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The development of form in an embryo is the result of a series of topological and

informational symmetry breakings. We introduce the vector–reaction–

diffusion–drift (VRDD) system where the limit cycle of spatial dynamics is

morphogen concentrations with Dirac delta-type distributions. This is

fundamentally different from the Turing reaction–diffusion system, as

VRDD generates system-wide broken symmetry. We developed ‘fundamental

forms’ from spherical blastula with a single organizing axis (rotational

symmetry), double axis (mirror symmetry) and triple axis (no symmetry

operator in three dimensions). We then introduced dynamics for cell

differentiation, where genetic regulatory states are modelled as a finite-state

machine (FSM). The state switching of an FSM is based on local morphogen

concentrations as epigenetic information that changes dynamically. We grow

complicated forms hierarchically in spatial subdomains using the FSM model

coupled with the VRDD system. Using our integrated simulation model with

four layers (topological, physical, chemical and regulatory), we generated

life-like forms such as hydra. Genotype–phenotype mapping was investigated

with continuous and jump mutations. Our study can have applications in

morphogenetic engineering, soft robotics and biomimetic design.
1. Background
The morphogenesis of an embryo is the emergence of its form from the singularity

of a zygote. The theory of embryonic development has been a long-standing issue

in biology and can be traced back to Aristotle. In Book II of On the Generation of
Animals, Aristotle rejects preformationism and introduces the concept of epigen-

esis and orderly development towards a final cause. Meckel and Serres, in the

eighteenth century, proposed the recapitulation theory. The embryogenesis of

the higher-order organisms was a progression through the formation stages of

lower life forms. In the nineteenth century, Haeckel expanded recapitulation to

biogenetic law. An animal embryo’s development was the replay of its species

evolutionary forms; ontogeny recapitulated phylogeny. Later, Roux introduced

the mosaic theory. Embryonic development is a well-choreographed unfolding

of form; after a few divisions of the zygote, the cells attained a fate that would

generate specific parts of the developing organism. With the advances in genetics,

the debate of ‘neo’-preformationism and epigenetics intensified. Currently, we

seek a theory of embryogenesis that would explain the unfolding of form from

the singularity of a zygote.

Pattern formation is a process of building spatial structures out of none. In his

seminal paper ‘The chemical basis of morphogenesis’, published in 1952 [1], Alan

Turing argued that a nonlinear dynamical system of the two reactants diffusing on

a tissue at different rates can spontaneously generate a pattern starting from a

homogeneous initial condition if provided with some perturbation. Gierer &

Meinhardt [2] published their equivalent of reaction–diffusion formulation for

pattern formation, which was based on interacting morphogens that had short-

range activation and long-range inhibition, very much similar to the morphogen

reactants proposed by Turing. However, their theory was further expanded

with morphogen sources that had shallow gradients across the tissue. Such

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2018.0454&domain=pdf&date_stamp=2018-11-14
mailto:murat.erkurt09@imperial.ac.uk
https://dx.doi.org/10.6084/m9.figshare.c.4282244
https://dx.doi.org/10.6084/m9.figshare.c.4282244
http://orcid.org/
http://orcid.org/0000-0003-2992-4154
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


rsif.royalsocietypublishing.org
J.R.Soc.Interface

1

2
source gradients were not generated by the morphogen

dynamics but were driving it exogenously. Gierer and

Meinhardt claimed that the source densities were expected to

change slowly as an effect of cell differentiation. While the pro-

posed theory could explain the generation of morphogen peaks

or spatial periodicity, it did not explain how the driving shallow

source gradients were formed in the first place. Since then, var-

ious types of reaction–diffusion models have been introduced

[3]. Although mathematically elaborate, reaction–diffusion as a

mechanism for pattern generation in animals is criticized due to

its need for the tuning of system parameters, limited integration

with tissue mechanics and scarce in vivo evidence.

Although Turing’s reaction–diffusion system constitutes

an important framework for explaining self-organization

through local interactions, it generates patterns, not form. As

Turing allegedly said [4] regarding the formation of zebra

skin patterns:
 5:20
Well, stripes are easy, but what about the horse part?
180454
The generation of form requires spatial symmetry breaking at

the organism length scale, whereas pattern formation is

based on breaking the local symmetry, which results in

spatial quasi-periodicity. Form generation in a living object,

starting with the establishment of a bodyplan, requires cells

to know their positions. This is the basis of positional infor-

mation theory that was developed by Wolpert [5]. Cells are

assumed to acquire positional identities through a coordinate

system formed by morphogen gradients that span the organ-

ism or its subregion. Subsequently, they differentiate based

on such positional information.

In stark difference to Turing’s reaction–diffusion systems,

the positional information theory was built on in vivo exper-

imental results rather than mathematics. Morphogen

gradients that provide positional information are observed in

many developing systems [6]. Early studies on chick, hydra

and insect limbs showed the existence of morphogen gradients

along the main body axes [7,8]. Recent experimental data show

that Dpp, Sonic hedgehog (Shh) and activin exhibit gradient

distribution across the organism during embryonic develop-

ment [9]. Such gradient thresholds trigger the expression of

target genes [10]. Other studies showed that the hedgehog

family of proteins have spatial gradients on Drosophila’s

larval cuticle and wing imaginal disc, as well as on the ver-

tebrate neural tube [11]. In Xenopus embryo, activin gradients

correlate with the expression of goosecoid and Xbra.

In the vertebrate neural tube, Shh protein acts as the gradi-

ent-forming morphogen and drives the spatial patterns of

gene expression, resulting in subdivision of the ventral neu-

roepithelium into five domains with distinct neuronal

subtypes [12,13]. Recent in vivo studies, supported by math-

ematical modelling of nonlinear dynamics, has shown that

the Shh morphogen gradient is interpreted by the downstream

genetic regulatory network (GRN) by changing the intracellu-

lar Gli activity that triggers the transcriptional circuit, resulting

in generation of spatial patterns of gene expression [14].

Despite this evidence of gradient distribution and corre-

sponding gene activation, there are limited theories on the

way such axis-defining gradients are formed and converted

into precise positional information [15]. Possible mechanisms

such as self-enhanced morphogen degradation and compe-

tition between the morphogens for binding to inhibitors

have been suggested [16]. Although the pre-patterning of

an organizer is assumed, it is not clear how such an organizer
would establish a smooth gradient distribution across the

tissue. Typically, such gradients are based on secreted mol-

ecules that can diffuse extracellularly. Alternative transport

mechanisms based on cell-to-cell transport have been

proposed [17,18]. Moreover, it is challenging to maintain

the established gradient against noise, degradation and fluc-

tuations at the organizer. Any acceptable model must ensure

reproducibility and robustness [19,20,21].

Turing’s reaction–diffusion theory and Wolpert’s

positional information theory were perceived as opposing

camps in explaining morphogenesis [22]:
This [positional information-based] view of pattern formation
must be contrasted with those views which explicitly or implicitly
claim that in order to make a pattern it is necessary to generate a
spatial variation in something which resembles in some way the
pattern . . . View of pattern formation is characterized by the
work Turing [1] and is the antithesis of positional information.
Meinhardt introduced exogenous source gradients into

his equations, which provided positional information to the

otherwise isotropic reaction–diffusion system [23]. This was

the first step towards amalgamating reaction–diffusion

with positional information theory. However, attempts to

establish positional information through reaction–diffusion

systems faced difficulties such as (i) the generation of second-

ary or periodic peaks as tissue size grows, (ii) exponential

decay of gradients, (iii) difficulty in establishing orthogonal

gradients for primary and secondary body axes, and (iv)

forming an exact number of segments [24]. Several elaborate

remedies were proposed within the framework of the

reaction–diffusion systems [25–28].

1.1. Need for ‘self-organized’ organizers
Typically, an early blastula is symmetrical topologically and

information-wise. A complete embryo can be formed from a

fragment of the early blastodisc not containing the posterior

marginal zone [29]. These experimental observations indi-

cate that the organizer regions of the tissue that determine the

bodyplan of an embryo are emergent and self-organized.

Despite the elegant mathematics of Turing’s reaction–

diffusion systems for pattern formation, and notwithstanding

the well-established experimental evidence of positional

information based on gradients in the embryo, to date, there

does not exist a theory that can robustly explain the self-

organization of the organizers that would reproducibly and

reliably generate the immense variety and detail of forms in

phyla.
2. Theory
2.1. Vector – reaction – diffusion – drift
Pattern-forming reaction – diffusion systems use local

kinetics and isotropic diffusion, which act as spatial

wavevector-selecting operators with the generic form

@tu ¼ f(u, v)þDur2u,

@tv ¼ g(u, v)þDvr2v:

Some well-studied reaction–diffusion systems include the

Gray–Scott, Barrio–Varea–Aragon–Maini and Gierer–

Meinhardt models. These models generate pattern but not

form. Pattern is a spatial organization that is locally differen-

tiated but globally repeated, whereas form is a spatial
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Figure 1. Initial versus limit-cycle distribution. One-dimensional cyclic tissue with VRDD dynamics consisting of 200 cells. (a) The initial condition with each cell
having a random (noise level) morphogen source concentration. (b) The steady-state attractor of the system. After ca 100 steps, the source concentration falls to zero
in all cells, except the organizer cell that manages to aggregate all morphogen sources. It is important to note that the organizer cell was not preset exogenously
but emerged as self-organization of this nonlinear spatially distributed dynamical system. The dashed line is the corresponding steady-state morphogen field
distribution. Parameters used: w ¼20.1, Du ¼ 0, b ¼ 0, Dv ¼ 0.2. (Online version in colour.)
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organization that is globally differentiated. Generating form

requires the tissue to have unique differentiation such as

anterior–posterior and dorsoventral axis formation. Reac-

tion–diffusion systems cannot generate global symmetry

breaking; they act as local spatial filters that feed on random

fluctuations or disturbances to generate spatial differentiation

within the characteristic distance of the underlying diffusion

dynamics. Form of an organism, on the other hand, is a juxta-

position of topological symmetry breakings, which can be

achieved in a system that incorporates a local sense of direc-

tionality, which traditional reaction–diffusion systems lack. In

the Gierer–Meinhardt model, spatial isotropy is extrinsically

broken by the introduction of exogenous source densities.

Our vector–reaction–diffusion–drift (VRDD) system

creates self-organized tissue-wide symmetry breaking and,

thus, is capable of generating form. It has three building

blocks: (i) self-organization through percolation of locally

generated information (source–field coupling); (ii) local direc-

tionality introduced as drift on field gradients (symmetry
breaking by drift); and (iii) topology encoded in the interaction

matrix of the morphogen vector, which sets the organizing

axes ( pillars of form).

2.2. Source – field coupling
The source–field concept is introduced herein where source is

the ‘organizer’ in Wolpert’s nomenclature of positional infor-

mation theory [30] and field corresponds to the

‘morphogenetic field’. Source–field coupling is defined by

equation (2.1). Any change in source ripples through the

field based on the spatio-temporal solution,

@tv ¼ R(u� v)� bvþDr2v

and R(x) ¼
x x � 0

0 x , 0,

�
9>=
>; (2:1)
where u(X, t) is the source, v(X, t) is the field and X [ V is the

tissue. R is the ramp function though which source pumps up

the field. b and D are the degradation and diffusion rates of

the field, respectively. In the proposed model, field is gener-

ated by the localized source and dispersed through the

tissue by free extracellular diffusion.
2.3. Symmetry breaking by drift
The concept is motivated by the following ‘Lego game’

problem that we pose:
A group of N players join in a circle; each player is given a bag of
a random number of Lego bricks. Each member can exchange
Lego bricks with members on their left or right in the circle.
Members are undifferentiated, and they all execute the same
rule set. The goal is to combine all Lego bricks at one member.
Such a system, starting from a random initial condition with

no spatial correlation, ending in a unique spatial distribution of

Dirac delta-type function, would be achieving global symmetry

breaking with local interactions. We propose that such a system

can be implemented by a drift of source on the gradient of field.

The drift of a morphogen source u based on a generic field F is

given by @tu ¼ �r � (uF). Hence, our source–field coupled

reaction–diffusion–drift system is given in equation (2.2),

@tu ¼ wr � (urv)þDur2u (2:2a)

and

@tv ¼ R(u� v)� bvþDvr2v, (2:2b)

where R is the ramp function and w is the drift rate (positive as

attraction, negative as repulsion). The limit cycle of this spatially

distributed dynamic system is a Delta dirac-type singular peak

with a system-wide broken symmetry. Figure 1 shows the initial

and final condition of the source and field distribution on a

one-dimensional (1D) cyclic domain running equation (2.2).
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2.4. Pillars of form
We expand the Lego game into multi-colour. The goal is to

have pillars of the same colour with specified relative posi-

tioning to other colours. This is the conceptual framework

for our morphogenetic vector model. The VRDD system is

based on an interacting network of M morphogens of

source–field pairs. Each morphogen source reacts to others

through a drift on their gradient fields with weights set by

the interaction matrix W. The vector formulation of the

VRDD system is given in equation (2.3),

(ui(X, t), vi(X, t))
ui, vi [ [0, 1] and X [ V,

U ¼ (u0 � � � uM), V ¼ (v0 � � � vM)

@tui ¼ r � (ui

X
j

Wijrvj)þDuir2ui (2:3a)

and

@tvi ¼ R(ui � vi)� bivi þDvir2vi: (2:3b)

VRDD is a spatially distributed nonlinear dynamical

system where the limit-cycle attractors are Dirac delta distri-

bution of source types with relative positioning set by the

interaction matrix.

Let us consider a VRDD system run on a spheric surface

with two morphogens (R, G); and the interaction matrix is set

as W ¼ 0 �1
�1 0

� �
. Then the R source will be drifting away

from the G source based on the gradient of the G field (because

W0,1 ¼ �1), and similarly the G source will be drifting away

from the R source based on the gradient of the R field (because

W1,0 ¼ �1). The steady-state spatial configuration will be R

and G sources concentrated as polar opposite peaks on the

sphere, forming an anterior–posterior body axis of the

spheric tissue in a self-organized manner.

Now let us consider the case where the VRDD system is

again run on a spheric surface with four morphogens (R,

G, B and Y), and the interaction matrix is set as

W ¼

0 �1 0 0
�1 0 0 0
�1 �1 0 �0:5
�1 �1 �0:5 0

0
BB@

1
CCA.

R and G will be again drifting away from each other based

on each other’s field gradient; and they would be ambivalent to

fields of B and Y (because W0,2, W0,3, W1,2, W1,3 are zero),

aligning themselves as two polar opposites similar to the pre-

vious case. B and Y, on the other hand, will be drifting away

from both R and G (because W2,0, W2,1, W3,0, W3,1 are 21),

hence they would be pushed to the equator of the R, G

poles. Secondarily, B and Y are being pushed away from

each other (because W2,3, W3,2 are 20.5), aligning as polar

opposites on the equator of R, G. The steady-state spatial con-

figuration will be the dual body axis (anterior–posterior and

dorsoventralis) formed by the RG and BY poles, respectively.

2.5. Biological implications of vector – reaction –
diffusion – drift

Here, we discuss the biological implications of our VRDD

theory on its three building blocks. We conceptualize the Shh

and Bicoid (Bcd) proteins and their encoding genes as the

basis for biological relevance to our VRDD model. Shh is a

well-studied signalling molecule in development that has a
crucial role in embryogenesis [11]. Shh is known to be gener-

ated in organizing regions and to form long-range gradients

that act as positional information for development. For

example, the notochord found ventral to the neural tube (tran-

sient during vertebrate development) plays a key role in

signalling and coordinating development during gastrulation

and provides the organizing region for Shh generation which

subsequently diffuses to generate the morphogen gradient.

Also, in early tooth development, the region called the primary

enamel knot generates Shh, which then leads to the morphogen

gradient that provides positional information. Similarly, Bcd

protein and its encoding gene has been widely studied as a

morphogen gradient [31] and is relevant for conceptualizing

our VRDD theory’s biological implications.

(i) Source–field coupling. Our VRDD model would predict the

existence of an activator of Shh gene expression which

would correspond to the source. High concentrations of

source, i.e. a high concentration of the Shh gene activator,

would drive the level of Shh protein expression. The field
would be the Shh protein concentration itself. The ramp

function in equation (2.1) essentially says that the source
drives field generation until the field concentration exceeds

the source concentration. Therefore, our VRDD model

would predict the existence of an inhibitor of Shh gene

expression, which would be triggered once the field con-

centration exceeds that of the source. This catalytic

system would effectively generate the source–field coup-

ling. The numerical solution to equation (2.1) shows a

rapid decay close to the source, but a more gradual

linear-like decline away from the source, which has been

a proposed requisite for morphogen-based positional

information to have robustness and long-range action [20].

(ii) Symmetry breaking by drift. The key concept of our VRDD

model is organism-wide topological symmetry breaking

achieved by local gradient-based drift (hence the name

reaction–diffusion–drift model). In its continuous-space

formulation, drift requires a mechanism that would gener-

ate directional diffusion based on the direction of an

underlying gradient field. Such directional diffusion is dif-

ficult to generate in a chemical system. However, once we

consider discretizing our equations in space as provided

in §3.5, the results lead naturally to a cell-to-cell transport-

based mechanism. In discretized formulation, the field

gradient operator becomes a difference of concentration

across the set of neighbouring cells of a given cell. Hence,

gradient-based drift is an active transport of source based

on field concentration differences of neighbouring cells.

This can be biologically realized by a juxtacrine signal-

ling-based mechanism. Our VRDD model would predict

that the ligand–receptor concentration on the boundary

of two cells on such a juxtacrine signalling system should

be proportional to the field difference between such cells.

Hence, higher differential cell pairs would have higher

transport, resulting in discretized gradient drift. Such

discretized models based on cell-to-cell signalling for

morphogen transport and pattern formation have been

proposed [32,33].

(iii) Interaction matrix of the morphogen vector. The morphogen

vector in our VRDD model consists of a set of morpho-

gens with their respective gradients. The drift is based

on the perceived single field, which is a linear combi-

nation of the fields of the morphogen vector, which is
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defined by the corresponding row of the interaction

matrix. To biologically realize such a linear combination,

our VRDD model would predict that a kernel of activa-

tors (or inhibitors) should exist that would drive the

ligand–receptor concentration on the cell boundaries

based on their corresponding field differences of each

morphogen. The weights in this kernel would define

the interaction matrix row components. Such a system

would generate equation (2.3) of VRDD model.

2.6. Genetic regulatory network as a finite-state
machine

Various theoretical models for cell differentiation using bio-

chemical networks have been proposed. The ‘threshold

Boolean network’ model was introduced by Kauffman [34],

and has since been used extensively for modelling the GRN

dynamics, including the fission yeast cell cycle, Arabidopsis
thaliana floral morphogenesis and the mammalian cell cycle

[35]. In these models, differentiated cell types correspond to

attractors of the underlying nonlinear dynamical system.

The globally coupled metabolic reaction network with

active transport of chemicals has been shown to generate

clustering of differentiated cells [36]. Neural-network-type

models were also considered [37,38]. Spatially extended

GRN models have been recently used for pattern generation

[39]. A network of morphogens reacting through a neural-

network-type function where spatial connectivity is either a

traditional diffusion or direct contact induction (effectively a

discretized cellular model) has categorical pattern-generating

capabilities [40].

Complex pattern formations do not need to be due to compli-

cated hierarchical and layered GRNs. Cells that have the same

genome can differentiate into clusters of different behaviour

based on their developmental history, indicating that epigenetic

lineage is likely to be switching the genetic stage of a cell [41].

Spatial complexity emerges when epigenetic information pro-

vides feedback to the GRN. Developmental mechanisms that

have modular reuse of the genetic tool-set, coupled with epi-

genetic feedback, can generate a large variation of adaptive

morphologies and shall be selected by evolution [40].

We introduce dynamics for cell differentiation where a gen-

etic regulatory network is modelled as a finite-state machine

(FSM). An FSM is an abstract mathematical model of compu-

tation where the machine can be in one of a finite number of

states at any given time and transitions from that state in

response to external inputs.
Definition 2.1. An FSM is defined by a 5-tuple fQ, q0, X, S,

dg, where

— Q is the set of FSM states

— q0 [ Q is the start state

— X# Q is the set of final states

— S is the set of symbols representing input to the FSM

— d : Q � S is the transition function of the FSM.
As depicted in figure 2, the FSM can be represented as a

directed graph where each node constitutes a state of the

machine, and the edges depict the possible transition from

such a state to the next connected state. In this representation,

the FSM’s transition function d is the set of fate functions Fq for

each state. The outgoing edge of a node is selected based on its

fate function and external inputs to the FSM at any given time.
In our FSM model of a genetic regulatory network, each cell

state is defined by the expression of underlying genes. The input

set for fate functions is dynamically changing epigenetic infor-

mation consisting of local morphogen concentrations plus the

‘state timer’, which is a time-decaying local morphogen that

gets reset upon state transition. The state-timer morphogen pro-

vides time dimensionality to switching logic of the FSM. It is a

crucial part of FSM design through which stasis and ageing are

introduced to morphogenesis. Without losing generality, the

FSM can be reduced to a situation where each state has two con-

nections, and, therefore, fate functions become a tripartite

complete and non-overlapping partitioning of the input set S

into S0, S1, S2. Let s ¼ f0 � � � fMþ1ð Þ represent the vector of

local morphogen concentrations, including the state timer.

The fate function is given as

F(s) ¼
0 s [ S0 STAY,

1 s [ S1 SWITCH TO A,

2 s [ S2 SWITCH TO B.

8><
>:

We can further reduce fate functionF so that the tripartition

of the input space can be scripted as a logic function. Let wa
denote a threshold gate

wa(x) ¼ 0 x , a,
1 x � a:

�

Let P ¼ p0 � � � pMþ1ð Þ denote the logic values of input set s,

where pi ¼ wai
( fi), and let Lstay(P) and LAB(P) be logic functions

on P. Then, the fate function becomes

~F(P) ¼
STAY if Lstay,
SWITCH TO A if :Lstay ^ LAB,

SWITCH TO B if :Lstay ^ :LAB:

8<
: (2:4)
Definition 2.2. A reduced fate function ~F is defined by a list of

threshold values and two logic functions fa0, . . ., aMþ1, Lstay,

LABg.

Definition 2.3. A GRN state S is defined by its reduced fate

function and two connected ‘next’ states { ~F, SA, SB}.
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In this model, the GRN of the zygote is at the start

state of the FSM. All other states of the FSM, by construct,

are reachable through a set of state transitions. As cells

divide, each new cell begins to run its own FSM, commencing

from the state of the parent cell. Cells in the start state are

omnipotent cells; they can transition into any further cell

type given a particular sequence of external inputs triggering

state transitions.

The inputs to fate functions are the local morphogen con-

centrations that develop over time through the underlying

VRDD systems. This model allows us to generate spatial sub-

regions consisting of cell neighbourhoods with common FSM

states and grow complicated forms hierarchically in spatial

subdomains. Cells that are at a given FSM state have

common gene expressions that determine the functional par-

ameters of the cell; in our case, these are the parameters of

underlying VRDD systems, including the interaction matrix

W and the growth kernel g.

Our FSM model allows morphogen gradients to be

re-established in smaller subregions in a dynamical fashion,

which allows for hierarchical form generation. Dynamically

changing morphogen gradients, rather than a static one, have

been experimentallyobserved and been proposed as a dynamical

system-based generalization to Wolpert’s static positional infor-

mation [42]. Our FSM model incorporates such a dynamically

(and subspatially) changing gradient concept.
3. Model
Integration of reaction–diffusion dynamics to tissue mech-

anics requires a chemical state to drive cell physics such as

growth, division, motion, adhesion and apostosis; and the

mechnanical state, such as convexity, deformation, com-

pression to provide reverse cues to chemical reactions [43].

Coupling tissue mechanics with morphogen dynamics can

result in robust pattern generation [44]. In the last decade,

simulation environments that model tissue mechanics and

chemical dynamics have been introduced, such as MecaGen

[45], SynBioTIC [46] and COMPUCELL [47,48].

We developed an integrated simulation model to demon-

strate self-organization of form in embryonic development

starting from the blastula stage and advancing to gastrulation

using the VRDD and FSM concepts outlined above. The term

blastula stage refers to the period between 128 cells to ca 10 000

cells (14th zygotic cell cycle), where the early embryo is a

sphere of blastomeres that surround the fluid-filled inner

cavity. During this stage of development, a significant

amount of activity occurs to establish cell polarity, cell specifi-

cation and axis formation. After the blastula stage, gastrulation

commences where the spheric topology starts to change under

the impact of organizing axes. This is the onset of morphogenesis

in the embryo. As Wolpert noted [49]:
It is not birth, marriage, or death, but gastrulation which is truly
the most important time in your life.
Our simulation model consists of four layers: topological,

physical, chemical and regulatory, with causation starting

from the regulatory layer, cascading down to the topology

layer. There is feedback from the chemical layer to the regu-

latory layer, governed by an FSM model. In the current

version of the model, there is no feedback from physical or

topology layers upwards.
(i) Topology layer. Blastula-stage embryo is modelled as a

spherical mesh with each vertex representing a cell.

This layer sets the spatial form of the organism and

manages cell-to-cell connectivity, cell growth and cell

splitting.

(ii) Physical layer. Tissue mechanics of the embryo, includ-

ing differential growth and elasticity, run at this layer

with minimally descriptive physics capturing the

essential dynamics.

(iii) Chemical layer. VRDD system is simulated at this layer.

Morphogen levels act as cues that feed downwards to

the physical layer, generating differential growth. Mor-

phogen levels also act as cues that feed upwards to the

regulatory layer, determining state switching of the FSM.

(iv) Regulatory layer. FSM model of the genetic regulatory

network is maintained in this layer.

3.1. Topology layer
The topology layer constitutes a mesh graph where each cell

of the embryo is a vertex of the graph, and cell-to-cell contact

is represented by edges between the nodes. The form of

the embryo is represented as embedding of the mesh graph

in R3. Each vertex has a position vector pa, and each face

has a unit normal vector n̂A (defined as pointing away from

the organism). We use the following notation.

Definition 3.1. G(V, F, E) denotes the mesh graph of the

blastula, where vertices are V ¼ {a, b, c, . . . }; faces are

F ¼ {A, B, C, . . .}; and edges are E ¼ {a, b, c, . . . }. V(a) denotes

the set of vertices of edge a; V(A) denotes the set of vertices

of face A; and F(a) denotes the faces of edge a. Additionally, let

V(a) denote the set of first-degree neighbour vertices of

vertex a, which is defined as having a common edge; i.e.

c [ V(a)() 9b [ {a, c} , V(b). For the triangular closed-

surface mesh topology, we have the following cardinality

rules: jV(a)j ¼ 2, jF(a)j ¼ 2, jV(A)j ¼ 3.

We used the so-called half-edge data structure to rep-

resent the mesh graph, where each edge of the graph is

composed of two oppositely directed half edges. This data

structure puts connectivity information of the mesh into

half edges, instead of faces. The half-edge data structure is

preferred, as it minimizes the amount of data storage and

allows for an effective way of modelling cell splits in the

embryo through edge splitting. Our data structure was

built in Cþþ; no external mesh library was used in this pro-

ject. A key feature of the topology layer implementation is

dynamical cell splitting. As nodes change their spatial pos-

ition during differential growth, edges get stretched. Cell

splitting is implemented by dividing edges, which creates

new nodes in the middle of split edges. The mesh data struc-

ture dynamically updates itself, maintaining a typical cell size

as the organism grows.

3.2. Physical layer
The stretchiness and bendiness of the blastula is modelled by

two spring types on each edge, one connecting its two nodes

and the other one its two faces: the node-to-node spring with

a rest length of ~l, which regulates the stretchiness of cell, and

the face-to-face spring with a rest angle of ~q, typically 0,

which regulates the bendiness of the tissue. We acknowledge

that the physical layer we are proposing oversimplifies the
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tissue mechanics of a real embryo at the gastrulation stage.

Our purpose in this model is to create a simplistic topolo-

gical medium that allows for the morphogen

concentrations generated by the VRDD dynamics to gener-

ate differential growth. The topology of our model is a

two-dimensional (2D) mesh –membrane surface, which is

clearly a significant deviation from the biological tissue

reality of three dimensions. Our modelling of the tissue

boundary as a 2D mesh–membrane has two reasons: firstly,

tissue growth arguably is predominantly on the surface, and,

secondly, in silico implementation of a model that runs on the

2D surface rather than the three-dimensional (3D) body

decreases computing implementation load (memory and

processing time) by an order of magnitude 3=2 (for example,

10 000 cells on the tissue boundary would correspond to a

1 000 000 cell simulation in a 3D body).

The energy of an edge is defined as the sum of the Hooke

energies of its two springs,

Ea ¼ k1(la �~l)2 þ k2(qa � ~q)2, (3:1)

where la is the linear distance between the two vertices of

edge a; qa is the angular distance between the two faces of

the edge a; and k1, k2 are the respective spring constants,

la ¼ kpb � pck (3:2)

and

qa ¼ 1� n̂B � n̂C

2
, (3:3)

where V(a) ¼ {b, c} and F(a) ¼ {B, C}. The energy of a vertex

is defined as the sum of its edges’ energies,

Ea ¼
X

b:a[V(b)

Eb: (3:4)

The differential growth of the tissue is modelled as a move-

ment of the cellular vertex normal to the tissue surface

governed by equation (3.5),

@tp
a ¼ �rEa þ ran̂a, (3:5)

where n̂a is the surface unit normal vector at the position of

vertex a, defined as an average of the unit normal vectors

of the faces that connect at a, which is

n̂a ¼ hn̂AiA:a[V(A):

Differential growth is driven by the spatially distributed growth

factorr, which is an output of the chemical layerof our model. In

biology, embryonic tissue growth is driven by various mito-

genic growth factors, such as insulin-like growth factors

and epidermal growth factors, which, in our model, are simpli-

fied to a mitosis-inducing, spatially distributed, dynamical

generated variable r, given by equation (3.7).

3.3. Chemical layer
At the core of form generation is the VRDD system, which is

managed at the chemical layer. This section explains the

manner in which the VRDD is spatially discretized and the

way it runs on the mesh with each vertex representing a cell

of the tissue. Each cell has M morphogens of the source–field
pair. Let ua

i , va
i denote the source and field concentrations of

morphogen type i at vertex location a,

ua ¼ (ua
0 � � � ua

M) and va ¼ (va
0 � � � va

M)
are the morphogen vectors of source and field. The VRDD

system is denoted as

ua ! (1� a)ua þ ahubiV(a) �
X
V(a)

ub � (~vb � ~va)

and va ! (1� g)va þ ghvbiV(a) þ R(ua � va)� bva

9>=
>; (3:6)

and

~va ¼Wva

and ra ¼ g � ua,

)
(3:7)

where� denotes element-by-element multiplication of two vec-

tors; W and g are the interaction matrix and growth kernel,

respectively. Growth factor r is the linear combination of local

morphogen concentrations with weights set by the growth

kernel g. The biological implication would be that local morpho-

gen concentration levels act as activators or inhibitors to

expresion of the growth factors, set by theweights in the kernel g.

3.4. Regulatory layer
Definition 3.2. The genotype of an organism is the set of FSM

states fSig, where each Si consists of a fate function, two con-

nected states, an interaction matrix and the growth kernel,

Si ¼ {~F, SA, SB, W, g}.

The FSM model of the genetic regulatory network is run

at the regulatory layer based on the organism’s genotype.

This layer feeds state parameters to chemical and physical

layers and receives back morphogen concentrations from

the chemical layer as epigenetic information to be used for

input to fate functions. In our current model, there is no feed-

back from physical or topology layers upwards to the

regulatory layer. Local information such as the stretch and

bend of tissue, as well as local convexity, may be used as

mechanical cues to the regulatory model in future work.

3.5. Discretization
3.5.1. Spatially distributed locally coupled maps
A map is a discrete-time dynamical system where the state of

the system at the next time step is based on a map (function)

of the current state. Spatially distributed locally coupled

maps are extended systems that consist of a set of nodes orga-

nized on a lattice or a mesh-type graph structure. Each node

runs its own map but with a state update based on the com-

bined state of the node and its neighbours. Update timing is

an important part of the description of the system; synchronous

or asynchronous update schemes can also be used. The general

form of a vector morphogen system with M types of morpho-

gens, each consisting of its source (u) and field (v) pairs, running

on discretized space and time, is as follows:

(ui(n, t), vi(n, t))

ui, vi [ [0, 1] and n [ Nþ, t [ Nþ,

U ¼ (u0 � � � uM), V ¼ (v0 � � � vM)

Un,t0 ¼MU({Uk,t, Vk,t}k[n<N(n)) (3:8a)

and

Vn,t0 ¼MV({Uk,t, Vk,t}k[n<N(n)), (3:8b)

where N(n) denotes the set of neighbours of node n setting the

spatial graph topology, and maps MU and MV define the

discrete dynamics.
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3.5.2. Diffusion and drift on the mesh
Gradient operator. The gradient on mesh space is defined for

each node site n as the vector of the dimension equal to the

cardinality of the neighbour set of n as follows:

rs(X)! G(sn) :¼ dsk1,n � � � dskP,n
� �

,

where

dskj ,n :¼ skj � sn

and kj [ N(n), neighbours of node n.

Divergence operator. Divergence on the mesh space

for a vector field defined between such a node n and its

neighbours (on the edges) is given as follows:

r � F(X)! D(Fn) :¼ 1

P

XP

j¼1

f kj ,n,

where fm,n denotes the vector field pointing from node n to its

neighbour node m. Divergence measures the net amount of

vector field emanating from the node n.

Laplacian operator. Laplacian on the mesh, as the diver-

gence of the gradient field, reduces to the deviation of node

n from the average of its neighbours, as follows:

r2(s(X)) ¼ r � r(sX)! L(sn)

L(sn) ¼ D(G(sn))

¼ 1

P

XP

j¼1

dskj ,n

¼ 1

P

XP

j¼1

(skj � sn)

¼ hsiN(n) � sn:

Diffusion. The diffusion equation discretized on a mesh

becomes

@ts(X) ¼ Ar2s(X)!

sn,t0 � sn,t ¼ a(hstiN(n) � sn,t)

and sn,t0 ¼ ahstiN(n) þ (1� a)sn,t:

9>>>=
>>>;

(3:9)

Therefore, diffusion on the mesh is equivalent to the averaging
of a node’s state towards its neighbours’ state.

Drift over gradient field. The drift over the gradient

field, which is at the core of the reaction–diffusion–drift

formulation, becomes

@ts(X) ¼ �Br � (srf) ¼ �Brs � rf � Bsr2f ,

sn,t0 � sn,t ¼ �b 1

P

XP

j¼1

(skj ,t � sn,t)(f kj ,t � fn,t),

� bsn,t 1

P

XP

j¼1

f kj ,t � fn,t

0
@

1
A

and sn,t0 ¼ sn,t � b
1

P

XP

j¼1

skj ,t(f kj ,t � fn,t):

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

(3:10)

Therefore, the gradient drift on the mesh is equivalent to the

field-weighted flow of neighbour states into the node.

Vector–reaction–diffusion–drift model on the mesh.

Applying the discretization techniques outlined above, the
VRDD model on a mesh is stated as

un,t0
i ¼ un,t

i � b
1

P

X
p

ukp ,t
i (~vkp ,t

i � ~vn,t
i )

þ ai
1

P

X
p

ukp,t
i þ (1� ai)u

n,t
i

and vn,t0
i ¼ R(un,t

i � vn,t
i )� kiv

n,t
i

þ gi
1

P

X
p

vkp,t
i þ (1� gi)v

n,t
i ,

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

(3:11)

where

~vn,t
i ¼

X
j

Wijv
n,t
j

and

R(x) ¼ x x � 0
0 x , 0

�

with the interpretation that ui is the morphogen source of

type i, and vi is the respective morphogen field, whereas ~vi

is the perceived field by morphogen source i, based on the

attraction–repulsion relationship among the morphogen

types defined by interaction matrix W.
4. Results
4.1. Fundamental forms
All forms that are topologically homeomorphic to a sphere

can be transformed from it by a series of stretchings that

are normal to the surface at the organizing pole points.

With no organizers, all points on the sphere are undifferen-

tiated and equivalent. We identified three fundamental

forms based on the symmetry groups on a sphere.

(1) Single organizer. All points on the sphere can be grouped in

terms of distance to the single organizing pole, resulting in

equivalent sets of concentric rings. This is a single-axis

bodyplan (anterior–posterior) with rotational symmetry.

(2) Double organizer. Two organizing poles (which are not

trivially on the same line as the centre) subdivide the

sphere into two mirror halves. Any point on the half

sphere can be uniquely identified in terms of its distance

to the two organizing poles. This is a dual-axis bodyplan

(anterior–posterior and dorsoventral) with mirror

symmetry.

(3) Triple organizer. The three organizing poles (which are not

trivially on the same line as the centre) fully break the sym-

metry of the sphere, and all points can be uniquely

identified in terms of distance to such three poles. This is

a triple-axis bodyplan. There are no known life forms on

earth with a triple-axis bodyplan.

We generated the three fundamental forms using the

VRDD system. The results are shown in figure 3. These

forms are generated using a single-state FSM and are the

building blocks for more complicated forms.
4.2. Making a hydra
Figure 4 illustrates the sequential form making with the FSM

model. For illustration purposes, a 1D tissue with cells arranged



time: 50 cell cyclestime: 50 cell cyclestime: 50 cell cycles 100 cell size100 cell size100 cell size

(a) (b) (c)

Figure 3. Fundamental forms. Initial conditions in all simulations are spheric blastula with ca 2000 cells. Gastrulation simulation time is 50 cell cycles. The resulting
embryonic form has ca 5000 cells. Organizing polar regions are self-organized as an emergent property of the specified VRDD. (a) Single body axis (anterior – posterior)
formed using a single state FSM and two-morphogen VRDD. (b) Dual body axis (anterior – posterior and dorsoventralis) formed using a single state FSM and four-
morphogen VRDD. (c) Triple body axis is formed using a single state FSM and four-morphogen VRDD. Interaction matrices and growth kernels are as follows, respectively:

Wa¼
0 �1
�1 0

� �
, Wb¼

0 �1 0 0
�1 0 0 0
�1 �1 0 �0:5
�1 �1 �0:5 0

0
BB@

1
CCA, Wc¼

0 �1 �1 �1
�1 0 �1 �1
�1 �1 0 �1
�1 �1 �1 0

0
BB@

1
CCA, ga¼ þ1 �1ð Þ, gb¼ þ1 0 �1 0ð Þ, gc¼ þ1 þ1 þ1 þ1ð Þ:

(Online version in colour.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20180454

9

on a line segment are depicted. Initially, all cells are at state

0. The chart illustrates the formation of an organism with

mirror symmetry, and another organism with no

symmetry axis in one dimension, in columns left and right,

respectively.

In the left column, single symmetry breaking VRDD is used

with one morphogen type ‘A’, resulting in a single pole with

mirror symmetry. Growth is driven by a diffused field of such

a pole (head formation). Secondary poles of morphogen type

‘B’ are positioned at a specified distance to primary pole ‘A’,

based on the weights of interaction matrix W. The fate function,

which uses the morphogen ‘B’ concentration level, creates two

symmetric bands of tissue switching to state 1. Lastly, the two

bands of state 1 have their subspatial growth driven by the dif-

fused field of morphogen ‘B’ poles, resulting in a final form of

arm–head–arm with mirror symmetry.

In the right column, double symmetry breaking VRDD is

used with two morphogen types ‘A’,‘B’, having their respective

source peaks as primary poles. Growth is driven by the diffused

field of pole ‘A’ (head formation); ‘B’ is silent in terms of growth

generation at this stage. The secondary pole of morphogen ‘B’ is

positioned at specified distances from two primary poles, ‘A’

and ‘B’. The fate function that uses morphogen ‘A’ and ‘B’ con-

centration levels creates a band of tissue switching to state 1,

asymmetric to the head (beak formation). The second fate func-

tion that uses the morphogen ‘B’ concentration level creates a

band of tissue switching to state 2 (tail formation). Lastly, the

cells in state 1 have their subspatial growth driven by the dif-

fused field of morphogen ‘B’ poles, whereas the band of cells

in state 2 execute a system with periodic peak formation, result-

ing in a final form of beak–head–tail with no mirror symmetry.

Hydra is an interesting model organism for morphogen-

etic studies because (i) its body plan is simple with a single

axis from the head (hypostome and tentacles) to the glandu-

lar foot; and (ii) it continuously renews its body cells from

migrating stem cells based on ever-available morphogenetic

gradients for positional information; the hydra is therefore
‘an immortal and perpetual embryo’ [50]. Hydra can repro-

duce sexually with a few eggs produced in weeks, or, if

well fed, it can reproduce by budding every 1.5–2 days,

giving cloned offspring. Hydra has been extensively studied

with transplantation experiments due its regeneration capa-

bility and continual axial morphogenetic gradients. In our

hydra model, we modelled the embryonic development

from a single egg; not the budding process for reproduction.

Using the sequential form-making technique, we generated

a toy organism in the shape of a hydra, albeit with two tentacles

for demonstration purposes. We implemented a seven-state

FSM that consists of five developmental states, plus the omni-

potent ground state and the final stasis state. The descriptions

of states, including VRDD parameters, growth kernel and,

most importantly, fate function with state transition connec-

tions, are provided in the electronic supplementary material.

The simulation results of the developmental stages of our

hydra are shown in figure 5.
4.3. Mutating a hydra
In vivo developmental mutants of a hydra have been produced

by selective breeding [51] that had mini strains, maxi strains,

multi-headed strains, nematocyst-deficient strains, regener-

ation-deficient strains and male sterile strains. These strains

were transmitted to progeny by budding and cloned for devel-

opmental studies. It is challenging to generate transgenic

mutant hydra; however, [52] and [53] reported a successful

method for generating stable transgenic hydra lines which

have since been used for signalling pathway studies. These

studies showed that morphogenesis in hydra involves paracrine

and juxtacrine signalling of Wnt and b-catenin [54], as well as

Notch–Delta activity [55] for creation of tissue boundaries.

In our continuous-mutation experiments, we varied some

of the structural parameters of our synthetic genome, which

resulted in fat hydra and long-tentacled hydra. These



secondary poles of morphogen B
are formed with relative distance
to primary pole of morphogen A

secondary poles of morphogen B is
formed with relative distance to
primary pole of morphogen A,B

differential growth of state 1
cells driven by diffused field

of morphogen B

differential growth of state 1 cells
driven by field of B; periodic peak

formation at state 2 cells

organism with mirror symmetry

0 0 0 0

0 0 0 0

1 1 1 2

organism without mirror symmetry

1D cell tissue, undifferentiated cells at FSM state 0

fate function based on
morphogen B levels switches

band of cells to state 1

fate function based on morphogen
A and B levels switches band to state 1

fate function based on morphogen
B levels switches band to state 2

single morphogen (A) pole
formation

differential growth driven by
diffused field of morphogen A

A AB

AB

B

A

B

differential growth driven by
morphogen A. B is silent.

two morphogen system (A,B) with
two peaks positioned relatively

Figure 4. Sequential form making with FSM. Left and right columns depict the
formation of organisms with and without mirror symmetry, respectively, on a 2D
space, starting from the initial condition of undifferentiated linearly placed tissue
cells. Left column results in arm – head – arm formation whereas the right
column generates asymmetric beak – head – tail. (Online version in colour.)
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mutants are topologically homologous to the wild-type as

shown in figure 6 (mutants A and C).

More interestingly our jump-mutation-type alterations

of the genotype resulted in double head formation. In

this experiment, cell-fate functions that differentiate cells to

tail-type were rewired to switch to head-type in the synthetic

genome, which resulted in stably generated mutants with two

heads at opposite ends of the primary body axis as shown in

figure 6 (mutant B). These in silico mutants are similar to two-

headed mutants that were bred by Sugiyama & Fujisawa [51]

and resemble homeotic mutants in Drosophila with legs emanat-

ing from the head [56]. Multi-headedness is also observed in the

transgenic mutants that were produced by Wittlieb et al. [52];

however, these are not based on generation of two heads in

axial opposites but rather generation of multi-heads throughout

the body. We show that genotype to phenotype mapping is not

necessarily continuous; a small alteration of FSM connectivity
resulted in a radical change in phenotype. Random walk on

genotype space with small variations can result in discontinuity

on phenotype space. This may be an explanation of observed

discontinuity in the fossil records.

4.4. Other organism forms
We experimented with generating various otherorganism forms.

To streamline the design of genotypes for such forms, we devel-

oped a drag-and-drop design tool (DNAMaker). The FSM state

table generated by DNAMaker was then injected into the embry-

ogenesis simulation environment (EmbryoDeveloper). Some

selected phenotypes at the end of embryonic development are

provided in the electronic supplementary material.
5. Methods
All simulations were done using the code written by us in Cþþ
using the standard library only. Visual Studio 2015 was used for

code development. Mesh Class, which has mesh graph data struc-

ture as well as VRDD and FSM-related methods, is provided under

mesh.h and mesh.cpp. Two main tools for genotype design and

phenotype generation were also coded in Cþþ (DNAMaker and

EmbryoDeveloper). For graphics output, we used the openFrame-

works library (free and open source Cþþ toolkit) to visualize the

organism in mesh form in real time. High-quality renderings for

final visual outputs were done in Blender (free and open source

3D creation suite). All simulations that used partial differential

equations of the VRDD system were implemented using the

outlined discretization methods.

Simulations were run on an Intel Core i7 CPU of a DELL XPS

laptop with 16 GB of RAM and a 64-bit Windows operating

system. Real-time graphic output and high-resolution rendering

were done using an Nvidia GeForce GTX 1050 GPU. Simulations

of embryonic development starting with ca 10 000 cells of blastula

stage, ending up with ca 100 000 cells of final form, took ca 5 min.
6. Discussion
In this paper, we introduced the VRDD system as a novel

concept which can generate bodyplans of fundamental

forms by self-organization. We then elaborated on an FSM

model of the genetic regulatory network that uses our

VRDD model. The result of VRDD combined with the FSM

model is spatial cell differentiation during embryogenesis

that can be used for hierarchical modelling of complicated

forms. We have demonstrated that our concepts are capable

of generating self-organized bodyplans from which we

developed life-like organism forms in silico.

Our current implementations generate forms of lower ani-

mals such as hydra or jellyfish. However, the VRDD model is

capable of generating dual-axis bodyplans (anterior–posterior

and dorsoventral) of vertebrates by self-organization. An

important next step in our work will be to investigate dynamics

that can robustly generate a given number of segments (such as

five fingers) and anatomical ratios (such as limb length pro-

portions). We are cognizant of the fact that the physical layer

of our simulation model, which is currently based on elastic

membrane, needs to be expanded to incorporate aggregation

dynamics for hard tissue formation.

There are several observations worthy of further study,

including the analytical treatment of VRDD attractor

dynamics (basins of attraction, bifurcation conditions and

convergence rates), field profile of a standalone morphogen



time: 0 cell cycles time: 40 cell cycles time: 80 cell cycles time: 120 cell cycles

100 cell size

Figure 5. Hydra embryogenesis stages. Seven-state FSM with four morphogens are used to generate the hydra. Initial condition is a blastula with ca 2000 cells. After a 40
cell-cycle simulation time the anterior – posterior axis is formed using two-morphogen VRDD (R,G), followed by the head and tail region cell-state switching. A secondary
pole formation at the ‘head’ subspatial domain is achieved by a separte two-morphogen (B,Y) VRDD running on cells with the ‘head polarize’ state. Tentacle growth results
from a narrow band of cells switching to the ‘tentacle growth’ state, triggered by the fate function of B,Y morphogen concentration that defined the tentacle poles. The
final form of the embryo is achieved in 120 cell cycles of simulation time with ca 8000 resultant cells on the topological surface. (Online version in colour.)

mutant A

mutant B

mutant C

100 cell size

Figure 6. Hydra mutants. Mutants A and C are generated by varying growth kernel values as a type of continuous mutation. Mutant B is generated as a jump
mutation where state transition of the FSM is rewired, leading to double head formation. (Online version in colour.)
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versus coupled systems and morphogen reuse in spatial

hierarchical subdomains.

We note that the Four Colour Theorem in mathematics

says that any partitioning of a topologically spheric surface

can be coloured with four colours without two neighbouring

patches having the same colour. We speculate that this would
lead to a lower bound in the number of morphogen types that

can be used in generating any arbitrary form using an FSM

model with the morphogen reuse in the spatial subdomains.

Referring back to figure 4, we have outlined the conceptual

framework for defining spatial subdomains in 1D tissue

with two morphogens using VRDD dynamics. When we
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expand the concept to 2D tissue, the topological dimensional-

ity of the problem is increased by twofold. Hence we believe

that four morphogens could be sufficient to specify any

spatial subdomain in two dimensions with the same

approach as we described in one dimension. Linking this to

the Four Colour Theorem is clearly not trivial as the proof

of the Four Colour Theorem itself had been a long-standing

challenge in mathematics which was completed in 1976 as

a computer-assisted proof [57]. A key challenge to our conjec-

ture would be that organisms are not two dimensional, but

three. We would claim that embryonic growth is fundamen-

tally a 2D phenomenon where tissue is layered as 2D shells.

We acknowledge that linking the Four Colour Theorem to

2D tissue growth using four fundamental morphogens is a

highly speculative proposition that will require significant

further theoretical work.

Our concepts provide possible mechanisms for spatially

distributed nonlinear dynamical systems for embryogenesis,
which have so far been restricted to Turing-like pattern for-

mation systems [1] or the ‘positional information’ theory of

development by Wolpert [49]. Whether life really uses con-

cepts similar to the ones we have developed remains to be

investigated. Notably, our concepts are capable of generating

life-like forms robustly and efficiently, which are desirable

features for natural selection. Our work is conceptual, yet it

can lead to practical applications in the emerging fields of

morphogenetic engineering, soft robotics and biomimetic

architectural design.
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