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Background: Tumor-associated macrophages as important members of the

tumor microenvironment, are highly plastic and heterogeneous. TAMs can be

classified into two preliminary subtypes: M1 and M2 macrophages.

M2 macrophages are significantly associated with the progression of lung

adenocarcinoma. However, no study has investigated the heterogeneity

among M2 macrophages and their differentiation-related genes at the

single-cell level to guide the clinical treatment of lung adenocarcinoma.

Methods: Using the available annotation information from the Tumor Immune

Single-cell Hub database, we clustered and annotated 12 lung adenocarcinoma

samples using the R package ‘Seurat’. Subsequently, we extracted

M2 macrophages for secondary clustering analysis and performed cell

trajectory analysis using the R package ‘monocle2’. Based on heterogeneous

genes associated with the differentiation trajectory of M2 macrophages, we

established a prognostic lung adenocarcinoma model using Lasso-Cox and

multivariate stepwise regression. In addition, we also performed

immunotherapy and chemotherapy predictions.

Results: M2 macrophages exhibit heterogeneity among themselves.

M2 macrophages in different differentiation states showed significant

differences in pathway activation and immune cell communication.

Prognostic signature based on heterogeneous genes can be used to classify

the prognostic status and abundance of immune cell infiltration in lung

adenocarcinoma patients. In addition, the calculation of the Tumor Immune

Dysfunction and Exclusion (TIDE) algorithm and the validation of the

GSE126044 database indicated that lung adenocarcinoma patients with

high-risk scores had poorer treatment outcomes when receiving immune

checkpoint inhibitors treatment.
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Conclusion: Based on scRNA-seq and Bulk-seq data, we identified

M2 macrophage-associated prognostic signature with a potential clinical

utility to improve precision therapy.

KEYWORDS

lung adenocarcinoma, tumor microenvironment (TME), M2macrophages, ScRNA-seq,
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Introduction

Lung cancer is one of the most common malignancies and

the leading cause of cancer-related deaths. There are

approximately two million new cases and 1.76 million deaths

each year (Thai et al., 2021). It can be divided into two types: non-

small cell lung cancer (NSCLC) and small cell lung cancer

(SCLC) (Thai et al., 2021). NSCLC is the leading type of lung

cancer, accounting for about 85% of the total lung cancers

(Srivastava et al., 2022). Meanwhile, Lung adenocarcinoma is

the most common histological subtype of NSCLC. Lung

adenocarcinoma has a strong heterogeneity and a complex

tumor microenvironment (TME) (He et al., 2021). Traditional

pathological stages do not fully determine the prognosis of

NSCLC patients. Therefore, the development of novel and

reliable prognostic models can help stratify the risk of lung

adenocarcinoma patients and provide targeted

immunotherapy and chemotherapy strategies (Shi et al., 2021).

TME, an ecosystem with a complex communication network,

consists of tumor cells, cancer-associated stromal and immune

cells, and other non-cellular components (Wu and Dai, 2017;

Maacha et al., 2019). Numerous studies have shown that the

development, progression, and metastasis of lung

adenocarcinoma are closely related to TME (Kamata et al.,

2020; Kim et al., 2020; Li et al., 2021). Macrophages are

monocyte-derived immune cells with many biological

functions and are also essential members of the TME (Varol

et al., 2015). Tumor-associated macrophages are functionally

heterogeneous and can be classified into two subtypes:

M1 macrophages and M2 macrophages (Yunna et al., 2020).

M1 macrophages inhibit angiogenesis and tumor progression. A

growing body of literature has reported that, unlike

M1 macrophages, M2 macrophages significantly promote

angiogenesis, metastasis, and tumor growth (Guo et al., 2019;

Zhang et al., 2019; Pan et al., 2020). Furthermore, crosstalk

between M2 macrophages and immune cells (or molecules)

can also promote tumor escape. Therefore, M2 macrophages

are key components in the development of the tumor

immunosuppressive microenvironment (Zhou et al., 2020)

and would be of great scientific value to investigate the effects

of M2 macrophages on lung adenocarcinoma patients (Pan et al.,

2020). Traditional transcriptome sequencing techniques lose

information on heterogeneity between cells as all cells in a

tumor sample are treated as a whole. Thus, single-cell

sequencing is a good way to characterize heterogeneity

between cells (Wu F. et al., 2021). Exploring the key genes

that determine cell heterogeneity in the differentiation

trajectory of M2 macrophages using single-cell sequencing

might help determine the prognosis of lung adenocarcinoma

patients and provide valuable guidance for clinical strategies.

In this study, we first uncovered genes associated with the

heterogeneity of M2 macrophages based on single-cell

sequencing data. Next, we performed a univariate Cox

analysis of all heterogeneous genes and extracted prognostic

genes which might be relevant to lung adenocarcinoma

development and progression. Based on prognostic-related

genes, we performed a Lasso-Cox and multivariate stepwise

regression analysis and constructed a prognostic model for

lung adenocarcinoma patients (Long et al., 2021). In this

model, the risk score was an independent prognostic factor

for lung adenocarcinoma patients and had a higher prognostic

accuracy than clinical factors. After combining the clinical

factors, we constructed a nomogram for a more accurate

prognostic evaluation. Together, our results showed that

heterogeneous genes associated with the differentiation of

M2 macrophages uncovered from single-cell sequencing data

could characterize the prognostic status of lung adenocarcinoma

patients. The prognostic signature we established has clinical

potential to predict the efficacy of immunotherapy (ICIs) and

chemotherapy.

Materials and methods

Data collection

Twelve single-cell RNA sequencing samples from five lung

adenocarcinoma patients in the GSE127465 database were

included in this study. Bulk sequencing data, mutation data,

and clinical information for lung adenocarcinoma patients were

downloaded from The Cancer Genome Atlas (TCGA, https://

portal.gdc.cancer.gov/) database. Microarray sequencing data

and clinical information of the GSE31210 database were

downloaded from Gene Expression Omnibus (GEO, https://

www.ncbi.nlm.nih.gov/geo/) as an external independent

validation set for the prognostic signature. Furthermore, the

GSE126044 database was used as the immunotherapy

response validation cohort (anti-PD-1 treatment). Detailed

clinical information for TCGA and GSE31210 database is

listed in Supplementary Table S1.
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Processing and analysis of single-cell RNA
sequencing (scRNA-seq) data

The available cell clustering and cell type annotation

information of GSE127465 was used in the Tumor Immune

Single-cell Hub (TISCH) database (http://tisch.comp-genomics.

org/) (Sun et al., 2021), and single-cell analysis was performed

using the R package ‘Seurat’ (Hao et al., 2021). Based on the

annotation results, M2 macrophages were extracted for further

analysis. In this study, the number of hypervariable genes was set

to 2000, and the resolution for cell clustering to 0.6. Principal

component analysis (PCA) was conducted based on

2000 hypervariable genes. In addition, dimensionality

reduction of single-cell data was used by the t-distributed

stochastic neighbor embedding (tSNE) method (Kobak and

Berens, 2019), and the ‘FindAllMarkers’ algorithm was

performed to search for characteristic differentially expressed

genes among different cell clusters. R package ‘monocle2’ was

used for differentiation trajectory and pseudotime analysis of

M2 macrophages (Zhou et al., 2022). Subsequently, the ‘BEAM’

(branched expression analysis modeling) statistical algorithm

was used to identify heterogeneous genes that play a key role

in the differentiation of M2 macrophages (Wang et al., 2022). R

package ‘GSVA’ and ‘scMetabolism’ determined the enrichment

of signaling pathways at the single-cell level (Hanzelmann et al.,

2013; Wu et al., 2022). Finally, cell-to-cell communication

analysis was performed using the R package ‘iTALK’ (Wang

Y. et al., 2019).

Functional enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment assays were performed using the

R package ‘clusterprofiler’ (Wu T. et al., 2021; Kanehisa et al.,

2021). GO analyses include three parts: biological process (BP),

cell composition (CC), andmolecular function (MF). In addition,

the R package ‘limma’ was used to identify differentially

expressed genes in the prognostic signature between high- and

low-risk groups (Ritchie et al., 2015). Gene Set Variation Analysis

(GSVA), an unsupervised algorithm, was performed to calculate

enrichment scores of hallmark gene sets (Molecular Signatures

Database (MSigDB), http://www.gsea-msigdb.org/gsea/msigdb/

collections.jsp).

Construction of prognostic signature

Univariate Cox analysis of heterogeneous genes associated with

M2 macrophage differentiation was performed using the R package

‘survival’ to screen for prognostic genes associated with lung

adenocarcinoma among them. In addition, the TCGA datasets

were randomly grouped on a 3: 2 scale by the “sample_frac”

function in the R package “dplyr” to obtain the training and

testing datasets. Based on these prognostic genes, a Lasso-Cox

regression analysis was performed using the R package ‘glmnet’

(Friedman et al., 2010; Wang H. et al., 2019). Next, a multivariate

Cox stepwise regression approach was performed to construct a

prognostic model related to the differentiation trajectory of

M2 macrophages. The formula for the signature was: risk

score = [Coef (gene 1) x gene Exp (1)] + [Coef (gene 2) x gene

Exp (2)] +. . . . . . + [Coef (gene 1) x gene Exp (i)]. R packages

‘survival’ and ‘survminer’ were used for Kaplan-Meier prognostic

analysis. The R package ‘timeROC’ was used to assess AUC values

for time-dependent ROC curves. To further improve the prediction

efficiency of the risk score, the R package ‘rms’ was used to combine

the pathological stage with the risk score to construct a more

accurate nomogram (Balachandran et al., 2015).

Immune infiltration analyses of prognostic
signature

Estimate, EPIC, MCPcounter, TIMER, and ssGSEA algorithms

were used to calculate immune infiltration abundance in lung

adenocarcinoma patients with different risk scores. Among these

five algorithms, the Estimate algorithm calculated the Estimate

score, tumor purity, immune score, and stromal score (Yoshihara

et al., 2013). The EPIC algorithm calculated the abundance of seven

immune cell types (Racle et al., 2017). The MCPcounter algorithm

calculated the abundance of 10 immune cell types (Becht et al.,

2016). The TIMER algorithm calculated the abundance of six

immune cell types (Li et al., 2020). Subsequently, the ssGSEA

algorithm was utilized to calculate the enrichment score of

24 immune cell gene sets (Bindea et al., 2013). These algorithms

revealed differences in immune cell infiltration abundance between

high- and low-risk groups.

Mutation analysis, and prediction of
immunotherapeutic and chemotherapy
responses

Based on the TCGA mutation data (maf format), mutations

in the high- and low-risk groups were analyzed using the R

package ‘Maftools’ andmapped waterfall plots (Mayakonda et al.,

2018). In addition, the TIDE algorithmwas utilized to analyze the

sensitivity of high- and low-risk groups to immune checkpoint

inhibitors (ICIs) (Jiang et al., 2018). Based on the signature

formula constructed above, the risk score of lung

adenocarcinoma patients was calculated in GSE126044 to

assess differences in immunotherapy efficacy. Subsequently,

the chemotherapeutic drug sensitivity (IC50) of patients in the

high- and low-risk groups was analyzed using the R package

‘pRRophetic’ (Geeleher et al., 2014). These studies helped provide

personalized treatment strategies.
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Statistical analysis

Statistical analyses were performed using R software (v 4.1.3),

and the results were visualized using the R packages. For non-

normally distributed data, Wilcoxon rank-sum test, as a non-

parametric test method, was used to examine the differences

between the two groups of continuous variables, while for three

and more groups we used the Kruskal–Wallis test for statistical

testing. Using the Cox regression method, Kaplan-Meier prognostic

analysis calculated the hazard ratio (HR). A two-sided p < 0.05 was

considered statistically significant. Spearman method was applied

for correlation analysis (*p < 0.05, **p < 0.01).

Results

scRNA-seq and cell annotation of lung
adenocarcinoma samples

To better understand the heterogeneity of M2 macrophages

in the TME of lung adenocarcinoma and its potential value for

prognosis and drug treatment screening, we extracted and

analyzed lung adenocarcinoma samples at the single-cell level.

Based on the meta-information and cell type annotation

information from the GSE127465 database on the TISCH

website, we extracted 12 lung adenocarcinoma samples that

FIGURE 1
Annotation of single-cell data and extraction of M2macrophage. (A) The tSNEmap shows the distribution of 12 lung adenocarcinoma samples
from the single-cell database GSE127465. (B) The tSNE plot shows that all the cells in the 12 lung adenocarcinoma samples can be classified into
24 clusters. (C) The tSNE map indicating that lung adenocarcinoma samples can be annotated as 13 cell types in the tumor microenvironment
(different colors represent different cell types). (D) The histogram showing the proportion of 13 cell types in each of the 12 samples (“Patient7 T2”
indicates the second tissue of patient7). (E) M2 macrophages classified into 9 clusters. (F) The bubble chart highlights the characteristic genes of
different clusters (G) The bar chart shows the proportion of 9 clusters in each lung adenocarcinoma sample (“Patient7 T2” indicates the second tissue
of patient7). (H,I) Biomarker genes in the 9 clusters of M2 macrophages.
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had been quality-controlled and standardized. To overcome

technical noise in scRNA-seq data, we performed Principal

Component Analysis (PCA), and each principal component

(PC) was considered a “meta-feature” (Supplementary Figure

S1A).We identified themost suitable number of PCs (24 PCs) for

downstream analysis by calculating the standard deviation of

each principal component (Supplementary Figure S1B). In

addition, we used tSNE, a nonlinear dimensionality reduction

algorithm, to demonstrate the distribution of single-cell data

from 12 lung adenocarcinoma samples (Figure 1A). We also

FIGURE 2
Identification of heterogeneous genes associated with differentiation trajectories of M2 macrophages. (A) Differentiation trajectory analysis of
M2 macrophages. (B,C) Pseudotime analysis of M2 macrophages. (D) The proportion of each state in the differentiation trajectory of
M2macrophages. (E) The heat map revealed that M2 macrophages could exhibit four expression patterns after differentiation. (F) KEGG enrichment
analysis of heterogeneous genes associated with differentiation of M2 macrophages. (G–I) GO enrichment analysis of heterogeneous genes
associated with M2 macrophage differentiation.
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examined the cell distribution of lung adenocarcinoma patients

of different ages and clinical stages (Supplementary Figure S1C,

D). Subsequently, we used the R package ‘Seurat’ to classify the

cells in 12 samples into 24 clusters (Figure 1B). These 24 clusters

can also be categorized into 13 cell types: B cells, CD4+ Tn cells,

CD8+ Tex cells, endothelial cells, fibroblasts, M2 macrophages,

malignant cells, mast cells, monocyte cells, neutrophils cells, NK

cells, and plasma cells (Figure 1C). We counted the frequency of

these 13 types of immune cells and found a higher proportion of

M2 macrophages in each of the 12 samples (Figure 1D). We then

extracted the M2 macrophages and re-clustered them using the

‘Seurat’ package (Figure 1E). The result suggested that

M2 macrophages can be classified into 9 clusters (0–8) based

on different molecular markers (Figure 1F). M2 macrophages of

lung adenocarcinoma patients showed considerable

heterogeneity in the different clusters. Patient seven had a

more significant proportion of cluster0 and cluster4 in the

M2 macrophages (Figure 1G). Patient six and patient four

had a high percentage of cluster1. Patient five had a larger

ratio of cluster5 and cluster6. However, patient three had a

greater portion of cluster3 and cluster6. Based on the above

clustering results, we analyzed the signature genes of the

9 clusters of M2 macrophages using the ‘FindAllMarkers’

algorithm and visualized the results with scatter plots and

heat maps (Figures 1H,I). We observed that the genes had

distinct expression differences between different clusters.

Differentiation trajectory of
M2 macrophages in tumor immune
microenvironment

The heterogeneity among M2 macrophages was intriguing,

and to further investigate the biological functions of essential

genes in the differentiation of M2 macrophages, we performed

differentiation trajectory analyses. We found that

M2 macrophages can be divided into five differentiation states

(Figure 2A). Meanwhile, we found that subpopulations of M2-

type macrophages were differentially distributed on

differentiation trajectory (Supplementary Figure S1E).

Subsequently, we performed pseudotime analysis on

M2 macrophages (Figures 2B,C). Purple indicated the initial

state of cell differentiation, and yellow indicated the terminal

state. Since state2 had a smaller number of cells and a high

overlap with state4 in differentiation trajectory and pseudotime,

we merged state2 with state4 as a whole. State1 accounted for

32%, state2&4 accounted for 11%, state3 accounted for 31%, and

state5 accounted for 26% of all M2 macrophages (Figure 2D). In

addition, we found that heterogeneous genes associated with the

differentiation trajectory of M2 macrophages illustrated four

expression patterns (Figure 2E).

We performed KEGG and GO analysis based on these

statistically significant heterogeneous genes (p < 0.0001).

KEGG enrichment analysis indicated that these heterogeneous

genes were involved in activating numerous signaling pathways

(Figure 2F). Examples include the Chemokine, IL-17, HIF-1,

B cell receptor, and PI3K-Akt signaling pathway. The diverse

activation levels of these pathways suggested that the different

states of M2 macrophages might play distinct roles in the

progression of lung adenocarcinoma. GO analysis phenotyped

the heterogeneous genes in biological processes, cellular

components, and molecular functions (Figures 2G–I,

Supplementary Table S2). The results revealed that these

genes activate multiple immune cells in the TME, suggesting

crosstalk between M2 macrophages and immune cells.

Differential states of M2 macrophages
reveal the heterogeneity of function
characteristics and cellular
communication levels

To further examine the functional differences between the

different classes of M2 macrophages we distinguished, we

performed a GSVA enrichment analysis. First, we verified the

potential differences in molecular mechanisms among the

9 clusters of M2 macrophages. Although M2 macrophages

exhibited pro-oncogenic activity, the different clusters of

M2 macrophages showed significant differences in the

activation levels of the 50 gene sets contained in Hallmark

(Figure 3A). For instance, cluster7 and cluster8 have lower

activation levels in numerous pathways than the other seven

types of clusters. This suggested that cluster7 and cluster8 might

be relatively weak in oncogenic activities. To better understand

this heterogeneity withinM2macrophages, we also performed an

enrichment analysis of the different states in the differentiation

trajectory (Figure 3B). The results confirmed substantial

heterogeneity among the different states. It was found that

state1 had significantly higher enrichment levels in the

epithelial-mesenchymal transition (EMT). In comparison,

states2&4 had significantly higher activation levels in the

reactive oxygen species (ROS) pathway, mitotic spindle, and

interferon-gamma response. State3 was significantly activated

on the apical junction and notch signaling and had the lowest

activation on E2F targets, G2M checkpoint, and the genes

upregulated by ultraviolet (UV) radiation. State5 was notably

enriched in angiogenesis, hypoxia, and genes upregulated by

KRAS signaling. Subsequently, we analyzed the differences in the

metabolic activities of M2 macrophages in these states using the

R package ‘scMetabolism’ (Figure 3C). The red color in the heat

map corresponds to the higher activation level, and we can

identify that the different states of M2 macrophages have

distinct metabolic levels. This heterogeneity in metabolic levels

may reveal differences in the functional levels of the

M2 macrophages in different states. Finally, we analyzed the

cellular communication between M2 macrophages and the other

Frontiers in Genetics frontiersin.org06

Chen et al. 10.3389/fgene.2022.1010440

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1010440


cells in the TME (immune checkpoints, cytokines, and growth

factors). Regarding immune checkpoints (Figures 3D,E), we

found that the M2 macrophages of state1 mainly

communicated with NK cells, neutrophils, monocyte cells, and

cDC2 cells. M2 macrophages in state2&4 communicated with

malignant cells, CD4+ Tn cells, and CD8+ Tex cells in addition to

FIGURE 3
Enrichment analyses of M2macrophages in different differentiation states and cell communication analyses in the TME. (A) The GSVA algorithm
demonstrates different enrichment levels of 9 clusters (M2 macrophages) in the Hallmark pathway. (B) The GSVA analysis of differentiation states of
M2 macrophages. (C) Enrichment scores of metabolism-related pathways in different differentiation states of M2 macrophages. (D,E)
Communication between M2macrophages of different differentiation states and various cell types in the tumor microenvironment at the level
of checkpoints. (F,G) Communication between M2 macrophages of different differentiation states and various cell types in the tumor
microenvironment at the level of cytokines. (H,I) Communication between M2macrophages of different differentiation states and various cell types
in the tumor microenvironment at the level of growth factors.
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the above 4 cells. M2 macrophages in state3 had extensive

communication with plasma cells and malignant cells. In

contrast, M2 macrophages in state5 communicated

predominantly with monocyte cells. In terms of cytokines, the

different states of M2 macrophages also have diverse levels of

cellular communication (Figures 3F,G). However, in terms of cell

FIGURE 4
Construction of M2 macrophage differentiation-related prognostic signature. (A) Lasso Cox analysis of prognostic genes associated with
M2macrophage differentiation. (B)Multifactorial stepwise regression to construct a 7-gene prognostic model. (C)Coefficients of seven genes in the
model formula. (D–G) Risk factor diagrams of signatures in the training, testing, whole TCGA, and GSE31210 dataset. (H–K) Kaplan-Meier prognostic
analysis of signatures in the training, testing, whole TCGA, and GSE31210 dataset. (L–O) Time-dependent ROC curves of signatures in the
training, testing, whole TCGA, and GSE31210 dataset.
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growth factors, there was no significant difference in the level of

communication between these states of M2 macrophages and

immune cells (Figures 3H,I). Together, the above results

demonstrated heterogeneity in the level of cellular

communication among different states of M2 macrophages.

Prognostic signature based on
heterogeneous genes associated with
differentiation of M2 macrophages can
accurately predict lung adenocarcinoma
patients’ outcome

After extracting heterogeneous genes associated with the

differentiation trajectory of M2 macrophages, we performed a

univariate Cox analysis in the TCGA database and obtained

289 prognosis-related genes of lung adenocarcinoma. Utilizing

Lasso-Cox with multivariate stepwise regression, we

constructed a prognostic model for lung adenocarcinoma in

the training set (Figures 4A,B). In addition, Figure 4C shows the

coefficients of the seven genes incorporated into the formula.

These seven genes were: CCL20, BIRC3, CRYL1, SLC46A3,

MAP3K8, TMED10, and CCR2. The formula of the model was:

risk score = [0.144635490549132 * CCL20 Exp] +

[0.343940732365844 * BIRC3 Exp] + [-0.291003194691483 *

CRYL1 Exp] + [-0.241116620394011 * SLC46A3 Exp] +

[-0.317179567218481 * MAP3K8 Exp] +

[0.813174718146032 * TMED10 Exp] +

[-0.353159490585916 * CCR2 Exp]. Using this formula, we

calculated the risk score values in the testing set, the entire

TCGA database, and the external validation dataset GSE31210.

Lung adenocarcinoma patients with high-risk scores had higher

deaths in these four datasets (Figures 4D–G). The heat map

results also indicated that the expression of the above seven

genes had significant differences in the two risk groups. We

then performed Kaplan-Meier prognostic analysis to explore

the potential value of our constructed model for patients with

lung adenocarcinoma. Patients with high-risk scores had a

worse prognosis in the training set (HR = 3.38, p < 0.001),

the testing set (HR = 2.48, p = 0.001), the entire TCGA set (HR =

2.89, p < 0.001), and the GSE31210 database (HR = 5.34, p <
0.001, Figures 4H–K). We also performed a time-dependent

ROC curve analysis on these four databases to judge our

model’s accuracy in predicting prognosis. The AUC values of

our model in the training set for 1-, 3-, and 5-years overall

survivals were 0.742, 0.762, and 0.758, respectively

(Figure 4L–O). In the testing set, the AUC values of our

model for 1-, 3-, and 5-years survival were 0.741, 0.739, and

0.741, respectively. In the entire TCGA dataset, the AUC values

of our model for 1-, 3-, and 5-years survival were 0.741, 0.753,

and 0.741, respectively. While, in the GSE31210 dataset, the

AUC values of our model for 1-, 3-, and 5-years survival were

0.784, 0.658, and 0.708, respectively.

Furthermore, we analyzed the relationship between

numerous clinical factors and risk scores (Figures 5A–D). It

was found that there was no statistical difference in the risk

score between the two groups of patients aged≥65 years and

those aged<65 years. The difference between the two risk

groups of patients with different gender and smoking history

was also not statistically different. However, the differences

among patients with different pathologic stages were

statistically significant. Patients with high pathological

stages tended to have higher risk scores. In addition, we

performed Kaplan-Meier prognostic analysis of lung

adenocarcinoma patients with different clinical

characteristics separately (Figure 5E–L). The results showed

that patients with high-risk scores had a poor prognosis in all

age groups (≥65, <65), all gender groups (Male, Female), and

all pathological stage groups (Pathological stage IandII,

Pathological stage IIIandIV). There was a significant

prognostic difference between the high- and low-risk

groups among the smoking group, with patients in the

high-risk group having a poor prognosis (HR = 2.83, p <
0.001), however, there was no significant prognostic difference

between the high- and low-risk groups in the non-smoking

group. We also performed the univariate and multivariate Cox

regression analyses regarding the risk scores. Our results

showed that the risk score is an independent prognostic

factor for lung adenocarcinoma and can be used as a

clinical parameter to determine the prognosis of patients

(Figure 5M, N).

Significant difference in molecular
mechanisms and immune infiltration
levels between high- and low-risk groups

As demonstrated in the above study, lung

adenocarcinoma patients had significantly different

prognoses between the high- and low-risk groups.

Differential expression analysis was performed for the

high-risk versus low-risk groups to investigate the

mechanisms involved. Firstly, we used the R package

‘limma’ to identify differentially expressed genes (|FC|>1.5,
FDR<0.05) and mapped the volcano (Figure 6A), Then, we

performed enrichment analysis using GO and KEGG

(Figure 6B, Supplementary Table S3). KEGG results

showed significant enrichment in the cell cycle and IL-17

signaling pathway (Figure 6C). In addition, we performed

GSVA enrichment analysis and plotted heat map and

histogram for lung adenocarcinoma patients in high- and

low-risk groups. Fifty gene sets from Hallmark were selected

for GSVA analysis. By comparing the enrichment scores of

the two groups in these 50 gene sets, 25 gene sets showed a

statistically significant difference (Figures 6D,E). These

results might explain the underlying mechanism for the
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difference in the prognosis of lung adenocarcinoma patients

with different risk scores.

To understand the differences in TME among patients

with different risk scores, we also analyzed the abundance of

immune infiltration in high- and low-risk groups. Analysis

using the Estimate algorithm showed that the high-risk group

had higher tumor purity but lower immune and stromal

scores (Figures 7A–D). This suggested that patients with

FIGURE 5
Relationship between risk score and clinical factors in themodel. (A–D) The risk score of patients with different clinical factors. (E,F) Relationship
between risk score and prognosis in different age groups. (G,H) Relationship between risk score and prognosis in different gender groups. (I,J)
Relationship between risk score and prognosis in different smoking history groups. (K,L) Relationship between risk score and prognosis in different
pathological stage groups. (M) Univariate and (N) multivariate Cox analysis of risk score and clinical factors.
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FIGURE 6
Enrichment analysis of differentially expressed genes between high- and low-risk groups. (A)Differentially expressed genes between high- and
low-risk groups (FDR <0.05, |FC| > 1.5). (B) GO and KEGG enrichment analysis for differentially expressed genes. (C) Visualization of KEGG
enrichment analysis results. (D,E) The heat map and bar chart shows the GSVA analysis results between the high- and low-risk groups.
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high-risk scores exhibited a state that promoted tumor escape

due to the lack of anti-tumor immune cells in the TME. Then,

to investigate the immune status of the two risk groups in

more detail, we used the ssGSEA algorithm to calculate the

infiltration abundance of 24 immune cell types (Figure 7E).

The results revealed that the high-risk group generally had a

lower infiltration abundance of immune cells, including

B cells, T cells, CD8+ T cells, NK cells, DC cells, and mast

FIGURE 7
Immune infiltration analysis between high- and low-risk groups. (A–D) Immune infiltration abundance between high- and low-risk groups by
Estimate algorithm. (E) The histogram displays differences in infiltrating abundance of 24 immune cell types in high- and low-risk groups analyzed by
the ssGSEA algorithm. (F) Correlation between the risk score and 24 immune cell types. (G) The heat map showing the immune infiltration analysis
results of EPIC, TIMER, MCPcounter, and ssGSEA.

Frontiers in Genetics frontiersin.org12

Chen et al. 10.3389/fgene.2022.1010440

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1010440


cells, compared to the low-risk group. Spearman correlation

analysis also showed that the abundance of immune cells was

negatively correlated with the risk scores for almost all

immune cell types except Th2 cells (Figure 7F). We also

used the MCPcounter, TIMER, and EPIC algorithms to

confirm these results. By plotting the heat map, we

visualized that lung adenocarcinoma patients in the high-

risk group had lower levels of immune infiltration

(Figure 7G).

Risk score can suggest disparities in gene
mutations and guide immunotherapy and
chemotherapy

Since gene mutation status significantly affects tumor

formation and progression, we performed a mutation

analysis of lung adenocarcinoma patients in high- and low-

risk groups. We further analyzed the differences between the

top 20 genes with the highest mutation frequencies in the high

FIGURE 8
Mutation status and prediction of immunotherapy and chemotherapeutic response between high- and low-risk groups. (A,B) Analysis of top
20 mutation genes in high-risk versus low-risk groups. (C) TIDE immunotherapy response prediction in high- and low-risk groups of LUAD TCGA
cohort. Chi-square test: no response to immunotherapy: high-versus low-risk, 68.8% versus 56.0%, OR = 1.731, p = 0.004. (D) The Independent
immunotherapy dataset (GSE126044) validated immunotherapy efficacy in high- and low-risk groups. (E) Screening of chemotherapeutic
agents sensitive to high- and low-risk groups.
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and low-risk groups respectively (Figures 8A,B). The

frequency of TP53 mutations in the high-risk group was

55.1%, while it was 48.2% in the low-risk group. The

frequency of KRAS mutations was 31.8% in the high-risk

group versus 27.3% in the low-risk group. The difference in

gene mutation frequency might be the reason for the poorer

prognosis in the high-risk group. Based on the above analyses,

we explored the treatment strategies for different risk scores in

depth. Since immunotherapy is commonly used in lung

adenocarcinoma, we first calculated the response to

immunotherapy in high- and low-risk groups using the

TIDE algorithm (Figure 8C). The results suggested that the

FIGURE 9
Building amore accurate nomogram. (A)Nomogramwas constructed by combining pathological stageswith risk scores. (B)Nomogram’s 1-, 3-
, and 5-years calibration curve. (C) The ROC curve shows AUC values for various clinical factors, risk scores, and nomogram scores. (D) ROC analysis
of nomogram score in TCGA database. (E) ROC analysis of nomogram score in GSE31210 database (validation set). (F) Kaplan-Meier prognostic
analysis of nomogram score in TCGA database. (G) Kaplan-Meier prognostic analysis of nomogram score in GSE31210 database.
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low-risk group had a better treatment response upon

immunotherapy (OR = 1.731, p = 0.004). We further

validated this result using the GSE126044 database. Results

showed that patients with CR/PR after immunotherapy had a

significantly lower risk score than SD/PD (p = 0.038),

suggesting that patients with a low-risk score are

susceptible to benefit from immunotherapy (anti-PD-

1 treatment) (Figure 8D). However, the high-risk group had a

worse prognosis, so we performed a prediction of response to

chemotherapeutic agents for patients in the high- and low-risk

groups. We utilized the R package ‘pRRophetic’ to calculate the IC50

of chemotherapeutic drugs (Figure 8E). We found that the high-risk

group had better sensitivity to A-443654, BIBW-2992, Docetaxel,

Paclitaxel, Embelin, and RO-3306. Taken together, we provided a

personalized treatment option for clinical reference by predicting the

treatment effect of patients in different subgroups and compensated

for the poorer effect of immunotherapy in the high-risk group.

A nomogram with a potential clinical
application can be constructed based on
risk score and pathological stage

The above study indicated that the risk score could act as an

independent prognostic factor that can be used to determine the

prognosis of patients. Therefore, to further improve our signature’s

predictive efficiency, we constructed a nomogram based on the

TCGA database, incorporating factors such as pathological stage

and risk scores (Figure 9A).We could visualize the risk assessment

by calculating the score and assessing the outcome probability for

each patient. In addition, we tested the predictive efficacy of the

nomogram using a calibration plot (Figure 9B). The nomogram’s

1-, 3-, and 5-years survival predictionsweremore accurate than the

theoretical values. To further compare the predictive efficacy of the

nomogram score with other clinical factors, we plotted the ROC

curve. The nomogram score had the highest AUC value, and the

predictive efficiency was further improved based on the risk score

(Figure 9C). By performing the time-dependent ROC curve based

on the nomogram score, we found that the AUC values of 1-, 3-,

and 5-years overall survival for lung adenocarcinoma patients were

0.786, 0.789, and 0.776, respectively. To verify the accuracy of the

nomogram, we constructed the nomogram again based on the

external dataset GSE31210. Time-dependent ROC analysis

showed that the AUC values of 1-, 3-, and 5-years overall

survival for lung adenocarcinoma patients were 0.918, 0.777,

and 0.744, respectively (Figures 9D,E). These results suggested

that the nomogram we constructed had good accuracy. We also

performedKaplan-Meier prognostic analyses using the TCGA and

external database GSE31210. The results indicated that the high

nomogram score group had a significantly worse prognosis than

the low score group (Figures 9F,G). In summary, the nomogram

significantly improved the accuracy of determining the survival

status of lung adenocarcinoma patients.

Discussion

The interconnection between tumor cells, immune cells, and

stromal cells in the TME substantially influences tumorigenesis

and tumor progression (Anderson and Simon, 2020). The spatial

interplay of immune cells and other cells in the TME determines

the immune response against tumors (Petitprez et al., 2020). As

immunotherapy of tumors has been intensively studied, immune

checkpoint inhibitors (ICIs) against tumor immune escape are

expected to be an essential strategy to improve the prognosis of

lung adenocarcinoma patients (Qiao et al., 2021; Liu et al., 2022;

Reda et al., 2022). However, due to the heterogeneity and

complexity of the TME, patients with the same pathological

stage may also exhibit different TME characteristics, resulting in

different therapeutic effects upon immunotherapy (Bagaev et al.,

2021). Therefore, developing a prognostic model to determine

the prognosis of lung adenocarcinoma patients early and to

provide targeted immunotherapeutic strategies has significant

potential for clinical application.

Tumor-associated macrophages, a vital member of the TME,

have been identified in two types with different functional

features, the classically activated M1 macrophages and the

alternative activated M2 macrophages (Cassetta and Pollard,

2020). M1 macrophages appear in the inflammatory

environment and are usually induced by cytokines from Th1,

whereas M2 macrophages are primarily induced by cytokines

from Th2 and counteract the inflammatory response

(Sedighzadeh et al., 2021). Previous studies have shown that

although all M2 macrophages exhibit anti-inflammatory and

immunomodulatory effects, there is still heterogeneity among

M2 macrophages. M2 macrophages can be further distinguished

into four subtypes. M2a macrophages are involved in tissue

fibrosis, M2b macrophages are shown to promote tumor

progression, M2c macrophages are exhibited to be involved in

tissue remodeling, and M2d macrophages promote angiogenesis

(Wang L. X. et al., 2019). A growing number of studies have

shown a significant correlation between M2 macrophages and

lung adenocarcinoma progression. Lung adenocarcinoma

patients with a higher density of M2 macrophages tend to

have a poorer prognosis (Cao et al., 2019; Guo et al., 2019;

Dai et al., 2020). M2 macrophages create an environment

conducive to tumor survival by releasing growth factors,

chemokines, and other inflammatory mediators (Solinas et al.,

2009; Lin et al., 2019). In addition, M2 macrophages can also

promote tumor metastasis and invasion by promoting

angiogenesis and other pathways (Jetten et al., 2014; Xie et al.,

2021). To further analyze the differences in composition and

function within M2 macrophages, we used bioinformatics to

perform an in-depth analysis at the single cell level.

Through annotation and clustering analysis of single-cell

data, we identified differences in the composition of

M2 macrophages in lung adenocarcinoma patients. These

differences might indirectly contribute to the discrepancy in
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biological processes and prognosis among patients. In addition,

we performed differentiation trajectory analysis and pseudo-time

analysis on M2 macrophages, identifying the different

differentiation states of M2 macrophages. Lung

adenocarcinoma patients exhibited four expression patterns

based on the heterogeneous genes in the differentiation

trajectory. The GSVA enrichment analysis helped us to

understand the functional differences between different states

of M2 macrophages. The GSVA results from our study above

showed that M2 macrophages in state5 had the highest

angiogenesis score, M2 macrophages in state1 had the highest

epithelial-mesenchymal transition (EMT) score, and

M2 macrophages in state2&4 had the highest interferon-

response score. In contrast, M2 macrophages in state3 had the

lowest G2M checkpoint score. This discrepancy reveals that

macrophages in different states may differ in their cancer-

promoting functions. Previous studies have also shown that

M2 macrophages are significantly associated with angiogenesis

and lymphangiogenesis, which contribute to the development of

lung cancer, and also support that M2 cells are a strong indicator

of poor prognosis in lung cancer (Hwang et al., 2020). Identifying

particular metastasis-promoting or EMT-promoting subtypes of

M2 macrophages also can help to explore the underlying

molecular mechanisms further. Additionally, this

heterogeneity of different states of M2 macrophages was also

reflected in the metabolic and cellular communication levels. Our

results provide a novel insight into the heterogeneity in

M2 macrophages. Whereas the previous classification of

M2 macrophages was based on different cytokine activation

patterns (Colin et al., 2014), we distinguished different

differentiation states of M2 macrophages based on single cell

analysis. In addition, our study investigated the role of

heterogeneous genes in the differentiation of M2 macrophages

to guide the clinical therapy of lung adenocarcinoma.

We extracted heterogeneous genes, essential in the

differentiation trajectory of M2 macrophages, and performed

a univariate Cox analysis to screen for prognosis-related genes in

lung adenocarcinoma. We constructed a prognostic model using

Lasso-Cox and multivariate stepwise regression methods based

on the prognosis-related genes in the training set. We measured

the predictive efficacy of the model and explored the potential

molecular mechanisms between high- and low-risk groups.

Previous studies have shown that the status of the tumor

microenvironment can be quantitatively assessed by risk

scores (Chong et al., 2021). In our research, we found that

patients in the high-risk group had an immunosuppressive

microenvironment while the low-risk group had an immune-

promoting microenvironment. Notably, the treatment of

immune checkpoint inhibitors (ICIs) has become a hot topic

in tumor therapy strategies. Immunotherapy targeting M2-type

macrophages is emerging as a new direction for tumor therapy

(Mills et al., 2016). The major molecules targeted by

immunotherapy are programmed death receptor 1 (PD-1) and

programmed death receptor ligand 1 (PD-L1). However, due to

the complexity of the in vivomicroenvironment, immunotherapy

has an obvious shortcoming in that only a fraction of tumor

patients respond to ICIs treatment (Wang et al., 2021). TIDE, as a

novel computational architecture, has been considered as an

alternative to single biomarkers for predicting the therapeutic

effect of ICIs (Jiang et al., 2018). With the dual validation of the

TIDE algorithm and GSE126044 set, we found that the low-risk

group benefited more from immunotherapy, and this also

directly indicated that the prognostic model we constructed

could advance the personalization of immunotherapy.

As the high-risk group was shown to have a poor prognosis, we

identified chemotherapeutic agents (A-443654, BIBW-2992,

Docetaxel, Embelin, Paclitaxel, RO-3306) with better sensitivity

for the high-risk group. A-443654 is an inhibitor of the AKT

pathway that induces apoptosis and inhibits tumor growth (Luo

et al., 2005). BIBW-2992 was reported to inhibit the kinase activity

of EGFRmutants and suppress lung adenocarcinoma development

(Li et al., 2008). Docetaxel and Embelin can induce the apoptosis of

lung adenocarcinoma tumor cells (Avisetti et al., 2014; Jeong et al.,

2021). Meanwhile, Paclitaxel, as first-line chemotherapy for

patients who do not benefit from immunotherapy, together

with RO-3306, can cause cell cycle G2/M phase arrest and lead

to apoptosis in lung adenocarcinoma cells (Vassilev et al., 2006; Cui

et al., 2020). The above chemotherapy drugs could compensate for

the deficiency in immunotherapy efficacy in the high-risk group. In

addition, to further improve the predictive performance of the

prognostic model, we constructed a nomogram by combining the

risk scores with the pathological stages. Nomogram has

significantly better prognostic efficacy than the pathological

stages and can be used as a complement to clinical factors by

providing a more refined risk assessment.

In summary, for the first time, this research constructed a

signature that can assess the prognosis of lung adenocarcinoma

patients based on heterogeneous genes related to the

differentiation trajectory of M2 macrophages. Our results

provide a new research idea for the precision treatment of

lung adenocarcinoma. However, our study still has some

shortcomings. More in-depth studies are needed in the future

to identify the potential molecular mechanisms of heterogeneous

genes associated with the differentiation of M2 macrophages.

Conclusion

M2 macrophages, as a critical component of the lung

adenocarcinoma microenvironment, promote tumor

progression and metastasis. In this study, we performed

differentiation trajectory and pseudotime analysis using

scRNA-seq data to identify different differentiation states of

M2 macrophages. By exploring the heterogeneous genes

associated with M2 macrophages’ differentiation, we

constructed a prognostic model to predict the prognosis and
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adjuvant treatment effect of lung adenocarcinoma patients,

which could potentially be used as a clinical parameter for

clinicians’ therapy decisions in the future.
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