclonal antibodies recognized GST-d-AmastinH protein. 1: Purified GST (5 mg) or 2: GST-d-AmastinH (5 mg)
revealed with anti-GST-d-AmastinH confirmed the efficient reactivity of the polyclonal antibody with the recombinant protein and GST. C. Surface
localization of amastin defined by polyclonal rabbit anti-GST-AmastinH. Immunofluorescence of intracellular amastigotes of G strain with
rabbit anti-GST-d-AmastinH (green) and DAPI (blue). Image obtained by confocal microscopy. (Bar = 3 mm).
doi:10.1371/journal.pone.0051804.g002

Figure 3. GST-d-AmastinH specifically binds to HeLa cells in a dose-dependent saturable manner. A. SDS-PAGE showing the purity
of recombinant GST-d-amastinH: 1; Molecular weigh markes, in kiloDaltons; 2: GST alone; 3: purified recombinant GST-d-AmastinH; 4 total extract
of induced E. coli. B: Recombinant GST-d-AmastinH binds to HeLa cells. Increasing concentrations of GST-AmastinH or GST (negative control)
were added to wells in ELISA plates containing adhered and fixed HeLa cells. After washing, cells were sequentially incubated with anti-GST
antibodies and anti-rabbit IgG conjugated to peroxidase. The bound enzyme was revealed by o-phenylenediamine as a substrate. Representative
results of two independent experiments are shown. *p,0.05.
doi:10.1371/journal.pone.0051804.g003
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oligonucleotides Amastin-Forward 59 GGC GGC ACA CTT

CTA CCT AA 39 and Amastin-Reverse 59 ACA ATG CTG ACC

ACC AAC AG 39. GAPDH cDNAs (used as an internal control)

were measured with the following oligonucleotides: GAPDH-

Foward 59 AGC GCG CGT CTA AGA CTT ACA 39 and

GAPDH-Reverse 59 TGG AGC TGC GGT TGT CAA TT 39.

The reactions were carried out with the ABI PrismH SDS 7000

(Applied Biosystems, Foster City, CA, USA) and analyzed with the

associated software (version 2.0) using the standard protocol. The

primers were designed to achieve maximum polymerase efficiency.

Each amplicon was about 75 bp in length and each reaction was

repeated three to five times to calculate the standard deviations.

The comparative mRNA levels were determined after normaliza-

tion to glyceraldehyde-3-phosphate dehydrogenase (GAPDH)

amplicons.

Northern and Western Blot Assays
Total RNAs isolated from epimastigote, trypomastigote and

amastigote cultures were separated using the RNeasyH kit (Qiagen,

USA), transferred to Hybond-N+ membranes and hybridized with

the amastin open reading frame (U04339) as described [31]. For

the western blot, wild-type and stably transfected epimastigote cell

lysates were prepared by homogenization of cell pellets in

Laemmli sample buffer without boiling. Proteins were separated

in 12.5% standard SDS-polyacrylamide gels, transferred to

Hybond-C membranes (Amersham Pharmacia Biotech, USA),

and blocked with 5% milk-PBS-Tween 0.1%. Membranes were

then incubated with mouse anti-GFP (Santa Cruz Biotechnology,

USA), washed, and then incubated with secondary antibody (goat

anti-mouse (H+L)-HRP conjugate, Bio-Rad, USA) as previously

described [32]. The immunocomplexes were detected using the

enhanced chemiluminescent substrate, ECL-Plus (Amersham

Figure 4. Delta-amastin interferes with EA-HeLa cell interaction. A: GST-AmastinH inhibited host cell invasion by T. cruzi EAs. Prior to
invasion, HeLa cells were treated for 1 h with 5 mg/ml of GST (white column) or GST-d-AmastinH (dark column). The parasites were then added to
HeLa cells and the invasion proceeded for 2 h. The number of internalized parasites was counted in a total of at least 300 cells. B: EAs (G strain)
overexpressing amastin showed lower infectivity toward HeLa cells. EAs of the G strain expressing high levels of d-amastin (black column)
showed a significant decrease in cell invasion when compared to wild type parasites (clear column) or parasites expressing only GFP (gray column).
The invasion proceeded for 2 h. The values are shown as means 6 standard deviations of two independent experiments performed in duplicate.
*p,0.05.
doi:10.1371/journal.pone.0051804.g004

Figure 5. Transfection of G strain parasites with d-amastin-GFP accelerates metacyclogenesis. A: G strain parasites were efficiently
transfected with GFP and d-amastin-GFP. A: Epimastigotes transfected with pTREX-GFP (G-pTREX-GFP) show a cytoplasmic diffuse fluorescence
and B: epimastigotes transfected with pTREX-Amastin-GFP (G-pTREX-Amastin-GFP) display a surface fluorescence localization as well as a
concentration near the kinetoplast and flagellum (B). (Bars = 3 mm). C: Epimastigotes that overexpress d-amastin displayed higher rates of
metacyclogenesis. A Neubauer chamber was used to evaluate the growth and differentiation rate of epimastigotes transfected with pTREX-GFP or
pTREX-Amastin-GFP vectors. Standard deviations are derived from three replicates. *p,0.05.
doi:10.1371/journal.pone.0051804.g005
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Pharmacia Biotech, USA) according to instructions provided by

the manufacturer.

Flow Cytometry
Approximately 16107 live parasites were washed with cold PBS

and analyzed using a BD FACSCaliburTM flow cytometer (Becton

Dickinson, USA) with 104 gated events acquired for analysis.

Untransfected control parasites, which showed intrinsic fluores-

cence, were used to establish the cut-off value.

Plasmid Constructions and Parasite Transfections
To overexpress d-amastin in T. cruzi G strain, the coding

sequence of the TcA21 cDNA clone [20; accession number

U04339] was PCR-amplified using a forward primer (59-

CATCTAGAAAGCAATGAGCAAAC-39) and a reverse primer

(59-CTGGATCCCTAGCATACGCAGAAGCAC-39), which

contained XbaI and BamHI restriction sites, respectively. It was

then digested with XbaI and BamHI (the sites underlined in the

primers above), treated with shrimp alkaline phosphatase (SAP)

and ligated into a BamHI/XhoI GFP fragment derived from

pTREX-GFP [33]. The ligation product was purified and digested

with XbaI/XhoI, followed by purification and cloning in the

pTREX vector [33] at the same sites, generating the pTREX-d-

Amastin-GFP. The plasmids created were checked by DNA

sequencing.

Epimastigotes were harvested from cultures, washed once with

PBS and resuspended to 26108 parasites/ml in electroporation

buffer (137 mM NaCl, 21 mM HEPES, 5 mM KCl, 5.5 mM

Na2HPO4, 0.77 mM glucose, pH 7.0). Aliquots (0.7 ml) of

parasite suspension were mixed with 25 mg DNA in 0.4 cm

Figure 6. d-amastin-transfected G-strain EAs transform more efficiently into trypomastigotes. A: EAs were efficiently transfected
with pTREX-GFP and pTREX-Amastin-GFP. Vero cells were chronically infected with G-pTREX-GFP parasites (A) or with G-pTREX-Amastin-GFP
parasites (B). A cytoplasmic fluorescence in A and a membrane localization of overexpressed amastins in B (bars = 10 mm)] were observed. DAPI (blue)
showed nuclei and kinetoplasts staining. C. The overexpression or d-amastin does not affect intracellular growth of parasites. Total
number of intracellular amastigotes per 100 cell in infected HeLa cells were determined and it can be observed that overexpression of amastin does
not interfere with the process. D: Intracellular amastigotes overexpressing amastin transform faster and more efficiently into TCTs. The
number of TCTs at 96 h and 120 h after invasion was higher in the culture supernatants of cells infected with parasites expressing high levels of
amastin (dark columns) in comparison to control cells infected with parasites transfected with pTREX-GFP (white columns). The values are shown as
the means 6 standard deviations of two independent experiments performed in duplicate. *p,0.05.
doi:10.1371/journal.pone.0051804.g006
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Figure 7. Transfection of G strain parasites with d-amastin-GFP leads to early appearance of amastigote nests in the liver of
infected mice. A. Nest of EAs (G-pTREX-Amastin-GFP) in the liver of infected A/JUnib mice. Susceptible mice (A/JUnib strain) were
infected intravenously with 106 G strain EAs transfected with pTREX-GFP or pTREX-Amastin-GFP. Nests of parasites overexpressing amastin were
observed from the third day of infection. B. Nests of G-pTREX-Amastin-GFP are formed earlier and in higher numbers in the liver of
infected mice. Thin sections of hematoxylin-eosin stained tissues from livers of mice infected with 56106 EAs from G-pTREX-GFP or G-pTREX-d-
Amastin-GFP strains were analyzed from the second day until the nineteenth day of infection for the determination of the number of parasite nests in
the liver. The values are shown as means 6 standard deviations of two independent experiments. *p,0.05.
doi:10.1371/journal.pone.0051804.g007

Figure 8. Schematic proposed model for the role of d-amastin in T. cruzi virulence. The model indicates two distinct parasites, EAs
expressing high levels of amastin was represented by dotted line membrane of amastigotes (left cell side) whereas the low amastin expression was
represented by spaced dots in the amastigotes membrane (right cell side), during EA invasion and differentiation processes of T. cruzi virulence in a
hypothetical host cell. 1. EAs expressing more amastin (left) show a lower infectivity rate when compared with parasites expressing lower levels of
the protein. 2. High levels of amastin accelerate the transformation of amastigotes into TCTs (left).
doi:10.1371/journal.pone.0051804.g008
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cuvettes and electroporated using a Bio-Rad Gene PulserH set at

0.3 kV and 500 mF with two pulses. The transfected cells were

transferred to 5 ml of LIT with 10% FCS and incubated at 28uC
for 48 h before adding G418 (500 mg/ml). Plasmid DNA used in

electroporation experiments was obtained by alkaline lysis using

Qiagen columns (Qiagen, USA).

GST-d-AmastinH: Antibodies and Cell Binding Assay
Antibodies were produced in eight week old rabbits immunized

with GST-d-AmastinH. Rabbits received the first dose of antigen

(400 mg) adsorbed in complete Freund’s adjuvant (Pierce, USA)

and after two weeks received three additional doses of the antigen

plus incomplete Freud’s adjuvant at two week intervals. Ten days

after the last immunizing dose, rabbits were bled by heart

puncture, and serum was collected and stored at 220uC until

usage. HeLa cells (56104) were placed in 96-well microtiter plates

and were grown overnight at 37uC. Live cells were washed in PBS

and blocked with PBS containing 10% FCS (PBS-FCS) for 1 h at

room temperature. Increasing amounts of purified recombinant

GST-d-AmastinH or GST were added to the wells, and the

incubation proceeded for 1 h at 37uC. Cells were then fixed with

4% paraformaldehyde in PBS. To detect bound amastin on the

surface of HeLa cells, immunostaining of d-AmastinH was

performed as described [14] using the rabbit antibodies described

above.

Immunofluorescence
Coverslips containing infected cells were washed with PBS,

fixed with 3.5% formaldehyde in PBS for 1 h, washed three times

with PBS and then permeabilized with 0.1% saponin (BDH,

Amersham, UK) in PBS containing 0.2% gelatin and 0.1% NaN3

(PGN). The coverslips were incubated with Anti-GST-d-Amas-

tinH (diluted 1:50 in PGN) for 1 h at room temperature, washed

three times with PBS and then incubated with fluorescein-labeled

goat anti-rabbit IgG (Sigma, USA) diluted 1:100 in PGN for 1 h in

the presence of 10 mM 49,6-diamidino-2-phenylindole dihydro-

chloride (DAPI, Molecular Probes, Eugene, OR, USA). After

three washes with PBS, the coverslips were mounted in glycerol

buffered with 0.1 M Tris, pH 8.6 and 0.1% paraphenylenedi-

amine to reduce photobleaching. Images were acquired with an

Olympus BX51 under an epifluorescence microscope. Confocal

images were obtained using a Bio-Rad 1024UV system coupled to

a Zeiss Axiovert 100 microscope or a Leica TCS SP5 II system.

Images were acquired with 1006 (1.4 NA) oil immersion

objectives.

Intracellular Growth and Metacyclogenesis
HeLa cells were infected with wild type G strain, G-pTREX-

GFP and G-pTREX-d-Amastin-GFP for 24, 48 and 72 h, fixed

with Bouin and stained with Giemsa as described above for

intracellular growth counting in triplicate coverslips.

Epimastigotes that had been cultured for 6 days (56107 cells/

ml) were incubated at 28uC in LIT medium with 5% FCS for

various time periods. The relative numbers of metacyclic

trypomastigotes were morphologically determined by counting in

a Neubauer chamber over 23 days.

Animals and Histological Analysis
Six week old A/JUnib mice were used for in vivo infection, as

this strain has been previously shown to be highly susceptible to T.

cruzi infection [34]. All experiments involving animal work were

conducted under guidelines approved by the UNIFESP ethics

committee, which are in accordance with international recom-

mendations. We inoculated 56106 extracellular amastigotes of G-

pTREX-GFP and G-pTREX-d-Amastin-GFP strains intrave-

nously in a volume of 200 mL. Tissue parasitism was quantified

from day 2 p.i. by examining the liver of mice belonging to each of

the two groups (15 animals/group). Liver, spleen, heart and kidney

from all animals were fixed in 10% formaldehyde in 0.1 M

phosphate buffer (pH 7.3) for 24 h, then dehydrated in ethanol,

clarified in xylene, embedded in paraffin, and 5 mm thick sections

were obtained from each block. Paraffin sections were stained with

hematoxylin–eosin for routine histological analysis. Amastigote

nests were quantified in 100 microscopic fields/section in triplicate

slides, as previously described [47].

Statistics
All experiments were performed with duplicate coverslips and

repeated at least three times. Three hundred cells per coverslip

were analyzed. Statistical analysis was performed by SigmaStat

(Version 1.0, Jandel Scientific), employing Student’s t-test. Data

are presented as mean +/2 standard deviation (SD).

Ethics Statement
All experiments involving animal work were conducted under

Brazilian National Commitee on Ethics in Research (CONEP)

ethic guidelines, which are in accordance with international

standards (CIOMS/OMS, 1985). The present study was approved

by CEP/UNIFESP (Comitê de Ética em Pesquisa da Universi-

dade Federal de São Paulo/Hospital São Paulo) under the

protocol number 1839/07.

Results

Distinct T. cruzi strains (CL and G) Express Different Levels
of Amastin Transcripts

To evaluate amastin expression in EAs from CL and G strains,

the quantity of transcript in each strain was determined by

quantitative real-time PCR using primers designed to achieve the

maximum polymerase efficiency and GAPDH amplicons as a

reference. The level of amastin transcripts was ,60 fold higher in

EAs from the CL strain (less infective) as compared to EAs from

the G strain (more infective) (Fig. 1A). However, this expression

data could be underestimated in the G strain since the primers

used were designed based on the CL Brener clone genomic

sequence. To circumvent this bias, total RNA from each strain was

probed by northern blot assays using an amastin coding sequence

(Fig. 1B). This approach confirmed the quantitative real-time PCR

data.

Recombinant d-amastin Adhered to Host Cells
A previous report described that several attempts to express full

length amastin failed, probably due to its toxicity to E. coli [20].

Here, we chose a region encoding the first hydrophilic portion of

the protein (shown in Fig. 2A, in gray to clone and express in

fusion with GST -GST-d-AmastinH). The antibody raised in

rabbit against this hydrophilic region of amastin specifically

recognizes the recombinant amastin as well as GST, although, as

shown in Fig. 2B, the reactivity is stronger with GST-d-AmastinH.

To confirm its specificity, we carried out immunostaining of G

strain amastigotes inside of Vero cells four days after of infection

with TCTs and observed a significant labeling of the parasite

membranes as well as intracellular components in the vicinity of

the kinetoplast (Fig. 2C). The specificity of the antibody was

further confirmed by immuofluorescence with epimastigotes and

metacyclic trypomastigotes (figure S1). The result highlights that

the anti-GST-d-AmastinH recognizes the amastin at the cell
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surface of amastigotes, but not in epimastigotes or trypomastigotes

(figure S1). Further controls were carried out and confirmed the

specificity of the antibodies used in this study (figure S2).

Based on amastin topology prediction by Rochette et al. in 2005

[21], the hydrophilic region chosen in this study would be exposed

to the extracellular environment. This arrangement prompted us

to test if this polypeptide could interact with the host cell.

Therefore HeLa cells grown on microtiter plates were treated with

increasing concentrations of GST-d-AmastinH or GST alone, and

the bound peptide was detected using anti-GST monoclonal

antibody. We detected GST- d-AmastinH (Fig. 3A) adhered to

fixed or live HeLa cells in a saturable and dose-dependent manner

(Fig. 3B). This finding suggests that amastin interacts with this host

cell, probably through a putative receptor localized at the surface

of HeLa cells, which suggested a role for amastin in the uptake of

T. cruzi by HeLa cells.

Amastin Inhibited Mammalian Cell Invasion
After the amastin-derived hydrophilic polypeptide was shown to

bind to host cells, we decided to investigate whether amastin could

be important for parasite invasion. HeLa cells were pre-incubated

in the presence of purified recombinant protein GST-d-AmastinH

or GST alone and then infected with EAs from the G strain.

Whereas treatment with GST did not affect invasion, the GST-d-

AmastinH resulted in a 34% inhibition of parasite invasion

(Fig. 4A).

G strain EAs transfected with Amastin-GFP (see description in

the next section) also demonstrated a significant decrease in host

cell invasion when compared to control EAs overexpressing GFP

alone or the wild type parasites (Fig. 4B).

Amastin Overexpression Triggered a Faster
Metacyclogenesis

Since G strain EAs present low levels of amastin RNA

compared to CL parasites (Fig. 1) we decided to increase

expression of amastin by stable transfection of epimastigotes with

pTREX-d-Amastin-GFP plasmid. This plasmid carries a copy of

amastin fused with Green Fluorescent Protein (GFP) under the

control of the ribosomal protein TcP2b 59UTR and glycosomal

glyceraldehyde 3-phosphate dehydrogenase (gGAPDH) 39UTR.

The populations transfected with pTREX-GFP (control vector) or

pTREX-d-Amastin-GFP vectors were selected over two months

with G418, and both populations reached high transfection

efficiency as shown by flow cytometry analyses (.98% of G418

resistant parasites expressed GFP or Amastin-GFP, Fig. S3,

supplementary material). The increase in amastin expression was

quantified at the RNA level by qRT-PCR, and the correct

translation was confirmed by western blot using whole cell extracts

from transfected epimastigotes (Fig S4 and S5, supplementary

material). It is noteworthy that real-time PCR revealed that the

additional gene copy regulated by gGAPDH 39UTR triggered ,5

fold increase in d-amastin mRNA levels in epimastigotes

compared to pTREX-GFP parasites. The results shown in figure

S4 also suggest that amastin expressed in fusion with GFP is not

glycosylated since it migrates with the expected molecular size of

an unmodified d-Amastin/GFP fusion protein. Biochemical

characterization of amastins indicate that they are present as

large molecular weight glycoprotein complexes since they bind

concanavalin A [20]. Although no conventional signals for N-

linked glycosylation were identified, several serine and threonine

residues that could be modified by 0-linked sugars are found in all

amastin sequences. Parasite mobility, morphology (form, size and

granularity) and growth rate were not affected by transfection

(data not shown).

Two months after transfection, we observed ,95% of

pTREX transfected epimastigotes expressing GFP (Fig. 5A) or

d-Amastin-GFP (Fig. 5B). To check if the amastin-GFP protein

was being addressed to its correct subcellular destination,

transfected epimastigote and amastigote forms were analyzed

by confocal microscopy. The images shown in Figure 5

indicated that amastin fused with GFP localized at the surface

and also concentrated in the vicinity of the kinetoplast, probably

at the flagellar pocket region (Fig. 5B). This was a distinct and

diffuse localization pattern from parasites transfected with GFP

alone (Fig. 5A). Given that the fusion protein was being

expressed at the expected location and in higher levels, these

parasites were tested for phenotypic changes.

We observed that pTREX-d-Amastin-GFP epimastigotes dif-

ferentiated into metacyclic trypomastigotes faster than the control

pTREX-G-GFP epimastigotes (Fig. 5C).

Amastin Overexpression Also Accelerated the
Differentiation of Amastigotes into TCTs

Full-length d-amastin-GFP overexpressed in EAs of the G strain

localized to the cell surface and also displayed a distinct

concentration at the flagellar pocket (Fig. 6B), similar to the

transfected epimastigotes (Fig 5B). A diffuse distribution pattern

was observed when pTREX-GFP alone was expressed (Fig. 6A).

Amastin overexpression did not affect intracellular growth of

amastigotes (Fig. 6C). However, the overexpression of amastin in

G strain EAs increased the numbers of trypomastigotes released

into the supernatant of infected HeLa cells at 96 h and 120 h after

invasion, as compared to the GFP controls (Fig. 6D). Intracellular

trypomastigotes were also precociously observed in cells infected

for 72 h with parasites overexpressing d-amastin, and these forms

were not observed in the control samples (figure S6).

d-Amastin Accelerated and Increased Parasite Tropism to
Liver in vivo

We extended this investigation to an in vivo model of T. cruzi

infection, inoculating A/JUnib mice with EAs transfected with

GFP vector or overexpressing amastin-GFP. It has recently been

shown that G strain extracellular amastigotes do not give rise to

patent parasitemia in mice, possibly due to their susceptibility to

interferon-gamma [35) In this study, bloodstream parasitemia was

not detected in animals infected with G strain EAs either

overexpressing pTREX-d-Amastin-GFP or pTREX-GFP. There-

fore, tissue parasitism following inoculation was assessed by

counting amastigote nests in the liver (Fig. 7A). Nests of parasites

overexpressing amastin were very early observed in the liver at the

third day after inoculation and (Fig. 7B, dark bars). Amastigotes

expressing empty GFP vector (G-pTREX-GFP, control) presented

lower tissue parasitism from the 5th day that peaked at day 7

(Fig. 7B, white bars).

Discussion

Amastin as a Negative Regulator of Trypanosoma cruzi
Cell Invasion

Trypanosoma cruzi, the etiological agent of Chagas’ disease, uses

many strategies to invade mammalian cells. For instance, different

infective stages (e.g. bloodstream trypomastigotes, metacyclic

trypomastigotes and extracellular amastigotes), distinct strains

and isolates, as well as differing infectivities, have been widely

acknowledged as challenging tasks to overcome by researchers.

Many researchers have set out to characterize the parasite proteins

involved in the establishment of infection [13].
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Very little is known about the molecules that participate in

invasion of cells by EAs [13]. Possible candidates involved in cell

invasion by EAs include members of the trans-sialidase superfam-

ily and carbohydrate epitopes tagged to surface glycoproteins, as

well as secreted components and cell-surface components

[11,12,14,18].

Here, we characterized one of the members of the previously

identified amastin protein family of T. cruzi [20], a delta-amastin

protein, examining its role during cell invasion and differentiation

of parasites from the G strain.

Developmentally-regulated amastin proteins belong to one of

the larger families of surface proteins in Leishmania [21] and show

high similarity to the amastin proteins in T. cruzi. There are

approximately 45 members of the amastin gene family and they

are dispersed throughout the genome of Leishmania species. The

structural organization of the amastin gene family in both

Leishmania and Trypanosoma species indicate that they share a

similar structural organization and contain a highly conserved 11

amino acid extracellular domain, unique to amastin proteins [21].

Hydrophobicity profiling predicted four transmembrane helices

for the majority of the amastin homologs and this strongly

suggested membrane localization for these proteins [21]. This was

confirmed at the subcellular level for three amastin gene products

of Leishmania [21]. Studies on the evolution and diversification of

this family suggest that amastin, which suffered a major

diversification after the origin of the genus Leishmania, can be

subdivided into four groups: alpha, beta, delta and gamma-

amastin. Alpha- and gamma- amastin have been only identified in

Leishmania spp and in the insect trypanosomatid Crithidia deanei.

There are two copies of beta-amastin organized in tandem present

in the genomes of Leishmania spp, Crithidia spp and T. cruzi [24].

Delta-amastin belongs to the sub-family with the highest

number and diversity among its members. There are multiple

copies of delta-amastin genes present in the genomes of Leishmania

spp, Crithidia spp and T. cruzi arranged in clusters in which amastin

genes are interspersed with tuzin genes. The delta sub-family

underwent an expansion in the genus Leishmania, and in T. cruzi

could still be sub-divided into two groups named delta and proto-

delta amastin. In the T. cruzi genome two copies of proto-delta

amastin genes are present in the chromosome 26 whereas at least

20 copies of delta-amastin genes are present in the chromosome 34

[24]. We have chosen one member of the delta-amastin sub-family

in this study to be over-expressed in the G strain because the

mRNA expression analysis showed that, contrary to T. cruzi beta-

amastin genes, the expression of delta-amastin genes is largely

reduced in the G strain [20]. Because all delta-amastin genes have

over 92% of amino acid identity, the member we selected for over-

expressing in the G strain would be representative of all members

from this group.

We have been able to express and purify a hydrophilic and

immunogenic region of T. cruzi delta-amastin and raise specific

antibodies to this molecule. As previously demonstrated for

Leishmania [21] and T. cruzi [20], amastin is localized at the

amastigote surface. The transcripts of amastin have been detected

by microarray (not shown), qRT-PCR and northern blot assays.

By comparing the total quantity of transcripts between G and CL

strains, the amount of amastin transcripts was always higher in the

CL than the G strain. Regarding EAs as infective forms, it has

been known that the T. cruzi G strain is more infective to HeLa

and other mammalian cells than the CL strain [35–40]. Given that

amastigotes from the CL strain contained more transcripts and

amastin mRNA than the G strain and CL EA parasites are less

infective [11], we hypothesized that amastin could be a negative

regulator of amastigote cell invasion, in line with previous

observations of metacyclic trypomastigotes [6].

Our results showed that the amastin displayed properties

required for a protein associated with host cell invasion. First,

the protein is expressed on the amastigote surface, and the

truncated recombinant form adhered to host cells in a dose-

dependent manner, both properties observed in previously

characterized T. cruzi proteins [6,14]. Next, the treatment of host

cells with recombinant amastin led to a significant decrease in

parasite internalization. Possibly, the contact of the hydrophilic

region with a putative receptor interferes with a key process that

inhibits invasion of HeLa cells. These results also showed that the

binding region involved in cell adhesion and invasion is located

within the amastin domain cloned and expressed in this study. A

novel set of truncated recombinant proteins would help to clarify

and narrow down the required amino acid sequence of amastin

that regulates cell adhesion and invasion. Thus, taken together

these results collectively point to a role of amastin in modulating

cell invasion by T. cruzi.

The Role of Amastin in Parasite Intracellular Survival
Some indirect evidence has pointed to a crucial role of amastin

in the co-evolution, adaptation and survival of trypanosomatids

within both vertebrate and invertebrate hosts. For instance,

amastin proteins seem to operate at the host-parasite interface

and are implicated in severe disease, as they evoke strong immune

responses in both mice and humans, primarily when associated

with visceral leishmaniasis [25,26]. Comparative analysis indicated

that the amastin family is both diverse and ancient [24]. The

emergence of the amastin family pre-dates the diversification of

the various parasite species, allocating amastin as an ancient

feature of all trypanosomatid genomes [24]. This suggests a

preparation of the trypanosomatids in the course of evolution to

develop such specialized molecules to support both survival and

prevalence of trypanosomatids in a hostile environment. In

addition, the putative role of amastin in the intracellular survival

of the parasite has been suggested by DNA microarray analysis

data [27]. Amastin genes were predominantly expressed in

amastigotes of different L. donovani strains isolated from post-

kala-azar dermal leishmaniasis and visceral leishmaniasis patients,

and this was also shown for laboratory strains [28].

Other indirect observations corroborate a role for amastin in

intracellular survival. Some authors have questioned whether

amastin genes contribute to parasite pH homeostasis and growth

inside the parasitophorous vacuole. As transmembrane proteins,

amastins could play a role in proton or ion traffic across the

membrane [21,41]. Interestingly, a number of amastin homologs

are expressed once the parasite is fully differentiated into its

intracellular amastigote form, a process that normally occurs

inside the acidic environment of phagolysosomes [21]. Opsoniza-

tion of Leishmania amastigotes via host IgG antibodies promotes its

uptake via the macrophage Fc receptors and the release of IL-10,

which favors amastigote proliferation by changing the metabolism

of the host macrophage. Amastin is considered to be the candidate

for this surface epitope recognized by these opsonic antibodies

[42].

Here, we have conclusively demonstrated for the first time that

amastin may have a role in differentiation of T. cruzi both in vitro

and in vivo. First, overexpression of amastin in T. cruzi increases

epimastigote differentiation into metacyclic trypomastigotes, all of

which are stages residing in the insect vector. Second, amastigotes

that overexpress d-amastin, although not growing at higher rates if

compared to the controls, are able to differentiate much faster into

trypomastigotes within infected cells and tissues, which are the
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stages exclusive to the mammalian host. Finally, the infection of

mice with EAs overexpressing amastin triggers an increased and

premature tropism to the liver. Taken together our results show

that amastin is a key molecule responsible for the survival of T.

cruzi in its intracellular cell stage.

Amastin and the Trade-off Hypothesis
It is apparent from the data presented here as well as through

indirect evidence presented by other authors, that amastin

facilitates parasite survival by accelerating the generation of

infective trypomastigotes, ensuring parasite persistence and

spreading within the host. Amastin is likely to be a molecule that

aids the parasite to maximize transmissibility which suggests a

behavior that coincides with the so- called ‘‘trade-off hypothesis.’’

The trade-off hypothesis, developed by Anderson & May [43] and

Ewald [44], takes into account that there are both fitness benefits

and costs associated with virulence. If a parasite kills its host, it also

kills itself and as a consequence prevents its further transmission.

In this case, the host death is assumed to be ‘‘the cost,’’ because in

theory parasites evolve to be relatively benign with no benefit from

killing their host. Conversely, the generation of greater numbers of

transmissible forms per unit time, and/or the increased persistence

in a live host could be the benefits associated with virulence

[45,46].

One could argue that there are both positive and negative

selective forces in nature acting on virulence and that virulence is a

property of a host-parasite interaction, and not simply of the

parasite. Long-term parasite-host associations are the result of an

advantageous coevolution since their interaction has been long

enough for adaptation. To balance the fitness cost to the pathogen

when the host dies as a result of infection, it is assumed that there

must also be a virulence-related advantage to the pathogen’s

fitness [45,46].

Going further in the case of T. cruzi and amastin, it seems that

the cost for the parasite would be to be less infective, i.e. fewer

parasites (EAs) enter into host cells, and this could be an

alternative strategy to avoid recognition by the immune system

which, in turn, would ultimately damage the host. By contrast

amastin allows faster differentiation into a new round of infective

forms (see proposed model, Figure 8). Pathogens with the highest

fitness are those with an intermediate level of virulence, which

balances these opposing contributions to fitness. Taking the

behavior of amastin described above into account, this may be the

case in relation to T. cruzi virulence.

Supporting Information

Figure S1 Specificity of anti-recombinant GST-d-Amas-
tinH antibodies by immunofluorescence. A–C mixtures of

T. cruzi epimastigotes (red arrow) and trypomastigotes (yellow

arrow) of the CL strain do not react with anti-recombinant GST-

d-AmastinH. A; DIC image. B: DAPI image; C: anti-recombinant

GST- d-AmastinH image. D–F: CL strain extracellular amasti-

gotes react with the anti-recombinant GST-d-AmastinH: by

comparison, in the same experiments, EA (also CL strain) are

fully labeled: D: DIC; E: DAPI image; F: anti-recombinant GST-

d-AmastinH image. Bar = 10 mm.

(TIF)

Figure S2 Specificity controls on western blots. A: anti-
GST: 1) 4 mg of recombinant GST- d-AmastinH; 2) 20 mg of

GST. B: anti-GFP: 1) Total extract of epimastigote of

G_pTREX-Amastin-GFP; 2: Total extract of epimastigote of

G_pTREX-GFP; 3) Total extract of WT G strain epimastigote.

C: anti- GST- d-AmastinH: 1) 1) Total extract of epimastigote

of G_pTREX-Amastin-GFP; 2: Total extract of epimastigote of

G_pTREX-GFP. D: Left Panel: anti- GST-d-AmastinH: 1)

GST, 20 mg; 2) 4 mg of recombinant GST-d-AmastinH; 3) Total

extract of WT EA of CL strain; 4) Total extract of WT

epimastigotes of CL strain; 5) Total extract of WT EA of G

strain; 6) Total extract of WT epimastigote of G strain. Right
Panel: Coomassie loading control of D.

(TIF)

Figure S3 Flow cytometry analysis showing high level of
transfection efficiency. G, G-pTREX-GFP and G-pTREX-d-

Amastin-GFP epimastigotes were washed with cold PBS and

analyzed using a BD FACSCaliburH flow cytometer (Becton

Dickinson) with 104 gated events acquired for analysis. G-pTREX-

GFP (green curve) and G-pTREX-Amastin-GFP (red curve)

showed homogeneous populations with transfection rates .98%.

Untransfected control parasites (G strain), black curve.

(TIF)

Figure S4 The relative amount of amastin mRNAs in
epimastigotes transfected with pTREX-Amastin-GFP
was higher than in epimastigotes transfected with
pTREX-GFP. Transcript levels were determined by quantitative

real-time PCR using SYBRH Green I chemistry. Quantitative real-

time PCR was performed on RNA samples from epimastigotes of

G-pTREX-GFP and G-pTREX-d-Amastin-GFP strains. The

comparative mRNA levels were determined after normalization

with GAPDH amplicons. Standard deviations are derived from

three replicates (*p,0.05).

(TIF)

Figure S5 Immunoblot analysis of transfected epimas-
tigotes. G, G-pTREX-GFP or G-pTREX-d-Amastin-GFP cell

lysates were prepared by homogenization of cell pellets in

Laemmli sample buffer, separated by 12.5% standard SDS-

PAGE, transferred to Hybond-C membranes and incubated with

mouse anti-GFP followed by secondary antibody.

(TIF)

Figure S6 Intracellular trypomastigotes are detected
after 72 h in cells infected with parasites superexpres-
sing d-amastin. HeLa cells infected with A: WT, B: GFP or C:

GFP-amastin; cells were fixed with Bouin and stained with Giemsa

for the determination of intracellular parasite growth.

(TIF)
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31. Araújo PR, Burle-Caldas GA, Silva-Pereira RA, Bartholomeu DC, Darocha
WD, et al. (2011) Development of a dual reporter system to identify regulatory

cis-acting elements in untranslated regions of Trypanosoma cruzi mRNAs. Parasitol
Int 60: 161–169.

32. Ausubel FM, Brent R, Kingston RE (1995) Current protocols in molecular

biology. Greene/Wiley-Interscience, New York.
33. DaRocha WD, Silva RA, Bartholomeu DC, Pires SF, Freitas JM, et al. (2004)

Expression of exogenous genes in Trypanosoma cruzi: improving vectors and
electroporation protocols. Parasitol Res 92: 113–120.

34. Gonçalves da Costa SC, Calabrese KS, Zaverucha do Valle T, Lagrange PH
(2002) Trypanosoma cruzi: infection patterns in intact and athymic mice of

susceptible and resistant genotypes. Histol Histopathol 17: 837–844.

35. Rodrigues AA, Saosa JSS, Silva GC, Martins FA, Silva AA, et al. (2012) IFN-c
plays a unique role in protection against low virulent Trypanosoma cruzi strain.

Plos Neg Trop Dis. 6: e1598.
36. Stecconi-Silva RB, Andreoli WK, Mortara RA (2004) Parameters affecting

cellular invasion and escape from the parasitophorous vacuole by different

infective forms of Trypanosoma cruzi. Mem Inst Oswaldo Cruz 98: 953–958.
37. Fernandes AB, Mortara RA (2004) Invasion of MDCK epithelial cells with

altered expression of Rho GTPases by Trypanosoma cruzi amastigotes and
metacyclic trypomastigotes of strains from the two major phylogenetic lineages.

Microbes Infect 6: 460–467.
38. Fernandes AB, Neira I, Ferreira AT, Mortara RA (2006) Cell invasion by

Trypanosoma cruzi amastigotes of distinct infectivities: studies on signaling

pathways. Parasitol Res 100: 59–68.
39. Fernandes MC, Cortez M, Geraldo Yoneyama KA, Straus AH, Yoshida N, et

al. (2007) Novel strategy in Trypanosoma cruzi cell invasion: implication of
cholesterol and host cell microdomains. Int J Parasitol 37: 1431–1441.

40. Mortara RA, Andreoli WK, Fernandes MC, da Silva CV, Fernandes AB, et al.

(2008) Host cell actin remodeling in response to Trypanosoma cruzi: trypomastigote
versus amastigote entry. Subcell Biochem 47: 101–109.

41. Azizi H, Hassani K, Taslimi Y, Najafabadi HS, Papadopoulou B, et al. (2009)
Searching for virulence factors in the non-pathogenic parasite to humans

Leishmania tarentolae. Parasitology 136: 723–735.
42. Naderer T, McConville MJ (2008) The Leishmania-macrophage interaction: a

metabolic perspective. Cell Microbiol 10: 301–308.

43. Anderson RM, May RM (1982) Coevolution of hosts and parasites. Parasitology
85: 411–426.

44. Ewald PW (1983) Host-parasite relations, vectors, and the evolution of disease
severity. Annu Rev Ecol Evol Syst 14: 465–485.

45. Mackinnon MJ, Gandon S, Read AF (2008) Virulence evolution in response to

vaccination: the case of malaria. Vaccine 26 (Suppl 3): C42–52.
46. Alizon S, Hurford A, Mideo N, Van Baalen M (2009) Virulence evolution and

the trade-off hypothesis: history, current state of affairs and the future. J Evol
Biol 22: 245–259.

47. Staquicini DI, Martins RM, Macedo SF, Sasso GRS, Atayde VD, et al. (2010)

Role of gp82 in the selective binding to gastric mucin during oral infection with
Trypanosoma cruzi. Plos Negl Trop Dis 4: p. e613.

Amastin: A Virulence Factor in T. cruzi Infectivity

PLOS ONE | www.plosone.org 11 December 2012 | Volume 7 | Issue 12 | e51804


