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Background: Tumor-associated macrophages as important members of the
tumor microenvironment, are highly plastic and heterogeneous. TAMs can be
classified into two preliminary subtypes: M1 and M2 macrophages.
M2 macrophages are significantly associated with the progression of lung
adenocarcinoma. However, no study has investigated the heterogeneity
among M2 macrophages and their differentiation-related genes at the
single-cell level to guide the clinical treatment of lung adenocarcinoma.

Methods: Using the available annotation information from the Tumor Immune
Single-cell Hub database, we clustered and annotated 12 lung adenocarcinoma
samples using the R package ‘Seurat. Subsequently, we extracted
M2 macrophages for secondary clustering analysis and performed cell
trajectory analysis using the R package ‘'monocle2’. Based on heterogeneous
genes associated with the differentiation trajectory of M2 macrophages, we
established a prognostic lung adenocarcinoma model using Lasso-Cox and
multivariate  stepwise regression. In addition, we also performed
immunotherapy and chemotherapy predictions.

Results: M2 macrophages exhibit heterogeneity among themselves.
M2 macrophages in different differentiation states showed significant
differences in pathway activation and immune cell communication.
Prognostic signature based on heterogeneous genes can be used to classify
the prognostic status and abundance of immune cell infiltration in lung
adenocarcinoma patients. In addition, the calculation of the Tumor Immune
Dysfunction and Exclusion (TIDE) algorithm and the validation of the
GSE126044 database indicated that lung adenocarcinoma patients with
high-risk scores had poorer treatment outcomes when receiving immune
checkpoint inhibitors treatment.
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Conclusion:

Based on scRNA-seq and Bulk-seq data,

10.3389/fgene.2022.1010440

we identified

M2 macrophage-associated prognostic signature with a potential clinical
utility to improve precision therapy.
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Introduction

Lung cancer is one of the most common malignancies and
the leading cause of cancer-related deaths. There are
approximately two million new cases and 1.76 million deaths
each year (Thai et al., 2021). It can be divided into two types: non-
small cell lung cancer (NSCLC) and small cell lung cancer
(SCLC) (Thai et al,, 2021). NSCLC is the leading type of lung
cancer, accounting for about 85% of the total lung cancers
(Srivastava et al., 2022). Meanwhile, Lung adenocarcinoma is
the most common histological subtype of NSCLC. Lung
adenocarcinoma has a strong heterogeneity and a complex
tumor microenvironment (TME) (He et al., 2021). Traditional
pathological stages do not fully determine the prognosis of
NSCLC patients. Therefore, the development of novel and
reliable prognostic models can help stratify the risk of lung
adenocarcinoma patients and provide targeted
immunotherapy and chemotherapy strategies (Shi et al., 2021).

TME, an ecosystem with a complex communication network,
consists of tumor cells, cancer-associated stromal and immune
cells, and other non-cellular components (Wu and Dai, 2017;
Maacha et al,, 2019). Numerous studies have shown that the
of
adenocarcinoma are closely related to TME (Kamata et al,
2020; Kim et al, 2020; Li et al, 2021). Macrophages are

monocyte-derived

development,  progression, and  metastasis

lung

immune cells with many biological
functions and are also essential members of the TME (Varol
et al., 2015). Tumor-associated macrophages are functionally
heterogeneous and can be classified into two subtypes:
MI macrophages and M2 macrophages (Yunna et al., 2020).
MI macrophages inhibit angiogenesis and tumor progression. A
reported that,

M1 macrophages, M2 macrophages significantly promote

growing body of literature has unlike
angiogenesis, metastasis, and tumor growth (Guo et al., 2019;
Zhang et al, 2019; Pan et al, 2020). Furthermore, crosstalk
between M2 macrophages and immune cells (or molecules)
can also promote tumor escape. Therefore, M2 macrophages
are key components in the development of the tumor
immunosuppressive microenvironment (Zhou et al, 2020)
and would be of great scientific value to investigate the effects
of M2 macrophages on lung adenocarcinoma patients (Pan et al.,
2020). Traditional transcriptome sequencing techniques lose
information on heterogeneity between cells as all cells in a
tumor sample are treated as a whole. Thus, single-cell
sequencing is a good way to characterize heterogeneity
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between cells (Wu F. et al., 2021). Exploring the key genes
that determine cell heterogeneity in the differentiation
trajectory of M2 macrophages using single-cell sequencing
might help determine the prognosis of lung adenocarcinoma
patients and provide valuable guidance for clinical strategies.

In this study, we first uncovered genes associated with the
heterogeneity of M2 macrophages based on single-cell
sequencing data. Next, we performed a univariate Cox
analysis of all heterogeneous genes and extracted prognostic
genes which might be relevant to lung adenocarcinoma
development and progression. Based on prognostic-related
genes, we performed a Lasso-Cox and multivariate stepwise
regression analysis and constructed a prognostic model for
lung adenocarcinoma patients (Long et al, 2021). In this
model, the risk score was an independent prognostic factor
for lung adenocarcinoma patients and had a higher prognostic
accuracy than clinical factors. After combining the clinical
factors, we constructed a nomogram for a more accurate
prognostic evaluation. Together, our results showed that
heterogeneous genes associated with the differentiation of
M2 macrophages uncovered from single-cell sequencing data
could characterize the prognostic status of lung adenocarcinoma
patients. The prognostic signature we established has clinical
potential to predict the efficacy of immunotherapy (ICIs) and
chemotherapy.

Materials and methods
Data collection

Twelve single-cell RNA sequencing samples from five lung
adenocarcinoma patients in the GSE127465 database were
included in this study. Bulk sequencing data, mutation data,
and clinical information for lung adenocarcinoma patients were
downloaded from The Cancer Genome Atlas (TCGA, https://
portal.gdc.cancer.gov/) database. Microarray sequencing data
and clinical information of the GSE31210 database were
downloaded from Gene Expression Omnibus (GEO, https://
www.ncbi.nlm.nih.gov/geo/) as an external independent
validation set for the prognostic signature. Furthermore, the
GSE126044 database was the
response validation cohort (anti-PD-1 treatment). Detailed
clinical information for TCGA and GSE31210 database is

listed in Supplementary Table SI.

used as immunotherapy
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Processing and analysis of single-cell RNA
sequencing (scRNA-seq) data

The available cell clustering and cell type annotation
information of GSE127465 was used in the Tumor Immune
Single-cell Hub (TISCH) database (http://tisch.comp-genomics.
org/) (Sun et al,, 2021), and single-cell analysis was performed
using the R package ‘Seurat’ (Hao et al., 2021). Based on the
annotation results, M2 macrophages were extracted for further
analysis. In this study, the number of hypervariable genes was set
to 2000, and the resolution for cell clustering to 0.6. Principal
(PCA)
genes.

conducted  based
addition,
reduction of single-cell data was used by the t-distributed
stochastic neighbor embedding (tSNE) method (Kobak and
Berens, 2019), and the TFindAllMarkers’ algorithm was
performed to search for characteristic differentially expressed

component analysis was on

2000 hypervariable In dimensionality

genes among different cell clusters. R package ‘monocle2” was
used for differentiation trajectory and pseudotime analysis of
M2 macrophages (Zhou et al., 2022). Subsequently, the BEAM’
(branched expression analysis modeling) statistical algorithm
was used to identify heterogeneous genes that play a key role
in the differentiation of M2 macrophages (Wang et al., 2022). R
package ‘GSVA’ and ‘scMetabolism’ determined the enrichment
of signaling pathways at the single-cell level (Hanzelmann et al.,
2013; Wu et al, 2022). Finally, cell-to-cell communication
analysis was performed using the R package iTALK (Wang
Y. et al,, 2019).

Functional enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment assays were performed using the
R package ‘clusterprofiler’ (Wu T. et al., 2021; Kanehisa et al.,
2021). GO analyses include three parts: biological process (BP),
cell composition (CC), and molecular function (MF). In addition,
the R package ‘Tlimma’ was used to identify differentially
expressed genes in the prognostic signature between high- and
low-risk groups (Ritchie et al., 2015). Gene Set Variation Analysis
(GSVA), an unsupervised algorithm, was performed to calculate
enrichment scores of hallmark gene sets (Molecular Signatures
Database (MSigDB), http://www.gsea-msigdb.org/gsea/msigdb/
collections.jsp).

Construction of prognostic signature

Univariate Cox analysis of heterogeneous genes associated with
M2 macrophage differentiation was performed using the R package
‘survival' to screen for prognostic genes associated with lung
adenocarcinoma among them. In addition, the TCGA datasets
were randomly grouped on a 3: 2 scale by the “sample frac”
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function in the R package “dplyr” to obtain the training and
testing datasets. Based on these prognostic genes, a Lasso-Cox
regression analysis was performed using the R package ‘glmnet’
(Friedman et al., 2010; Wang H. et al,, 2019). Next, a multivariate
Cox stepwise regression approach was performed to construct a
prognostic model related to the differentiation trajectory of
M2 macrophages. The formula for the signature was: risk
score = [Coef (gene 1) x gene Exp (1)] + [Coef (gene 2) x gene
Exp Q)] +......
‘survival’ and ‘survminer’ were used for Kaplan-Meier prognostic

+ [Coef (gene 1) x gene Exp (i)]. R packages

analysis. The R package ‘timeROC’ was used to assess AUC values
for time-dependent ROC curves. To further improve the prediction
efficiency of the risk score, the R package ‘rms’ was used to combine
the pathological stage with the risk score to construct a more
accurate nomogram (Balachandran et al., 2015).

Immune infiltration analyses of prognostic
signature

Estimate, EPIC, MCPcounter, TIMER, and ssGSEA algorithms
were used to calculate immune infiltration abundance in lung
adenocarcinoma patients with different risk scores. Among these
five algorithms, the Estimate algorithm calculated the Estimate
score, tumor purity, immune score, and stromal score (Yoshihara
etal, 2013). The EPIC algorithm calculated the abundance of seven
immune cell types (Racle et al.,, 2017). The MCPcounter algorithm
calculated the abundance of 10 immune cell types (Becht et al.,
2016). The TIMER algorithm calculated the abundance of six
immune cell types (Li et al, 2020). Subsequently, the ssGSEA
algorithm was utilized to calculate the enrichment score of
24 immune cell gene sets (Bindea et al, 2013). These algorithms
revealed differences in immune cell infiltration abundance between
high- and low-risk groups.

Mutation analysis, and prediction of
immunotherapeutic and chemotherapy
responses

Based on the TCGA mutation data (maf format), mutations
in the high- and low-risk groups were analyzed using the R
package ‘Maftools’ and mapped waterfall plots (Mayakonda et al.,
2018). In addition, the TIDE algorithm was utilized to analyze the
sensitivity of high- and low-risk groups to immune checkpoint
inhibitors (ICIs) (Jiang et al., 2018). Based on the signature
the risk of
adenocarcinoma patients was calculated in GSE126044 to

formula constructed above, score lung
assess differences in immunotherapy efficacy. Subsequently,
the chemotherapeutic drug sensitivity (IC50) of patients in the
high- and low-risk groups was analyzed using the R package
‘pRRophetic’ (Geeleher et al., 2014). These studies helped provide

personalized treatment strategies.
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FIGURE 1

Annotation of single-cell data and extraction of M2 macrophage. (A) The tSNE map shows the distribution of 12 lung adenocarcinoma samples
from the single-cell database GSE127465. (B) The tSNE plot shows that all the cells in the 12 lung adenocarcinoma samples can be classified into
24 clusters. (C) The tSNE map indicating that lung adenocarcinoma samples can be annotated as 13 cell types in the tumor microenvironment
(different colors represent different cell types). (D) The histogram showing the proportion of 13 cell types in each of the 12 samples ("Patient7 T2"
indicates the second tissue of patient7). (E) M2 macrophages classified into 9 clusters. (F) The bubble chart highlights the characteristic genes of
different clusters (G) The bar chart shows the proportion of 9 clusters in each lung adenocarcinoma sample ("Patient7 T2" indicates the second tissue

of patient7). (H,1) Biomarker genes in the 9 clusters of M2 macrophages.

Statistical analysis

Statistical analyses were performed using R software (v 4.1.3),
and the results were visualized using the R packages. For non-
normally distributed data, Wilcoxon rank-sum test, as a non-
parametric test method, was used to examine the differences
between the two groups of continuous variables, while for three
and more groups we used the Kruskal-Wallis test for statistical
testing. Using the Cox regression method, Kaplan-Meier prognostic
analysis calculated the hazard ratio (HR). A two-sided p < 0.05 was
considered statistically significant. Spearman method was applied
for correlation analysis (*p < 0.05, **p < 0.01).
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Results

scRNA-seq and cell annotation of lung
adenocarcinoma samples

To better understand the heterogeneity of M2 macrophages
in the TME of lung adenocarcinoma and its potential value for
prognosis and drug treatment screening, we extracted and
analyzed lung adenocarcinoma samples at the single-cell level.
Based on the meta-information and cell type annotation
information from the GSE127465 database on the TISCH
website, we extracted 12 lung adenocarcinoma samples that
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FIGURE 2
Identification of heterogeneous genes associated with differentiation trajectories of M2 macrophages. (A) Differentiation trajectory analysis of
M2 macrophages. (B,C) Pseudotime analysis of M2 macrophages. (D) The proportion of each state in the differentiation trajectory of
M2 macrophages. (E) The heat map revealed that M2 macrophages could exhibit four expression patterns after differentiation. (F) KEGG enrichment
analysis of heterogeneous genes associated with differentiation of M2 macrophages. (G—1) GO enrichment analysis of heterogeneous genes
associated with M2 macrophage differentiation.

had been quality-controlled and standardized. To overcome
technical noise in scRNA-seq data, we performed Principal
Component Analysis (PCA), and each principal component
(PC) was considered a “meta-feature” (Supplementary Figure
S1A). We identified the most suitable number of PCs (24 PCs) for
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downstream analysis by calculating the standard deviation of
each principal component (Supplementary Figure S1B). In
addition, we used tSNE, a nonlinear dimensionality reduction
algorithm, to demonstrate the distribution of single-cell data
from 12 lung adenocarcinoma samples (Figure 1A). We also

frontiersin.org


https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1010440

Chen et al.

examined the cell distribution of lung adenocarcinoma patients
of different ages and clinical stages (Supplementary Figure S1C,
D). Subsequently, we used the R package ‘Seurat’ to classify the
cells in 12 samples into 24 clusters (Figure 1B). These 24 clusters
can also be categorized into 13 cell types: B cells, CD4" Tn cells,
CD8* Tex cells, endothelial cells, fibroblasts, M2 macrophages,
malignant cells, mast cells, monocyte cells, neutrophils cells, NK
cells, and plasma cells (Figure 1C). We counted the frequency of
these 13 types of immune cells and found a higher proportion of
M2 macrophages in each of the 12 samples (Figure 1D). We then
extracted the M2 macrophages and re-clustered them using the
‘Seurat’ package (Figure 1E). The result suggested that
M2 macrophages can be classified into 9 clusters (0-8) based
on different molecular markers (Figure 1F). M2 macrophages of
lung  adenocarcinoma  patients showed  considerable
heterogeneity in the different clusters. Patient seven had a
more significant proportion of cluster0 and cluster4 in the
M2 macrophages (Figure 1G). Patient six and patient four
had a high percentage of clusterl. Patient five had a larger
ratio of cluster5 and cluster6. However, patient three had a
greater portion of cluster3 and cluster6. Based on the above
clustering results, we analyzed the signature genes of the
9 clusters of M2 macrophages using the FindAllMarkers’
algorithm and visualized the results with scatter plots and
heat maps (Figures 1H,I). We observed that the genes had

distinct expression differences between different clusters.

Differentiation trajectory of
M2 macrophages in tumor immune
microenvironment

The heterogeneity among M2 macrophages was intriguing,
and to further investigate the biological functions of essential
genes in the differentiation of M2 macrophages, we performed
We that
M2 macrophages can be divided into five differentiation states

differentiation  trajectory  analyses. found

(Figure 2A). Meanwhile, we found that subpopulations of M2-

type macrophages were differentially  distributed on
differentiation  trajectory = (Supplementary  Figure SIE).
Subsequently, we performed pseudotime analysis on

M2 macrophages (Figures 2B,C). Purple indicated the initial
state of cell differentiation, and yellow indicated the terminal
state. Since state2 had a smaller number of cells and a high
overlap with state4 in differentiation trajectory and pseudotime,
we merged state2 with state4 as a whole. Statel accounted for
32%, state2&4 accounted for 11%, state3 accounted for 31%, and
state5 accounted for 26% of all M2 macrophages (Figure 2D). In
addition, we found that heterogeneous genes associated with the
differentiation trajectory of M2 macrophages illustrated four
expression patterns (Figure 2E).

We performed KEGG and GO analysis based on these
statistically significant heterogeneous genes (p < 0.0001).
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KEGG enrichment analysis indicated that these heterogeneous
genes were involved in activating numerous signaling pathways
(Figure 2F). Examples include the Chemokine, IL-17, HIF-1,
B cell receptor, and PI3K-Akt signaling pathway. The diverse
activation levels of these pathways suggested that the different
states of M2 macrophages might play distinct roles in the
progression of lung adenocarcinoma. GO analysis phenotyped
the heterogeneous genes in biological processes, cellular
2G-1,
Supplementary Table S2). The results revealed that these

components, and molecular functions (Figures
genes activate multiple immune cells in the TME, suggesting

crosstalk between M2 macrophages and immune cells.

Differential states of M2 macrophages
reveal the heterogeneity of function
characteristics and cellular
communication levels

To further examine the functional differences between the
different classes of M2 macrophages we distinguished, we
performed a GSVA enrichment analysis. First, we verified the
potential differences in molecular mechanisms among the
9 clusters of M2 macrophages. Although M2 macrophages
exhibited pro-oncogenic activity, the different clusters of
M2 macrophages showed significant differences in the
activation levels of the 50 gene sets contained in Hallmark
(Figure 3A). For instance, cluster7 and cluster8 have lower
activation levels in numerous pathways than the other seven
types of clusters. This suggested that cluster7 and cluster8 might
be relatively weak in oncogenic activities. To better understand
this heterogeneity within M2 macrophages, we also performed an
enrichment analysis of the different states in the differentiation
trajectory (Figure 3B). The results confirmed substantial
heterogeneity among the different states. It was found that
statel had significantly higher enrichment levels in the
epithelial-mesenchymal transition (EMT). In comparison,
states2&4 had significantly higher activation levels in the
reactive oxygen species (ROS) pathway, mitotic spindle, and
interferon-gamma response. State3 was significantly activated
on the apical junction and notch signaling and had the lowest
activation on E2F targets, G2M checkpoint, and the genes
upregulated by ultraviolet (UV) radiation. State5 was notably
enriched in angiogenesis, hypoxia, and genes upregulated by
KRAS signaling. Subsequently, we analyzed the differences in the
metabolic activities of M2 macrophages in these states using the
R package ‘scMetabolism’ (Figure 3C). The red color in the heat
map corresponds to the higher activation level, and we can
identify that the different states of M2 macrophages have
distinct metabolic levels. This heterogeneity in metabolic levels
may reveal differences in the functional levels of the
M2 macrophages in different states. Finally, we analyzed the
cellular communication between M2 macrophages and the other
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Enrichment analyses of M2 macrophages in different differentiation states and cell communication analyses in the TME. (A) The GSVA algorithm
demonstrates different enrichment levels of 9 clusters (M2 macrophages) in the Hallmark pathway. (B) The GSVA analysis of differentiation states of
M2 macrophages. (C) Enrichment scores of metabolism-related pathways in different differentiation states of M2 macrophages. (D,E)
Communication between M2 macrophages of different differentiation states and various cell types in the tumor microenvironment at the level

of checkpoints. (F,G) Communication between M2 macrophages of different differentiation states and various cell types in the tumor
microenvironment at the level of cytokines. (H,l) Communication between M2 macrophages of different differentiation states and various cell types
in the tumor microenvironment at the level of growth factors.

cells in the TME (immune checkpoints, cytokines, and growth communicated with NK cells, neutrophils, monocyte cells, and
factors). Regarding immune checkpoints (Figures 3D,E), we

that the of statel

cDC2 cells. M2 macrophages in state2&4 communicated with

found malignant cells, CD4* Tn cells, and CD8" Tex cells in addition to

M2 macrophages mainly
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Construction of M2 macrophage differentiation-related prognostic signature. (A) Lasso Cox analysis of prognostic genes associated with

M2 macrophage differentiation. (B) Multifactorial stepwise regression to construct a 7-gene prognostic model. (C) Coefficients of seven genes in the
model formula. (D—G) Risk factor diagrams of signatures in the training, testing, whole TCGA, and GSE31210 dataset. (H-K) Kaplan-Meier prognostic
analysis of signatures in the training, testing, whole TCGA, and GSE31210 dataset. (L—O) Time-dependent ROC curves of signatures in the
training, testing, whole TCGA, and GSE31210 dataset.

the above 4 cells. M2 macrophages in state3 had extensive

communication with plasma cells and malignant cells. In

contrast, M2  macrophages

Frontiers in Genetics

in

state5

communicated

08

predominantly with monocyte cells. In terms of cytokines, the

different states of M2 macrophages also have diverse levels of

cellular communication (Figures 3F,G). However, in terms of cell
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growth factors, there was no significant difference in the level of
communication between these states of M2 macrophages and
immune cells (Figures 3H,I). Together, the above results
the of
communication among different states of M2 macrophages.

demonstrated heterogeneity in level cellular

Prognostic signature based on
heterogeneous genes associated with
differentiation of M2 macrophages can
accurately predict lung adenocarcinoma
patients’ outcome

After extracting heterogeneous genes associated with the
differentiation trajectory of M2 macrophages, we performed a
univariate Cox analysis in the TCGA database and obtained
289 prognosis-related genes of lung adenocarcinoma. Utilizing
Lasso-Cox with multivariate stepwise regression, we
constructed a prognostic model for lung adenocarcinoma in
the training set (Figures 4A,B). In addition, Figure 4C shows the
coefficients of the seven genes incorporated into the formula.
These seven genes were: CCL20, BIRC3, CRYL1, SLC46A3,
MAP3K8, TMEDI10, and CCR2. The formula of the model was:
risk score = [0.144635490549132 * CCL20 Exp] +
[0.343940732365844 * BIRC3 Exp] + [-0.291003194691483 *
CRYL1 Exp] + [-0.241116620394011 * SLC46A3 Exp] +
[-0.317179567218481 * MAP3KS8 Exp] +
[0.813174718146032 * TMED10 Exp] +
[-0.353159490585916 * CCR2 Exp]. Using this formula, we
calculated the risk score values in the testing set, the entire
TCGA database, and the external validation dataset GSE31210.
Lung adenocarcinoma patients with high-risk scores had higher
deaths in these four datasets (Figures 4D-G). The heat map
results also indicated that the expression of the above seven
genes had significant differences in the two risk groups. We
then performed Kaplan-Meier prognostic analysis to explore
the potential value of our constructed model for patients with
lung adenocarcinoma. Patients with high-risk scores had a
worse prognosis in the training set (HR = 3.38, p < 0.001),
the testing set (HR = 2.48, p = 0.001), the entire TCGA set (HR =
2.89, p < 0.001), and the GSE31210 database (HR = 5.34, p <
0.001, Figures 4H-K). We also performed a time-dependent
ROC curve analysis on these four databases to judge our
model’s accuracy in predicting prognosis. The AUC values of
our model in the training set for 1-, 3-, and 5-years overall
0.742, 0.762, and 0.758, respectively
(Figure 4L-0). In the testing set, the AUC values of our
model for 1-, 3-, and 5-years survival were 0.741, 0.739, and
0.741, respectively. In the entire TCGA dataset, the AUC values
of our model for 1-, 3-, and 5-years survival were 0.741, 0.753,
and 0.741, respectively. While, in the GSE31210 dataset, the
AUC values of our model for 1-, 3-, and 5-years survival were
0.784, 0.658, and 0.708, respectively.

survivals were
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Furthermore, we analyzed the relationship between
numerous clinical factors and risk scores (Figures 5A-D). It
was found that there was no statistical difference in the risk
score between the two groups of patients aged>65 years and
those aged<65 years. The difference between the two risk
groups of patients with different gender and smoking history
was also not statistically different. However, the differences
among patients with different pathologic stages were
statistically significant. Patients with high pathological
stages tended to have higher risk scores. In addition, we
performed Kaplan-Meier prognostic analysis

with  different
characteristics separately (Figure 5E-L). The results showed

of lung
adenocarcinoma  patients clinical
that patients with high-risk scores had a poor prognosis in all
age groups (=65, <65), all gender groups (Male, Female), and
all pathological stage groups (Pathological stage IandII,
Pathological stage IIlandIV). There was a significant
prognostic difference between the high- and low-risk
groups among the smoking group, with patients in the
high-risk group having a poor prognosis (HR = 2.83, p <
0.001), however, there was no significant prognostic difference
between the high- and low-risk groups in the non-smoking
group. We also performed the univariate and multivariate Cox
regression analyses regarding the risk scores. Our results
showed that the risk score is an independent prognostic
factor for lung adenocarcinoma and can be used as a
clinical parameter to determine the prognosis of patients
(Figure 5M, N).

Significant difference in molecular
mechanisms and immune infiltration
levels between high- and low-risk groups

As demonstrated in the above study, lung
adenocarcinoma patients had significantly different
prognoses between the high- and low-risk groups.
Differential expression analysis was performed for the

the
mechanisms involved. Firstly, we used the R package

high-risk versus low-risk groups to investigate
‘limma’ to identify differentially expressed genes (|FC[>1.5,
FDR<0.05) and mapped the volcano (Figure 6A), Then, we
performed enrichment analysis using GO and KEGG
(Figure 6B, KEGG

showed significant enrichment in the cell cycle and IL-17

Supplementary Table S3). results
signaling pathway (Figure 6C). In addition, we performed
GSVA enrichment analysis and plotted heat map and
histogram for lung adenocarcinoma patients in high- and
low-risk groups. Fifty gene sets from Hallmark were selected
for GSVA analysis. By comparing the enrichment scores of
the two groups in these 50 gene sets, 25 gene sets showed a
statistically significant difference (Figures 6D,E). These
results might explain the underlying mechanism for the
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Relationship between risk score and clinical factors in the model. (A—D) The risk score of patients with different clinical factors. (E,F) Relationship

between risk score and prognosis in different age groups. (G,H) Relationship between risk score and prognosis in different gender groups. (I,J)
Relationship between risk score and prognosis in different smoking history groups. (K,L) Relationship between risk score and prognosis in different
pathological stage groups. (M) Univariate and (N) multivariate Cox analysis of risk score and clinical factors.

difference in the prognosis of lung adenocarcinoma patients

with different risk scores.
To understand the differences in TME among patients

with different risk scores, we also analyzed the abundance of

Frontiers in Genetics

immune infiltration in high- and low-risk groups. Analysis

using the Estimate algorithm showed that the high-risk group

had higher tumor purity but lower immune and stromal

scores (Figures 7A-D). This suggested that patients with
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FIGURE 6

Enrichment analysis of differentially expressed genes between high- and low-risk groups. (A) Differentially expressed genes between high- and
low-risk groups (FDR <0.05, |[FC| > 1.5). (B) GO and KEGG enrichment analysis for differentially expressed genes. (C) Visualization of KEGG
enrichment analysis results. (D,E) The heat map and bar chart shows the GSVA analysis results between the high- and low-risk groups.
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FIGURE 7

Immune infiltration analysis between high- and low-risk groups. (A—D) Immune infiltration abundance between high- and low-risk groups by
Estimate algorithm. (E) The histogram displays differences in infiltrating abundance of 24 immune cell types in high- and low-risk groups analyzed by
the ssGSEA algorithm. (F) Correlation between the risk score and 24 immune cell types. (G) The heat map showing the immune infiltration analysis

results of EPIC, TIMER, MCPcounter, and ssGSEA.

high-risk scores exhibited a state that promoted tumor escape
due to the lack of anti-tumor immune cells in the TME. Then,
to investigate the immune status of the two risk groups in
more detail, we used the ssGSEA algorithm to calculate the

Frontiers in Genetics 12

infiltration abundance of 24 immune cell types (Figure 7E).
The results revealed that the high-risk group generally had a
lower infiltration abundance of immune cells, including
B cells, T cells, CD8" T cells, NK cells, DC cells, and mast
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FIGURE 8

Mutation status and prediction of immunotherapy and chemotherapeutic response between high- and low-risk groups. (A,B) Analysis of top

20 mutation genes in high-risk versus low-risk groups. (C) TIDE immunotherapy response prediction in high- and low-risk groups of LUAD TCGA
cohort. Chi-square test: no response to immunotherapy: high-versus low-risk, 68.8% versus 56.0%, OR = 1.731, p = 0.004. (D) The Independent
immunotherapy dataset (GSE126044) validated immunotherapy efficacy in high- and low-risk groups. (E) Screening of chemotherapeutic

agents sensitive to high- and low-risk groups.

cells, compared to the low-risk group. Spearman correlation
analysis also showed that the abundance of immune cells was
negatively correlated with the risk scores for almost all
immune cell types except Th2 cells (Figure 7F). We also
used the MCPcounter, TIMER, and EPIC algorithms to
confirm these results. By plotting the heat map, we
visualized that lung adenocarcinoma patients in the high-
risk group had lower levels of immune infiltration

(Figure 7G).

Frontiers in Genetics

Risk score can suggest disparities in gene
mutations and guide immunotherapy and
chemotherapy

Since gene mutation status significantly affects tumor
formation and progression, we performed a mutation
analysis of lung adenocarcinoma patients in high- and low-
risk groups. We further analyzed the differences between the
top 20 genes with the highest mutation frequencies in the high
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Building a more accurate nomogram. (A) Nomogram was constructed by combining pathological stages with risk scores. (B) Nomogram's 1-, 3-
,and 5-years calibration curve. (C) The ROC curve shows AUC values for various clinical factors, risk scores, and nomogram scores. (D) ROC analysis
of nomogram score in TCGA database. (E) ROC analysis of nomogram score in GSE31210 database (validation set). (F) Kaplan-Meier prognostic
analysis of nomogram score in TCGA database. (G) Kaplan-Meier prognostic analysis of nomogram score in GSE31210 database.

and low-risk groups respectively (Figures 8A,B). The
frequency of TP53 mutations in the high-risk group was
55.1%, while it was 48.2% in the low-risk group. The
frequency of KRAS mutations was 31.8% in the high-risk
group versus 27.3% in the low-risk group. The difference in
gene mutation frequency might be the reason for the poorer

Frontiers in Genetics

prognosis in the high-risk group. Based on the above analyses,
we explored the treatment strategies for different risk scores in
depth. Since immunotherapy is commonly used in lung
adenocarcinoma, calculated the response to
immunotherapy in high- and low-risk groups using the
TIDE algorithm (Figure 8C). The results suggested that the

we first
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low-risk group had a better treatment response upon
immunotherapy (OR = 1.731, p = 0.004). We further
validated this result using the GSE126044 database. Results
showed that patients with CR/PR after immunotherapy had a
significantly lower risk score than SD/PD (p = 0.038),
that
susceptible to benefit from immunotherapy (anti-PD-

suggesting patients with a low-risk score are
1 treatment) (Figure 8D). However, the high-risk group had a
worse prognosis, so we performed a prediction of response to
chemotherapeutic agents for patients in the high- and low-risk
groups. We utilized the R package ‘pRRophetic’ to calculate the ICs
of chemotherapeutic drugs (Figure 8E). We found that the high-risk
group had better sensitivity to A-443654, BIBW-2992, Docetaxel,
Paclitaxel, Embelin, and RO-3306. Taken together, we provided a
personalized treatment option for clinical reference by predicting the
treatment effect of patients in different subgroups and compensated

for the poorer effect of immunotherapy in the high-risk group.

A nomogram with a potential clinical
application can be constructed based on
risk score and pathological stage

The above study indicated that the risk score could act as an
independent prognostic factor that can be used to determine the
prognosis of patients. Therefore, to further improve our signature’s
predictive efficiency, we constructed a nomogram based on the
TCGA database, incorporating factors such as pathological stage
and risk scores (Figure 9A). We could visualize the risk assessment
by calculating the score and assessing the outcome probability for
each patient. In addition, we tested the predictive efficacy of the
nomogram using a calibration plot (Figure 9B). The nomogram’s
1-, 3-, and 5-years survival predictions were more accurate than the
theoretical values. To further compare the predictive efficacy of the
nomogram score with other clinical factors, we plotted the ROC
curve. The nomogram score had the highest AUC value, and the
predictive efficiency was further improved based on the risk score
(Figure 9C). By performing the time-dependent ROC curve based
on the nomogram score, we found that the AUC values of 1-, 3-,
and 5-years overall survival for lung adenocarcinoma patients were
0.786, 0.789, and 0.776, respectively. To verify the accuracy of the
nomogram, we constructed the nomogram again based on the
external dataset GSE31210. Time-dependent ROC analysis
showed that the AUC values of 1-, 3-, and 5-years overall
survival for lung adenocarcinoma patients were 0.918, 0.777,
and 0.744, respectively (Figures 9D,E). These results suggested
that the nomogram we constructed had good accuracy. We also
performed Kaplan-Meier prognostic analyses using the TCGA and
external database GSE31210. The results indicated that the high
nomogram score group had a significantly worse prognosis than
the low score group (Figures 9F,G). In summary, the nomogram
significantly improved the accuracy of determining the survival
status of lung adenocarcinoma patients.
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Discussion

The interconnection between tumor cells, immune cells, and
stromal cells in the TME substantially influences tumorigenesis
and tumor progression (Anderson and Simon, 2020). The spatial
interplay of immune cells and other cells in the TME determines
the immune response against tumors (Petitprez et al., 2020). As
immunotherapy of tumors has been intensively studied, immune
checkpoint inhibitors (ICIs) against tumor immune escape are
expected to be an essential strategy to improve the prognosis of
lung adenocarcinoma patients (Qiao et al., 2021; Liu et al., 2022;
Reda et al, 2022). However, due to the heterogeneity and
complexity of the TME, patients with the same pathological
stage may also exhibit different TME characteristics, resulting in
different therapeutic effects upon immunotherapy (Bagaev et al.,
2021). Therefore, developing a prognostic model to determine
the prognosis of lung adenocarcinoma patients early and to
provide targeted immunotherapeutic strategies has significant
potential for clinical application.

Tumor-associated macrophages, a vital member of the TME,
have been identified in two types with different functional
features, the classically activated M1 macrophages and the
alternative activated M2 macrophages (Cassetta and Pollard,
2020). M1 appear in the
environment and are usually induced by cytokines from Thl,

macrophages inflammatory
whereas M2 macrophages are primarily induced by cytokines
from Th2 the inflammatory response
(Sedighzadeh et al., 2021). Previous studies have shown that
although all M2 macrophages exhibit anti-inflammatory and

and counteract

immunomodulatory effects, there is still heterogeneity among
M2 macrophages. M2 macrophages can be further distinguished
into four subtypes. M2a macrophages are involved in tissue
fibrosis, M2b macrophages are shown to promote tumor
progression, M2c macrophages are exhibited to be involved in
tissue remodeling, and M2d macrophages promote angiogenesis
(Wang L. X. et al,, 2019). A growing number of studies have
shown a significant correlation between M2 macrophages and
lung adenocarcinoma progression. Lung adenocarcinoma
patients with a higher density of M2 macrophages tend to
have a poorer prognosis (Cao et al., 2019; Guo et al, 2019;
Dai et al, 2020). M2 macrophages create an environment
conducive to tumor survival by releasing growth factors,
chemokines, and other inflammatory mediators (Solinas et al.,
2009; Lin et al, 2019). In addition, M2 macrophages can also
promote tumor metastasis and invasion by promoting
angiogenesis and other pathways (Jetten et al., 2014; Xie et al,,
2021). To further analyze the differences in composition and
function within M2 macrophages, we used bioinformatics to
perform an in-depth analysis at the single cell level.

Through annotation and clustering analysis of single-cell
data, in the

M2 macrophages in lung adenocarcinoma patients. These

we identified differences composition  of

differences might indirectly contribute to the discrepancy in
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biological processes and prognosis among patients. In addition,
we performed differentiation trajectory analysis and pseudo-time
on M2 macrophages, identifying the different
of M2 Lung
adenocarcinoma patients exhibited four expression patterns

analysis
differentiation  states macrophages.
based on the heterogeneous genes in the differentiation
trajectory. The GSVA enrichment analysis helped us to
understand the functional differences between different states
of M2 macrophages. The GSVA results from our study above
showed that M2 macrophages in state5 had the highest
angiogenesis score, M2 macrophages in statel had the highest
(EMT)

M2 macrophages in state2&4 had the highest interferon-

epithelial-mesenchymal  transition score, and
response score. In contrast, M2 macrophages in state3 had the
lowest G2M checkpoint score. This discrepancy reveals that
macrophages in different states may differ in their cancer-
promoting functions. Previous studies have also shown that
M2 macrophages are significantly associated with angiogenesis
and lymphangiogenesis, which contribute to the development of
lung cancer, and also support that M2 cells are a strong indicator
of poor prognosis in lung cancer (Hwang et al., 2020). Identifying
particular metastasis-promoting or EMT-promoting subtypes of
M2 macrophages also can help to explore the underlying
further.  Additionally,  this

heterogeneity of different states of M2 macrophages was also

molecular ~ mechanisms
reflected in the metabolic and cellular communication levels. Our
results provide a novel insight into the heterogeneity in
M2 macrophages. Whereas the previous classification of
M2 macrophages was based on different cytokine activation
patterns (Colin et al, 2014), we distinguished different
differentiation states of M2 macrophages based on single cell
analysis. In addition, our study investigated the role of
heterogeneous genes in the differentiation of M2 macrophages
to guide the clinical therapy of lung adenocarcinoma.

We extracted heterogeneous genes, essential in the
differentiation trajectory of M2 macrophages, and performed
a univariate Cox analysis to screen for prognosis-related genes in
lung adenocarcinoma. We constructed a prognostic model using
Lasso-Cox and multivariate stepwise regression methods based
on the prognosis-related genes in the training set. We measured
the predictive efficacy of the model and explored the potential
molecular mechanisms between high- and low-risk groups.
Previous studies have shown that the status of the tumor
microenvironment can be quantitatively assessed by risk
scores (Chong et al., 2021). In our research, we found that
patients in the high-risk group had an immunosuppressive
microenvironment while the low-risk group had an immune-
promoting microenvironment. Notably, the treatment of
immune checkpoint inhibitors (ICIs) has become a hot topic
in tumor therapy strategies. Immunotherapy targeting M2-type
macrophages is emerging as a new direction for tumor therapy
(Mills et al, 2016). The major molecules targeted by
immunotherapy are programmed death receptor 1 (PD-1) and
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programmed death receptor ligand 1 (PD-L1). However, due to
the complexity of the in vivo microenvironment, immunotherapy
has an obvious shortcoming in that only a fraction of tumor
patients respond to ICIs treatment (Wang et al., 2021). TIDE, as a
novel computational architecture, has been considered as an
alternative to single biomarkers for predicting the therapeutic
effect of ICIs (Jiang et al., 2018). With the dual validation of the
TIDE algorithm and GSE126044 set, we found that the low-risk
group benefited more from immunotherapy, and this also
directly indicated that the prognostic model we constructed
could advance the personalization of immunotherapy.

As the high-risk group was shown to have a poor prognosis, we
identified chemotherapeutic agents (A-443654, BIBW-2992,
Docetaxel, Embelin, Paclitaxel, RO-3306) with better sensitivity
for the high-risk group. A-443654 is an inhibitor of the AKT
pathway that induces apoptosis and inhibits tumor growth (Luo
etal., 2005). BIBW-2992 was reported to inhibit the kinase activity
of EGFR mutants and suppress lung adenocarcinoma development
(Lietal., 2008). Docetaxel and Embelin can induce the apoptosis of
lung adenocarcinoma tumor cells (Avisetti et al., 2014; Jeong et al.,
2021). Meanwhile, Paclitaxel, as first-line chemotherapy for
patients who do not benefit from immunotherapy, together
with RO-3306, can cause cell cycle G2/M phase arrest and lead
to apoptosis in lung adenocarcinoma cells (Vassilev et al., 2006; Cui
etal,, 2020). The above chemotherapy drugs could compensate for
the deficiency in immunotherapy efficacy in the high-risk group. In
addition, to further improve the predictive performance of the
prognostic model, we constructed a nomogram by combining the
risk scores with the pathological stages. Nomogram has
significantly better prognostic efficacy than the pathological
stages and can be used as a complement to clinical factors by
providing a more refined risk assessment.

In summary, for the first time, this research constructed a
signature that can assess the prognosis of lung adenocarcinoma
related to the
differentiation trajectory of M2 macrophages. Our results

patients based on heterogeneous genes
provide a new research idea for the precision treatment of
lung adenocarcinoma. However, our study still has some
shortcomings. More in-depth studies are needed in the future
to identify the potential molecular mechanisms of heterogeneous
genes associated with the differentiation of M2 macrophages.

Conclusion

M2 macrophages, as a critical component of the lung

adenocarcinoma  microenvironment, promote tumor
progression and metastasis. In this study, we performed
differentiation trajectory and pseudotime analysis
scRNA-seq data to identify different differentiation states of

M2 macrophages. By exploring the heterogeneous genes

using

associated with M2 macrophages’ differentiation, we

constructed a prognostic model to predict the prognosis and
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adjuvant treatment effect of lung adenocarcinoma patients,
which could potentially be used as a clinical parameter for
clinicians’ therapy decisions in the future.
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