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Background: Shotgun metagenomics has been used clinically for diagnosing infectious diseases. However,
most technical assessments have been limited to individual sets of reference standards, experimental work-
flows, and laboratories.
Methods: A reference panel and performance metrics were designed and used to examine the performance of
shotgun metagenomics at 17 laboratories in a coordinated collaborative study. We comprehensively assessed
the reliability, key performance determinants, reproducibility, and quantitative potential.
Findings: Assay performance varied significantly across sites and microbial classes, with a read depth of
20 millions as a generally cost-efficient assay setting. Results of mapped reads by shotgun metagenomics
could indicate relative and intra-site (but not absolute or inter-site) microbial abundance.
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Interpretation: Assay performance was significantly impacted by the microbial type, the host context, and
read depth, which emphasizes the importance of these factors when designing reference reagents and
benchmarking studies. Across sites, workflows and platforms, false positive reporting and considerable site/
library effects were common challenges to the assay’s accuracy and quantifiability. Our study also suggested
that laboratory-developed shotgun metagenomics tests for pathogen detection should aim to detect
microbes at 500 CFU/mL (or copies/mL) in a clinically relevant host context (10^5 human cells/mL) within a
24h turn-around time, and with an efficient read depth of 20M.
Funding: This work was supported by National Science and Technology Major Project of China
(2018ZX10102001).
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priate experimental
metagenomics for
pathogen detection holds great promise as a valuable tool clini-
cally for broad-spectrum pathogen detection. Also, this collabo-
rative work provided a unique resource comprising nearly 600
billion reads (>5Tb) for technical evaluation in clinical and reg-
ulatory settings. We believe that our multicenter analyses could
be valuable to drive further advances in shotgun metagenom-
ics-related experimental techniques and the development of
bioinformatics tools.
1. Introduction

Infectious diseases are a leading cause of death worldwide, attrib-
utable to a great variety of pathogens that belong to different micro-
bial types. Rapid and precise identification of disease-causing
pathogens is the key to effective clinical management but remains
challenging in clinical settings [1,2]. Conventional diagnostics either
rely on cultures or require a presumptive diagnosis by the clinician
before testing. Recent advances in high-throughput sequencing and
bioinformatics technologies have enabled rapid growth in the appli-
cation of shotgun metagenomics to detect pathogens [3�7]. Impor-
tantly, the rapid identification of SARS-CoV-2, the causative of the
COVID-19 pandemic, was highly attributable to the use of shotgun
metagenomic assays [8�12].

Next-generation sequencing (NGS)-based assays have been
widely applied in the fields of non-invasive prenatal testing and com-
panion diagnostics for cancer treatment [13�15]. However, com-
pared to these assays (which analyze a limited number of genetic
sites within the human genome), shotgun metagenomics for patho-
gen detection faces unique challenges, since it involves a great variety
of genomes from all organisms present in clinical samples [16�19].
The cellular and genomic characteristics of these organisms require
that the assay can access all genetic contents (e.g. breaking all cellular
structures), and differentiate them (e.g. preventing false annotation
of closely related species). So far, most assessments of shotgun meta-
genomics have been limited to individual sets of reference reagents,
individual microbial types, or individual experimental protocols and
laboratories [20,21]. A multicenter evaluation study using a common
set of dedicated reference reagents and performance metrics is hence
highly desirable, since it is crucial for establishing performance
standards, guiding proper interpretation of results, aiding further
assay development and clinical adaptations, and providing valuable
information from a regulatory perspective for this newly emerging
technology. Similar to the MicroArray Quality Control (MAQC) and
Sequencing Quality Control (SEQC) projects, large-scale community
efforts have been coordinated for assessing the performance of
microarray and RNA-seq technologies across laboratories, platforms,
and pipelines [22�25].

In this study, we described a multicenter benchmarking study
coordinated by the National Institutes for Food and Drug Control
(NIFDC) of China, which included 17 independent laboratories in
cross-workflow and cross-platform settings. In total, over 580 billion
reads and over 5 Tb of sequencing data were generated and studied.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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To our knowledge, the current study represents the largest effort to
date to produce and analyze comprehensive reference datasets for
shotgun metagenomics for pathogen detection.

2. Methods

2.1. Preparation and validation of the reference panel

Bacterial and fungal organisms were validated by Matrix-assisted
Laser Desorption/ Ionization-Time Of Flight (MALDI-TOF, Bruker, Bill-
erica, MA), Vitek 2 (bioM�erieux, Craponne, France), and a BioFire Fil-
mArray Multiplex PCR System (bioM�erieux, Craponne, France), and
measured by standard plate counts as recommended by HMMD guid-
ance (highly multiplexed microbiological/ medical countermeasure in
vitro nucleic acid based diagnostic devices). Viral organisms were val-
idated by Sanger sequencing and quantitated by droplet digital PCR
(ddPCR). HeLa cells were ATCC, RRID: CVCL_0030) were validated by
STR profiling (Supplementary File S1), testing for mycoplasma was
not performed near the time of sample preparation. Measurement
was conducted by cell counting. These microbes were then spiked
into PBS solutions with 2 £ 10^5/ml of HeLa cells at indicated con-
centrations to mimic clinical specimens from respiratory or central
nervous system infections, such as CSF or BALF (Supplemental Table
S1) [26�29]. Pathogen reference reagents (PRHs and PRLs) were pre-
pared by contriving microbes at high (PRH) and low (PRL) titers with
HeLa cells, respectively. In the PRH group, these microorganisms
were spiked at 200-350,000 CFU/ml for bacterial and
400�10,000 CFU/ml for fungal pathogens, at
660�2,000,000 copies/ml for DNA viruses and at 140-
3,500,000 copies/ml for RNA viruses to represent common ranges of
clinical infection.

Reference samples were sent frozen to 17 independent laboratory
sites (Centers C1-C17) for metagenomic testing and bioinformatic
analysis. Nucleic acid extraction was requested to be performed right
after thawing to minimize cell lysis and other unexpected changes.
To support quantitative assessments, all original samples in the PR
panel were tested in triplicates and 10-fold diluted samples were
tested in 10 replicates, except for the pathogen-free controls. All
technicians were trained to follow the Standard Operating Processes
(SOP) and certified to perform the assay at each site.

2.2. Comparison of bioinformatics pipelines

We used Mason (Mason � A Read Simulator for Next Generation
Sequencing Data, v0.1.2) to generate simulated sequencing data for
108 microbial genomes, which including 62 bacterial, 42 viral, and 4
fungal microorganisms. A total of 100,000 single-end, 75bp reads
were generated for each microbe and subjected to taxonomic identi-
fication by Centrifuge [30], Kraken [31], and CLARK [32] pipelines
and a database prepared as instructed by the CLARK website and
implemented with RNA viruses, which included a total of 13,879 bac-
teria, 6,570 viruses, and 1,429 fungi. Assessment of pipeline perfor-
mance was performed at both the genus and species levels and by
type of microorganism. Sensitivity was inferred by the number of
reads mapped specifically to the correct taxa; and specificity was
inferred by the percentage of reads mapped specifically to the incor-
rect taxa. Statistical comparisons were done using Wilcoxon rank
tests. Comparisons among alignment algorithms of BWA [33], Bow-
tie2 [34], and SNAP [35] were performed using a similar strategy.

2.3. Correlation analysis of observed and theoretical abundances

Raw sequencing data from 17 sites were analyzed using the site-
independent CLARK-based pipeline to obtain the observed abun-
dance of each microorganism in each sample, except for RNA viruses.
The theoretical abundance of a microorganism in a sample was
proportional to the ratio of DNA of that microorganism and the size
of sequencing data, calculated as below:

Theory abundance for microbe i

¼ Copyi � Genomesizei
Copyhuman � Genomesizehuman þ

P
kCopyk � Genomesizek

� data size

Where Copyi and Genomesizei was the copy number and genome
size of microorganism i in this sample, respectively. Human cell num-
ber Copyhuman for each sample was constant to 2x105, and human
genome size Genomesizehuman was set at 3G: Subsequently, a linear
regression model was used to estimate the correlations between the
observed and theoretical abundances.
2.4. Analysis of simulated and observed coefficient of variants (CVs)

Fastq data from the 10 repeated replicates of each sample were
merged, randomly re-sampled according to the original data sizes
(total number of reads), and analyzed by the CLARK-based pipeline.
The CVs were calculated based on the read numbers mapped to each
microbe within each re-sampled replicate. This above process was
repeated 10 times to obtain a total of 10 simulated CVs for each
microbe. The average of these simulated CVs represented the CV
derived from variations in data size. A linear regression model was
used to evaluate the contribution of these CVs to the observed overall
CVs. In addition, we used a linear mixed model to further evaluate
whether the sequencing platform, library method, and class of micro-
organism affected the observed CV. The formula of the linear mixed
model was defined as:

Cv_observed » Cv_datasize + Library Prep + Microbial
Class + Platform + (1+Cv_observed|Center) where Center was a ran-
dom effect, and the read depth CV (Cv_datasize), library preparation
method (Library Prep), microbial class, and sequencing platform
(Platform) were fixed effects.
2.5. Analysis of read-depth requirement for pathogen detection

Fastq data from the 10 repeated replicates of each sample were
merged and resampled to the desired read depth of 0.5M, 1M, 5M,
10M, 20M, 30M, and 50M total reads for each sample. The re-sampled
data were analyzed by the CLARK-based pipeline in the coordinating
laboratory and identification of a microorganism was defined with
>4 species-specific mapped reads in a sample, a threshold at which
yielded the best overall assay performance across all sites. Species-
specific reads were those mapped exclusively to one microbial spe-
cies, to discriminate those aligned to multiple species and not taxo-
nomically classified in any specific species [27,36,37]. The recall
performance was assessed at each indicated read depth for each site
by sample or by types of microorganisms.
2.6. Statistical analysis

Besides statistical analyses, comparative analyses were conducted
using Wilcoxon Rank Sum tests to evaluate the impact of various fac-
tors on the performance scores, e.g. microbial concentration, experi-
mental factors, and bioinformatics tools. Correlations between
observed abundance and expected abundance were evaluated by lin-
ear regression analyses. A linear mixed model was used to evaluate
the effects of various experimental factors on the total variance. The
correlation between data quality Q30 and performance scores was
evaluated using Pearson’s correlation analysis. All data analyses were
done using R statistical software. P <0.05 was considered statistically
significant, unless otherwise indicated.
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2.7. Role of funding source

The funding sources did not have any role in study design, data
collection, data analyses, interpretation, or writing of this manu-
script.

3. Results

3.1. Study design and overview

To mimic the biological context of clinical specimens from respi-
ratory or central nervous system infections (BALF and CSF) and
enable comprehensive assessments, we designed and constructed a
panel of 9 pathogen reference (PR) reagents that covered 30 poten-
tially pathogenic microorganisms of 5 different types (Gram-/+ bacte-
ria, fungi, and DNA/RNA viruses) and included 2 £ 10^5/mL human
cells as the host background (Supplemental Table S1) [38,39]. These
30 species were comprised of 19 genera, with more than one species
intentionally chosen from the same genus of Neisseria and Strepto-
coccus to test the ability of the assays to discriminate closely related
microbes (Supplemental Table S1). The panel also included microor-
ganisms with a wide range of genome sizes (from 0.7 Kb to 19.05
Mb) and GC contents (from 33.2% to 70.4%, Fig. 1a, Supplemental
Table S3).

Among this reference panel of 9 PR samples, one served as control
(pathogen reference control or PRC) and had no contrived microbes.
The other 8 samples can be grouped into two sets (PRH1-PRH4 and
PRL1-PRL4) or four pairs (e.g. PRH1 and PRL1). Each pair of PR sam-
ples comprised the same contrived microorganisms at two different
titers. The one in the PRH group had microbes contrived at a 5-fold
higher titer compared to their PRL counterpart (Fig. 1b). For instance,
PR1H and PR1L both contained the same microorganisms (Escherichia
coli K1, Streptococcus pneumoniae, Cryptococcus neoformans, Echovirus
11, Herpes simplex virus 1, Human betaherpesvirus 5, Human herpesvi-
rus 6B), but each microorganism in PR1H was 5-fold greater in titer
than in PRL1. Every reference reagent in the PR panel was verified by
polymerase chain reaction (PCR)-based methods and distributed to
17 independent laboratory sites (centers C1-C17) for blinded metage-
nomic testing and bioinformatic analysese (Fig. 1c, Supplemental
Methods). These laboratories employed various experimental proce-
dures, bioinformatic pipelines, and sequencing platforms to set up
independent metagenomic assays, as detailed in Supplemental Table
S2. By breaking down the assay workflow into technical steps, our
study included a total of 4 sample preprocessing methods, 2 nucleic
acid extraction techniques, 3 library preparation approaches, 6
sequencing platforms, and 4 bioinformatic pipelines for alignment.

To support quantitative assessments, the PR panel was tested
undiluted and in 10 replicates at 1:10 dilution, except for the patho-
gen-free PRC sample. There was a total of 2,641 libraries sequenced
(Fig. 1c, Supplemental Table S2, Supplemental Table S4), generating
587 billion reads and 5.51 TB of data. The trial was performed single-
blinded. Results along with raw sequencing data were submitted for
further analyses. Given the unique, agnostic nature of this assay, we
assessed the results using performance metrics including the meas-
ures of Recall, Precision, and F-score to indicate the assay sensitivity,
specificity, and overall accuracy (Fig. 1c).

3.2. Multicenter assessment of shotgun metagenomics

F-scores varied considerably across the 17 laboratory sites, with a
range from 0.5-1.0 and an average of 0.81. Although only 2of the 17
sites achieved an overall F-score of 1.0, 59% (10 sites) achieved an F-
score of >0.83 (Fig. 2a, B). When analyzed by samples Nearly 40% of
sites achieved F-scores of over 0.9, nearly 70% were over 0.75, and
only 4% were lower than 0.5 (Supplemental Fig. S1a). Visualization of
the similarity in detected microbes demonstrated that results were
clearly grouped by the reference sample, despite variances across
sites (Fig. 2c).

Recall and Precision contributed differentially to the site-to-site
variation in F-score (Fig. 2a, Supplemental Fig. S1b). While Recall lev-
els remained relatively consistent (average=0.88, range: 0.75-1.0),
Precision varied significantly across sites (average=0.77, range: 0.45-
1.0). Similar observations were made at the sample level (Supple-
mental Fig. S1a). To further dissect the cross-site variation in diagnos-
tic performance, we analyzed the true positive (TP), false positive
(FP), and false negative (FN) results at each site. FP results were the
most variable across sites, ranging from 0 to 35 counts per site (Sup-
plemental Fig. S1c), while TP and FN results appeared to be relatively
consistent, ranging from 21-30 to 0-9 counts, respectively. These
results suggest that the overall assay performance across workflows
and sites was differentiated more by their ability to reduce FP results,
rather than their ability toto reduce FN results. Intriguingly, despite
measuring two different aspects of assay performance, we observed a
significant positive, instead of negative correlation between Recall
and Precision (P=0.013, Wilcoxon rank sum test, Supplemental Fig.
S1d).

Among different microbial types, RNA viruses appeared to be the
most challenging type to detect, with an average Recall of only 0.71
across all sites, significantly lower than that of other pathogens. Both
Gram-positive and Gram-negative bacteria had the highest Recall
among all microbial types (0.96 and 0.94), followed by DNA viruses
and fungi at 0.89 and 0.80, respectively (Fig. 2d). Similar Recall pat-
terns were observed between PRH and PRL panels (Supplemental Fig.
S2a). Most microorganisms at titers above 200 CFU/mL or copies/mL
could be detected by >50% of the sites, despite some RNA viruses
that were missed at even above 100,000 copies/mL (Fig. 2e). Among
all the microorganisms in our panel, fungi, and RNA viruses (includ-
ing Echovirus 11, Human respiratory syncytical virus B, Human parecho
virus, Candida albicans\, and Candida lusitaniae) were the most preva-
lent causes of FN results (Supplemental Fig. S2b). In line with these
findings, the ability to detect fungi and RNA viruses varied widely
across sites, whereas the ability to detect Gram-positive and Gram-
negative bacteria was relatively consistent (Fig. 2e). These results
show the importance of using a reference panel specifically designed
for shotgun metagenomics for pathogen detection to cover all micro-
bial types, as many reference reagents for microbiome studies only
include bacteria [40].

Fourteen sites had a technical turnaround time (TAT) between 20
and 24 h, ranging from 15.4 to 40.0 h (Fig. 2f, Supplemental Table S5).
The sequencing reaction took up the largest portion of the workflow,
followed by library construction, nucleic acid extraction, and data
analysis, with each constituting 66.6%, 14.3%, 5.9%, and 5.4% of the
accumulated TATs, respectively (Fig. 2g, Supplemental Table S5).

3.3. Assay sensitivity depends on microbe: host abundance ratio

In clinical specimens, pathogens almost always exist amid a vari-
able abundance of host cells. Conventional molecular diagnostics,
such as PCR-based assays, often work by detecting specific pathogens
with limited interference from human or other microorganisms.
Unlike these targeted assays, shotgun metagenomic assays involve
unbiased analyses of all nucleic acid molecules within a sample.
Thus, we posited that both the absolute pathogen abundance and the
relative microbe:host abundance ratio may affect assay performance
and should be built into the design of the reference reagents.

Since all samples in our reference panel included the same titer of
human cells (2£ 10^5/mL), PRL therefore represented a 5-fold higher
abundance than PRH in both absolute abundance and relative
microbe:host abundance. On the other hand, 1:10 dilution of any
sample represented a 10-fold decrease in absolute abundance, and
the relative microbe:host abundance remained unchanged compared
to its undiluted counterpart (Fig. 1b).



Fig. 1. Design and overview of the study. (a) Thirty microorganisms from 19 genera were chosen to represent the diversity of microbial types (left panel), genome sizes, and GC
contents (right panel). (b) Pathogen reference reagents (PRHs and PRLs) were prepared by contriving microbes at high (PRH) and low (PRL) titers with HeLa cells, respectively. PRH
and PRL samples were diluted 1:10 and tested in ten replicates except for the pathogen-free PRC sample. PRC details are in the Results section. (c) Overview of study design. Num-
bers (1-5) order the steps of analysis. F-score, Recall and Precision metrics were used to assess the performance of accuracy, sensitivity, and specificity. Key technical factors of the
workflow were explored for their impact on assay performance. See also Supplemental Tables S1�S3, and S5.
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When we compared the observed abundances (as indicated by the
number of mapped reads) between PRHs and their PRL counterparts,
undiluted and their diluted samples, we saw a 5-fold difference in
median observed abundance between PRH and PRL, and 10-fold sam-
ple dilution did not result in lower observed abundances (Fig. 3a).
Consistent observations were made when bacteria, viruses, and fungi
were analyzed separately (Fig. 3b). In agreement with these findings,
a lowered relative abundance in PRL resulted in a lower Recall perfor-
mance (Fig. 3c), while solely reducing the absolute abundance
through sample dilution did not significantly affect the performance



Fig. 2. Assessment of assay performance across sites. (a) Summary of assay performance as measured by recall, precision, and F-score by site (n = 136). (b) Summary of assay per-
formance by measure (n = 17). (c) Visualization of the similarity in microbial compositions across sites and reference reagents (n = 136). A nMDS plot of a Bray-Curtis dissimilarity
matrix was constructed from the species composition of each reference reagent at each site (n = 136). (d) Summary of assay performance by microbial type, (n = 136), *, P < 0.05, **,
P < 0.01 by Wilcoxon rank sum test. (e) Detection of each microorganism in the reference panel. Bacteria and fungi were measured in CFU/ml, and viruses were measured in copies/
ml. Columns indicate the number of detection sites, and black dots indicate titers of microorganisms (n = 136). Ranges of abundances of each microbial type are displayed at the top.
(f) Assay turn-around times by site (n = 17). (g) Assay turn-around times by step (n = 17). See also Supplemental Figs. S1, S2.
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Fig. 3. Microbial abundance and pathogen detection by metagenomics. (a,b) Observed abundance ratios between PRH and their PRL counterparts, and undiluted samples and
their diluted counterparts, analyzed together (a) or by microbial type (b). (c) Correlations between relative abundance and performance (n = 136). (d) Correlations between observed
and expected abundances in three microbial types, using the reads per million (RPM) of human papilloma virus within each sample as an internal control for normalization. (e,f)
RPM of microbial detection varied across sites grouped by workflow, Hd: Host-deplete, UNC: Ultrasound, None, Column; UBC: Ultrasound, Bead�beating, Column; EBC: Endonucle-
ase, Bead�beating, Column; TND: Transposase, None, Dynabeads; TBC: Transposase, Bead�beating, Column; UND: Ultrasound, None, Dynabeads; EBD: Endonuclease, Bead�beat-
ing, Dynabeads. (e) or key technical variables (f). (n = 136), *, P < 0.05, **, P < 0.01 by Wilcoxon rank sum test. See also Supplemental Figs. S3�S5. (g) Correlations between F-score
and major workflow-dependent technical variables, (n = 270). **, P< 0.01 by Wilcoxon rank sum test.

D. Liu et al. / EBioMedicine 74 (2021) 103649 7
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(Supplemental Fig. S3). These data show that the relative microbe:
host abundance ratio, but not absolute microbial abundance, is a key
determinant of assay sensitivity by shotgun metagenomics. There-
fore, the limit of detection of this assay should be assessed and
defined with the relative abundance ratio, rather than the absolute
microbial abundance, as used for most conventional assays such as
PCR-based diagnostics.

3.4. Intra- and cross-site comparison of microbial abundance

We set out to assess the assay’s potential in inferring the expected
abundance from the number of reads. We defined the expected path-
ogen abundance in a sample as (pathogen genome size x pathogen
titer) / (human genome size x human cell titer) x the total number of
clean reads, and the observed abundance as the actual number of
reads. We reasoned that for the assay to allow relative quantification
of pathogens, there should be a linear correlation between the
observed and expected abundances. Linear regression analysese
showed significant correlations between the expected and observed
abundances, either when all the pathogens were analyzed as a whole
or separately according to the types of microbes (P < 0.001, Wilcoxon
rank sum test, Fig. 3d). A similar correlation was observed when the
abundance of human papilloma virus contained in HeLa cells was
used as an internal control for normalization (Supplemental Fig. S4).
It was not unexpected that the observed abundance was generally
lower than the theoretical expectation (Supplemental Fig. S5), which
might reflect the loss of microbial nucleic acids during the experi-
mental processes such as cell wall breaking. The significant correla-
tion between the observed and expected abundances, along with the
recovery of the microbe:host ratio, suggested the assay’s ability to
measure intra-site relative abundance.

As microbial abundance was inferred by the fraction of mapped
reads, we wondered if the numbers of mapped reads could be rele-
vant across sites. Numbers of mapped reads per million (RPM) varied
significantly across sites, with differences of up to two orders of mag-
nitudes. Such a difference in RPMwas not just a result of applying dif-
ferent techniques, as substantial variation was still observed when
sites using similar technical workflows were grouped and compared
(Fig. 3e). By analyzing each key technical component in the experi-
mental procedures, our data revealed that host depletion and col-
umn-based extraction methods were associated with higher RPMs
than other technical variables, whereas library preparation by ultra-
sound, endonuclease, or transposase did not show significant effects
on RPM (Fig. 3f). Adaptation of a bead-beating step was associated
with a lower RPM, in agreement with its negative correlation with F-
score (Fig. 3g). Subgroup analyses further showed potential associa-
tions between host depletion and improved Recall among all micro-
bial types, also between bead-beating pretreament and lowered
Recall for RNA viruses (Supplemental Fig. S6)

These results suggest that pathogen abundance can be inferred by
RPM within each site, but without a way to normalize the “site
effect”, cross-site comparisons provided limited information when
conducting cross-center evaluation.

3.5. Library effect impacts assay variation

To understand the assay’s reproducibility, we took advantage of
our large replicated dataset to measure the coefficient of variations
(CV) of mapped reads at each site. The average CV was 0.65 and
ranged between 0.12 and 1.10; 75% of the sites had CVs below 0.5.
This variation remained at a comparable level among sites with simi-
lar technical workflows (Fig. 4a). A host depletion step appeared to
be associated with a lower CV of 0.28, which might be due to its
higher RPM. While no differences were observed in other processes
based on cell wall breaking and various nucleic acid extraction meth-
ods, endonuclease- and transpose-based library preparation
demonstrated the lowest and highest CVs of 0.4 and 1.0 (Fig. 4b),
respectively. This finding implies that such preparation was an
important step that introduced variances, possibly because trans-
pose-based protocols were more sensitive to changes in the DNA
input in a library preparation reaction [41]. We found significantly
higher CVs for fungal detection versus bacterial or viral detection
(0.80, 0.51, and 0.54, respectively) (P < 0.001, Wilcoxon rank sum
test, Fig. 4c).

To examine how much these fluctuations stemmed from read
depth-dependent sampling noise, we performed random re-sam-
pling from the pooled reads to represent such a variance and calcu-
lated the CVs of these simulated and experimental datasets. As
shown in Fig. 4d, the overall CVs were significantly greater than the
simulated CVs regardless of pathogen types. This difference in CV
was consistent when each laboratory site or microbial type was
assessed individually (Fig. 4c, e), suggesting that besides read depth-
dependent sampling, other experimental variables also contributed
considerably to the observed fluctuations in metagenomic results.

We then attempted to determine how much each of the read
depth-dependent variance and other experimental variables contrib-
uted to the total variance. We identified a significant linear correla-
tion with an adjusted R2 of 0.48 and a slope of 0.8 (P < 0.001,
Wilcoxon rank sum test, Fig. 4f), indicating that both read depth-
dependent and experimental variances contributed significantly to
overall fluctuation. Among the potential experimental variances, a
linear mixed model identified fungal pathogens and transposase-
based library construction as significant contributors (Supplemental
Table S6), which was consistent with our previous observations.

Our data suggest that these variations should be considered when
designing studies to evaluate such an assay, and also imply that pre-
cise and quantitative measurement of pathogen abundance by meta-
genomics will remain challenging until these variations are better
understood and controlled.

3.6. Read-depth dependency of assay recall

Next, we sought to understand how workflow-dependent techni-
cal variables may lead to varied site performance. Among the experi-
mental steps, sample pre-treatment had a greater impact on assay
performance compared to nucleic acid extraction, library prepara-
tion, or use of internal controls. Preprocessing the samples with host
cell depletion was significantly associated with improved F-scores
(P < 0.001, Wilcoxon rank sum test). Unexpectedly, a bead-beating
step designed for breaking cell walls did not always result in greater
performance but was associated with overall reduced F-scores
(P < 0.001, Wilcoxon rank sum test). Also, higher Recall scores in all
microbial types with host depletion, and lower Recall scores in RNA
viruses with bead-beating (Supplemental Fig. S6). Different technical
methods for nucleic acid purification and library preparation, differ-
ent sequencing platforms, and the use of spike-in internal controls
were not correlated with overall assay performance (Fig. 3g, Supple-
mental Fig. S7). Using the Q30 score as a quality indicator, F-score
and Precision (but not Recall) were positively correlated with higher
sequencing data quality (P < 0.05, Wilcoxon rank sum test, Fig. 5a).

We further explored the impact of read depth on assay perfor-
mance. Although initially, the diagnostic performance improved as
the read depth increased, further increase in dataset size beyond
10 million did not consistently result in higher scores (Fig. 5b). This
observation supports the interpretation that the contribution of read
depth to assay performance plateaus after a certain read depth.
Leveraging our data, which constitute the deepest sequencing of any
sample set yet reported, we next set out to determine the optimal
read depth by assessing how well the pathogens in our panel could
be detected as a function of read depth. To allow raw data analyses,
we chose a CLARK-based pipeline for subsequent site-independent
bioinformatics analyses by study coordinating lab because it



Fig. 4. Assessment of assay reproducibility of pathogen metagenomics. (a�c) Coefficients of variance (CV) of microbial mapped reads across sites sorted by workflows (a), or
grouped by technical variables (b), or microbial type (c). (d,e) Comparison between the overall CV (observed) and the sampling CV (simulated), with data from all sites analyzed
together (d) or individually (e). (f) Linear regression with sampling simulated CV as the independent variable. **, P < 0.01 by Wilcoxon rank sum test. See also Supplemental Table
S6.
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demonstrated good performance in both simulated and experimental
sequencing datasets [30�32] (Supplemental Fig. S8, and more details
in Methods). As shown in Fig. 5c, some pathogens could be detected
with only 0.5 million total reads. For instance, site C12 achieved a full
Recall of 1.0 at a read depth of 0.5 million in 6 of the 8 PR samples.
Nonetheless, when considering the data from all sites, a read depth
of 20 million reads enabled detection of most microorganisms in our
panel; above that point, benefits from deeper sequencing decreased
significantly (Fig. 5c).

We performed sub-analyses by different microbial types of bacte-
ria, fungi, and viruses. The performance of fungal detection plateaued
at 5 million reads, while the performance of bacterial and viral detec-
tion plateaued at 10 and 20 million reads, respectively (Fig. 5d). These
observations were also in line with the interpretation that the



Fig. 5. Associations between assay performance and major technical variables. (a) Correlations between performance metrics and sequencing quality as inferred by Q30 score.
(b) Correlations between site performance metrics and read depth. (c,d) Performance of pathogen detection as measured by Recall as a function of read depth. Data were grouped
and analyzed by each reference reagent (c) or microbial type (d). See also Fig. S6�S8.
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sensitivity of shotgun metagenomics decreases as the size of the
microbial genome decreases (virus<bacterium<fungus), as smaller
genomes result in fewer numbers of nucleic acid fragments that can
be sequenced.

These findings suggest read depth as a critical variable that
impacts assay Recall when both developing and assessing perfor-
mance of metagenomic tests. Our results also indicate that although
a metagenomic assay requires as few as 0.5 million reads per sample
for pathogen detection under optimal conditions, in general, a read
depth of 20 million was appropriate under most assay settings.

3.7. Assay precision is challenged by background microbes

To better understand the causes of FP results, which substantially
impacted assay performance, we further categorized the causes of FP
results into four groups: cross-contamination, background microor-
ganisms, species misclassification, and viral typing error (Fig. 6a).
Among these, background microbes and misclassification of species
were the leading causes of FP results (49% and 39%, respectively).
These two causes also varied the most among sites (Supplemental
Fig. S9).

We then sought to evaluate how much taxonomic misclassifica-
tion could be attributed to the alignment algorithms. To ensure com-
prehensive microbial coverage, we included 100,000 reads each
derived from a total of 108 species comprising 62 bacteria, 42 viruses,
and 4 fungi into our simulated dataset and compared the alignment
methods employed by the sites in this study (bwa, bowtie, and SNAP)
[33�35] by measuring the percentages of simulated reads that were
correctly or incorrectly classified. We found no significant differences
at both the genus or species levels, or by microbial type (Supplemen-
tal Fig. S10), implying that the alignment method was not a critical
performance-differentiating factor.

To gain more insights into FP results caused by background micro-
organisms, we compared the background patterns from all sites
(Fig. 6b). Nine prevalent microorganisms (Staphylococcus haemolyti-
cus, Yersinia enterocolitica, Paracoccus mutanolyticus, Cutibacterium
acnes, Malassezia restricta, Human endogenous retrovirus K, Moraxella
osloensis, BAV virus and Proteus virus Isfahan) were presented in >5
sites, while others were more site-specific (Fig. 6c). Level of back-
ground microbes as represented by their read counts were indepen-
dent of the reference reagents, but significantly affected by all wet-
lab procedures (including sample pretreatment. nucleic acid extrac-
tion and library preparation) (Supplemental Table S7). Patterns of
these background microbes clustered partially but clearly depended
on the methods of library construction (Fig. 6b). These findings imply
that microbial backgrounds can be derived from both common and
workflow-specific sources, and that addressing such issues to
improve assay precision would require site-dependent approaches.
Surprisingly, we found that higher levels of background microbes did
not associate with lower site performance, as measured by either
precision or F-scores (Supplemental Fig. S11), suggesting that to
improve assay performance, more efficient data filtering methods
would be necessary apart from lowering the background levels.

We explored whether genome coverage and regional sequencing
depth (besides read counts) could be informative in discriminating
TP from FN. We defined genome coverage as the fraction of genome



Fig. 6. Reducing false-positive results in pathogenmetagenomics. (a) Four main causes of false-positive results (n = 17). (b) Patterns of background microbes clustered dependent
on methods of library preparation and nucleic acid extraction. (c) Summary of the prevalence of background microbes (n = 17). (d) Improved assay specificity after applying filters to
remove false-positive results.
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covered by metagenomic sequencing, and the regional sequencing
depth as the total sequencing length divided by the covered genomic
fraction. TP results were associated with significantly lower regional
sequencing depth and higher genome coverage (Supplemental Fig.
S12), which was consistent with the fact that these microorganisms
exist in the samples as full and uniform genomes. Similar observa-
tions were also made for FN results that were missed originally but
discovered by our site-independent bioinformatics pipeline. All FP
detections showed significantly lower levels of genome coverage. A
significant increase in the level of regional depth was also found in
background microbes, implying that they presented as genomic frag-
ments instead of whole microbial cells or genomes in the samples.

Taking all these factors into consideration, we built a precision fil-
ter that identified potential FP results through machine learning and
applied it to the data derived from site C14, the site with the highest
level of FP results. Integrating RPM, RPM ratio (sample:control), and
genome coverage, our method reduced FP results from 34 to 11
counts (Fig. 6d). Importantly, applying such a filter did not compro-
mise Recall, suggesting a potential strategy for improving the preci-
sion of shotgun metagenomics for pathogen detection.

4. Discussion

In this 17-site study, nine reference samples that mimicked the
context of clinical specimens respiratory or central nervous system
infections were profiled with various workflows. The data presented
here provide one of the deepest assessments of shotgun metagenom-
ics to date.

Currently, shotgun metagenomics is mostly applied for acute and
severe infections that cannot be diagnosed by conventional
approaches, under clinical scenarios that are highly sensitive to test-
ing TAT [5,7,42�47]. Our study showed that read length of SE75 was
sufficient to achieve high or even full F-scores, and longer read length
such as PE150 did not always result in high performance (Supple-
mental Fig. S13). Considering sequencing as the major time-consum-
ing step in the assay (Fig. 2f, g), we recommend a read length of no
longer than 75 bp when developing metagenomic assays, which
could serve as an effective strategy to reduce TAT. Other factors that
affect real-world TAT (e.g. such as sample logistics, testing volume,
skillfulness of the technicians) should also be optimized. Lowering
the cost of assays may facilitate wider application of shotgun metage-
nomics [48]. Given the wide range of pathogen abundance in clinical
specimens, false positive results could also stem from index miss
assignment. Such an issue may vary depending on sequencing tech-
nologies and should be considered when establishing an assay [49].

Using our reference reagents which mimicked the clinical speci-
mens from respiratory or central nervous system infections
[27,39,50,51], a read depth of 20M generally sufficient and cost-effi-
cient for pathogen detection [52]. However, read depth used should
be carefully considered when developing the assay for other sample
types, or atypical specimens such as those with higher abundance of
host cells.

Abundance of human cells was a critical factor affecting pathogen
detection by metagenomics. Our data supported a mathematical
model in which a sample comprising 10^5/mL each of human cells
and bacterial cells would only yield 0.1% of total reads mapped to the
bacteria, assuming a human genome of 3Gb and a bacterial genome
of 3Mb [16,39]. Therefore, sensitivity of shotgun metagenomic assays
is affected by the host nucleic acids, and therefore varied across sam-
ples [16]. Host depletion is highly valuable in improving assay
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sensitivity via increasing the relative microbial abundance. A variety
of approaches have been reported for host cell depletion [53�56].
However, thorough validation is needed before applying these meth-
ods to ensure that pathogens are not unintentionally removed along
with the host cells. Indeed, in a previous study, differential lysis could
significantly reduce human cells but at the same time compromise
the detection of viral and certain bacterial pathogens [54]. Addition-
ally, HPV-18 (known to be contained in HeLa cells) was detected by
our metagenomic assays, illustrating that integration of microbial
sequences in the host genome can also be a source of false-positive
results and should be carefully analyzed.

By including various types of pathogens and human cells, our
reference panel represents the common context of clinical speci-
mens, such as cerebrospinal fluid and bronchoalveolar lavage
fluid, where infiltration of immune cells is often found with
occurring lying infection. Although sharing common characteris-
tics, our reference samples may not precisely represent plasma
specimens where human cell-free nucleic acids are believed to be
more prevalent [3]. For instance, it remains to be determined
whether assay variation would be influenced by the cell wall-
breaking step, and how each library preparation method fits in
the context of cell-free nucleic acids. We spiked in multiple
microorganisms in each reference sample to achieve more com-
prehensive assessments. Although this might differ from scenar-
ios of mono-microbial infections, we did not expect much
interference among microbes based on the fact that microbial
DNA normally accounted for only a very small portion (<1%) of
our reference samples as well as in clinical specimens.

There are limitations of our study. As a complexed assay, the
performance of a shotgun metagenomic assay depends on
affected by many technical variables. By benchmarking workflows
used across 17 laboratories, we aimed to evaluate their differen-
ces, to provide insight into which technical processes of the assay
might need improvements, and to pave the way towards
increased quality and developing common best practices for clini-
cal metagenomics. As the workflows assessed in our trial were
developed independently, further studies designed with single-
variable, parallel experiments of a fixed workflow and laboratory
would be needed to validate the impact of each individual techni-
cal process.

Another limitation of our study is that there was only a 5-fold
decrease in the microbial abundance from the PRH to the PRL sam-
ples. Although significantly lowered F-scores were observed in PRL,
adding lower-titered samples would be valuable in representing the
substantial variation in pathogen concentration. Unlike other tar-
geted assays, shotgun metagenomics is also unique in its potential
for unbiased detection of novel pathogenic microbes, as was shown
in the discovery of COVID-19 [8�12]. This unbiased detection also
heavily depends on bioinformatics analyses to discriminate between
novel and previously identified pathogens [8,57,58], as well as closely
related ones, for instance, between SARS-CoV-2 and SARS-CoV. Eval-
uating such an unusual aspect of assay performance would require
new designs of the reference reagents that represent potential novel
species.

Data in this study included sequencing results generated from dif-
ferent platforms and workflows using the same set of reference sam-
ples. This information is a unique resource that could be valuable for
the development and optimization of bioinformatics pipelines for
rapid pathogen detection. Current bioinformatics pipelines mostly
rely on the number of mapped reads for pathogen identification
[59�61]. With our dataset, more sophisticated identification algo-
rithms could be explored by integrating more variables, such as
genome coverage and phylogenetic relationships, to improve speci-
ficity. These data also provide a general overview of the current per-
formance of shotgun metagenomics, which could aid in establishing
regulatory or technical references.
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