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Abstract: The atherothrombotic substrates for acute coronary syndromes (ACS) consist of plaque
ruptures, erosions and calcified nodules, while the non-atherothrombotic etiologies, such as sponta-
neous coronary artery dissection, coronary artery spasm and coronary embolism are the rarer causes
of ACS. The purpose of this comprehensive review is to (1) summarize the histopathologic insights
into the atherothrombotic plaque subtypes in acute ACS from postmortem studies; (2) provide a brief
overview of atherogenesis, while mainly focusing on the events that lead to plaque destabilization
and disruption; (3) summarize mechanistic data from clinical studies that have used intravascular
imaging, including high-resolution optical coherence tomography, to assess culprit plaque morphol-
ogy and its underlying pathobiology, especially the newly described role of innate and adaptive
immunity in ACS secondary to plaque erosion; (4) discuss the utility of intravascular imaging for
effective treatment of patients presenting with ACS by percutaneous coronary intervention; and
(5) discuss the opportunities that these mechanistic and imaging insights may provide for more
individualized treatment of patients with ACS.

Keywords: acute coronary syndromes; optical coherence tomography; plaque rupture; plaque
erosion; calcified nodule; percutaneous coronary intervention

1. Introduction

Major insights into the pathobiology of coronary atherosclerosis have been gained from
postmortem histopathological studies [1–3]. Advances in intravascular imaging technology
(e.g., intravascular ultrasound (IVUS) and more recently optical coherence tomography
(OCT)) have allowed for in vivo high-resolution imaging and detailed analysis of the
atherosclerotic plaque morphology. These imaging modalities, combined with mechanistic
biomarker and clinical data, have led to a more in-depth understanding of the natural
history of atherosclerosis, including identification of the major triggers and substrates for
atherothrombotic events. In this review, we provide an overview on the pathobiology of
the three major substrates of acute coronary syndromes (ACS)—plaque rupture, plaque
erosion and calcified nodules—and discuss the potential therapeutic considerations that
may stem from these mechanistic insights, particularly as they pertain to personalized
treatment approaches.
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2. Development and Progression of the Atherosclerotic Plaques

During the early development of atherosclerotic plaques, increased concentrations
of apoprotein-β-containing lipoproteins, most commonly low-density lipoprotein, accu-
mulate in the arterial intima via binding with intimal proteoglycans [4]. The lipoproteins
oxidized within intima, or taken up from plasma in their oxidized form, are scavenged
by macrophages, resulting in foam cell formation and thereby formation of the fatty
streaks—the histopathologic hallmark of early atherosclerosis. Further infiltration of
medial smooth muscle cells (SMCs) and T-helper 1 cells amplifies this response [5]. Some
of these fatty streaks develop into progressive atherosclerotic lesions with continued
accumulation of lipid-rich material in the intima. Foam cells then undergo apoptosis
due to prolonged endoplasmic reticulum stress and are inadequately cleared, resulting
in cellular necrosis [6,7]. This process, over time, results in the formation of a necrotic
core [6]. A fibrous layer formed by intimal SMCs creates a fibrous cap, which separates
the necrotic lipid-rich core from the intimal endothelium. Advanced plaques also exhibit
neoangiogenesis, mainly originating from the adventitial vasa vasorum, which supply
both nutrition and inflammatory cells to further evolve the plaques [4]. These neo-vessels
are fragile due to compromised structural integrity and are highly susceptible to leakage
and intraplaque hemorrhage, thus further recruiting inflammatory infiltrates [4]. These
processes, in combination, lead to the development of enlarging intraplaque necrotic lipid
pools, which ultimately occupy a major part of the arterial wall, leading initially to expan-
sive or positive remodeling [8]. With further progression, however, the plaque begins to
extend into the lumen, leading to progressive stenosis (i.e., negative remodeling) [8].

There is an increasing body of evidence demonstrating the role of inflammation in
atherogenesis. The NOD-like receptor protein 3 (NLRP3) inflammasome is a cytosolic com-
plex, present in leukocytes, which is a key mediator in atherogenesis. Damage associated
molecular proteins, such as cholesterol crystals from apoptotic macrophages, prime the
inflammasome complex, leading to the assembly of the NLRP3 complex and activation
of the procaspase domain to caspase-1 [9,10]. Caspase-1 cleaves pro-interleukin-1 β (pro-
IL-1β) into the effector molecule IL-1β [11]. This atherogenic cytokine has been shown
to induce expression of endothelin-1 and other adhesion molecules to promote leukocyte
migration into the atheromatous plaque and perpetuate the inflammatory response [12]. It
has also been shown to enhance the lifespan of monocytes and neutrophils, as well as to
increase generation of the lytic enzymes [13–15]. As pro-IL-1β is expressed at low-levels
at baseline, initial induction is required prior to caspase-1 cleavage. Dying granulocytes
release histones from DNA and myeloperoxidase (MPO), which form a mesh-like network
with fibrin strands termed neutrophil extracellular traps (NETs) in a process known as
NETosis [16,17]. NETs are released by neutrophils that are exposed to cholesterol crystals,
which could subsequently colocalize to the nearby inflammatory macrophages to prime
IL-1β expression [18].

3. Plaque Destabilization and Disruption

Activated macrophages and T-helper 1 cells infiltrate the collagen cap, thereby pro-
ducing metalloproteinases (MMPs) and several inflammatory cytokines (e.g., interferon-γ
(IFN-γ) and tumor necrosis factor (TNF)), which can compromise cap stability [15,19].
MMP release is further amplified by apoptosis of the intimal SMCs and foam cells, con-
tributing to fibrous cap thinning and destabilization [20]. Plaque destabilization leads to
exposure of thrombogenic material to the bloodstream, which rapidly triggers platelet
aggregation and thrombosis, ultimately compromising arterial lumen size and flow and
resulting in ACS [21].

Virmani et al. classified destabilized plaques with thrombi into three distinct histopatho-
logic processes: plaque rupture, plaque erosion and calcific nodules [3]. Plaque rupture
refers to a disruption in the fibrous cap that results in continuity between the overlying
thrombus and the necrotic core. Lesions with ruptured fibrous cap (RFC) are the most
common cause of fatal myocardial infarctions and sudden death [22]. Plaque erosion, or
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ACS secondary to plaques with intact fibrous cap (IFC), is likely the result of stabilization
of plaque, leading to arterial thrombosis without fissuring of the fibrous cap [3]. The key
feature of plaque erosion for histopathologic diagnosis is the absence of endothelium, thus
exposing the thrombogenic extracellular matrix. The fibrous cap is typically more SMC-
and proteoglycan-rich with lower macrophage infiltration [23,24]. A less common cause
of coronary thrombosis (in approximately 5% of cases) is due to the protrusion of calcific
nodules through a disrupted fibrous cap into the lumen [3,21]. Inflammatory infiltrate is
typically absent in this form of plaque destabilization [3].

3.1. Plaque Rupture

The underling mechanisms that ultimately lead to rupture in the fibrous cap are
summarized in Figure 1. During the evolution of atherogenesis, and as macrophages and
T-helper 1 cells continue to infiltrate the fibrous cap, most prominently at the shoulder
region of the atheroma [23], “cross-talk” occurs between the innate and adaptive immune
systems that results in collagen degradation and weakening of the fibrous cap, leading
to rupture in some plaques [25]. T cell-derived CD40 ligands bind to CD40 receptors on
macrophages to upregulate the generation of MMPs (specifically collagenases MMP-1,
MMP-8 and MMP-13) [26,27]. This process is combined with T-helper 1-mediated release
of IFN-γ, which inhibits the function of SMCs to repair and maintain the fibrous cap [25,28]
and suppresses the SMC proliferation [20].
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Figure 1. Pathobiology of Plaque Rupture. 1. Infiltrating type 1 T-helper cells activate macrophages in lipid core via
CD40L-CD40 interaction. 2. Activated macrophages release matrix metalloproteinases (MMPs), which disrupt the fibrous
cap and induce endothelial apoptosis. 3. Infiltrating type 1 T-helper cells release interferon-γ (IFN-γ), which inhibits smooth
muscle cells and thereby weakens the fibrous cap. 4. Foam cells become apoptotic due to CD40 stimulation, releasing tissue
factor. 5. Tissue factor, which has potent thrombogenic potential, is released into the blood stream. 6. Endothelial apoptosis
is augmented by mechanical stress from increased shear forces, especially at the plaque edges, resulting in fibrous cap
rupture. 7. Thrombus is formed over the exposed thrombogenic lipidic core.
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Another consequence of CD40 receptor stimulation is tissue factor expression in the
apoptotic macrophages (Figure 1), resulting in the generation of tissue factor-enriched
microparticles within the lipid core [25]. Plaque rupture exposes the thrombogenic tissue
factor to the blood stream, thus activating the extrinsic coagulation pathway and platelet
aggregation to initiate thrombus formation. Mechanical stress on plaques is also a signifi-
cant determinant of plaque destabilization and is observed to be higher in the ruptured cap
regions [29]. Higher levels of mechanical stress are concentrated at the edge of the fibrous
cap, where the cap is usually the thinnest, compared with the other parts of the cap [30].
Mural shear stress is significantly higher in ACS secondary to RFC as compared to ACS
secondary to IFC [31].

3.2. Plaque Erosion

In contrast to plaque rupture, plaque erosion is histologically associated with thick
cap fibroatheromas and significantly lower degrees of necrosis, hemorrhage or calcifica-
tion [22,32]. Moreover, plaque erosions are rarely associated with positive remodeling [32]
or macrophage infiltration, whilst the underlying plaques have high SMC content in their
fibrous cap [23,24,32].

The mechanisms for plaque erosion are summarized in Figure 2. Recent evidence sug-
gests that apoptosis of endothelial cells and disruption of endothelial cell-to-extracellular
matrix contact are integral in the pathobiology of plaque erosion [33]. There are likely
several mechanisms underlying these processes; however, local shear stressors may play
a key role in initiating the process [33,34]. Plaque geometry, size and location alter the
laminar blood flow and effect the local shear forces [33]. Moreover, intracoronary OCT
has highlighted the proximity of the culprit lesions with IFC to coronary branch points,
where flow separation is known to cause low sheer stress [35,36]. Low endothelial shear
most frequently occurs downstream of plaques and can induce endothelial cell apopto-
sis [37–39]. Increased expression of toll-like receptor 2 (TLR2) has been shown under these
conditions [40], which is central in triggering endothelial stress and apoptosis via upreg-
ulating MMPs and disrupting endothelial cell junctions by downregulating the vascular
endothelial-cadherin complexes [39,41].

TLR2 expression is augmented by neutrophil recruitment, which colocalize to areas of
endothelial denudation [35,39]. These exposed regions of sub-endothelial matrix provide
a substrate for neutrophil adhesion, activation and degranulation [39]. In vitro studies
have shown that TLR2 stimulates neutrophils to further amplify endothelial death through
increased expression of MMP [35] and MPO [42]. NETosis is strongly correlated with
endothelial cell apoptosis, and it also induces endothelial tissue factor to promote thrombin
formation [43,44]. Moreover, NETosis drives platelet activation and aggregation to augment
the pro-thrombotic cascade leading to ACS (Figure 2) [45].

Hyaluronan is an abundant proteoglycan macromolecule within the extracellular
matrix in the plaques with IFC, in clear distinction with the ruptured plaques where it is
almost absent [22]. Given the stark contrast, there has been increasing interest in under-
standing the role of hyaluronan in the ACS due to IFC. Extracellular hyaluronan exists in its
high molecular weight form in homeostasis, but under a local inflammatory environment,
it fragments into low molecular weight extracellular molecules that further propagate
the inflammatory response [46]. These fragments are involved in neutrophil recruitment
and activation [47]. They also serve as endogenous TLR2 ligands to directly induce en-
dothelial cell apoptosis [39,48]. Fragmentation is mediated by peripheral blood monocytes,
which have enhanced affinity for high molecular weight hyaluronan via the CD44 receptor
in an inflammatory milieu [49] (Figure 2). High molecular weight hyaluronan binds to
the cell surface via CD44 and is then hydrolyzed primarily via hyaluroranidase-2 activ-
ity to form smaller sized hyaluronan chains before being internalized by monocytes [46].
Hyaluroranidase-2 expression from endothelial cells increases within the low shear environ-
ments [50]. Interestingly, expression of hyaluroranidase-2 is higher in OCT-detected ACS
secondary to IFC, compared with RFC in the peri-ACS setting, but not at 12-month follow-
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up [46]. Finally, hyaluronan is functionally prothrombotic, shown to increase platelet
adhesion and accelerate fibrin polymerization [51].
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Figure 2. Pathobiology of Plaque Erosion. 1. Impaired laminar flow secondary to bifurcation point. 2. Low shear forces
downstream of plaque disrupt cell junctions to induce endothelial apoptosis and mobilize hyaluronan from the fibrous
cap. 3. Exposed hyaluronan binds to the circulating monocytes via CD44 and is then hydrolyzed by hyalurorannidase-2
into hyaluronan fragments. 4. Hyaluronan fragments bind to the toll like receptor 2 (TLR2) on endothelial cells. 5.
TLR2-stimulated endothelial cells are induced into apoptosis. 6. Endothelial denudation attracts neutrophils, which
release neutrophil extracellular traps (NETs) containing metalloproteinase (MMP) and myeloperoxidase (MPO), to augment
endothelial apoptosis. Tissue factor is also released in NETs. 7. Infiltrating CD8+ T cells release granzyme A, granulysin and
perforin to further disrupt the endothelial layer. 8. Endothelial disruption exposes the underlying fibrous cap, which results
in activation of the external coagulation cascade in conjunction with the thrombogenic tissue factor to form thrombus.

More recent findings from the OPTICO-ACS study (Optical Coherence Tomography
in Acute Coronary Syndrome) [35], which evaluated culprit lesions of 170 consecutive ACS
patients with OCT and simultaneous flow cytometric immunophenotyping, suggest that
the adaptive immune system has an integral role in the pathogenesis of IFC-ACS [35]. Local
enrichment of CD8+ T cells with higher gradients of cytotoxic effector soluble mediators
(granzyme A, granulysin and perforin) has been detected downstream of the culprit lesions
with IFC compared to the lesions with RFC [34,35]. Co-culture in vitro studies showed these
mediators to display pro-apoptotic effects on endothelial cells. Moreover, the percentage of
the adherent CD8+ T cells were significantly increased under in vitro conditions, mimicking
the altered flow near bifurcations compared to laminar flow, which was not reflected when
monocyte adhesion was investigated. Incubation with anti-integrin β2 or anti-integrin α4
reversed this effect, suggesting that CD8+ T cells display enhanced integrin-dependent
endothelial cell adhesion under conditions of disturbed flow [35]. CD44 expression is
elevated amongst recruited CD8+ T cells in these conditions [52]. Thus, CD8+ T cells likely
work synergistically with peripheral blood monocytes to increase the low molecular weight
hyaluronan expression and subsequent TLR2-mediated signaling (Figure 2).

Thus, the available evidence suggests ACS secondary to IFC to be driven by a two-hit
mechanism—initial endothelial injury due to low shear forces amplified by TLR2-mediated
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activity and subsequent neutrophil and CD8+ T cell recruitment to enhance endothelial
damage [39]. Exposure of the hyaluronan-rich fibrous cap results in rapidly progressing
overlying thrombosis and subsequent ACS.

3.3. Calcified Nodules

Calcified nodules are the least common atherosclerotic causes of acute coronary throm-
bosis and are usually found in severely calcified coronary arteries [53]. The mechanisms for
formation of the calcified nodules are not known. One working hypothesis is that mechanical
stress could fragment sheets of calcium, resulting in small nodules that are surrounded
by fibrin that may eventually erupt through the plaque surface [54] (Figure 3). Eruptive
calcified nodules typically occur in eccentric lesions where protrusion causes disruption
of the overlying endothelium, which is likely to trigger platelet adherence [54]. Eruptive
calcified nodules are not to be confused with “nodular calcification” because the latter is not
associated with luminal thrombi [3], although it can cause medial wall disruption with rare
extension into the adventitia [54]. Calcified nodules are commonly noted in older individuals,
most frequently in the mid-right coronary artery (RCA) or left anterior descending (LAD)
artery where torsion stress is maximal [3] (Figure 3).
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Figure 3. A Working Hypothesis for Formation of Eruptive Calcified Nodules. Superficial calcified
sheets (asterisk) (A) located in the arterial segments with hinge movement, e.g., in the mid segment
of the right coronary artery (large blue arrows on the angiographic pictures and inset), are subject to
cyclic mechanical forces during systole and diastole, which could weaken and fragment the sheets
of calcium, thus resulting in protruding nodular calcium (asterisk) (B) that is surrounded by fibrin.
These nodules eventually erupt through the plaque surface ((C), asterisks), causing disruption in
the intima, with superimposition of thrombus ((C), arrows). Parts of the figure are adapted from
Lee et al. [55] with permission.
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4. Clinical and Angiographic Features of ACS According to the Culprit Lesion Subtypes

Early autopsy studies showed ruptured plaque to be the etiology of sudden death
in approximately 60–75% of cases where thrombus was present, with plaque erosion and
calcified nodules being responsible for almost all the remaining cases [3,24,56]. These
studies also recorded higher prevalence of plaque erosion amongst females. A postmortem
series on sudden cardiac death revealed the plaque erosions to be almost 3-fold higher
compared with ruptured plaque in females (50% vs. 18%, p = 0.03) [24].

ST-segment elevation ACS is more prevalent amongst patients with ACS due to lesions
with RFC, whilst non-ST-segment elevation ACS are more common in plaques with IFC or
calcific plaques [38,57]. More comorbidities, including higher prevalence of hypertension
(78.3% vs. 59.3%, p < 0.001), diabetes mellitus (40.8% vs. 27.3%, p = 0.04) and chronic kidney
disease (32.5% vs. 10.9%, p < 0.001) are observed in patients with ACS due to plaques with
RFC vs. lesions with IFC [38,58,59]. Patients with ACS due to calcific nodules/plaques
were the most elderly of the three subgroups and generally present as non-ST-segment
elevation ACS [38,59].

On angiographic analysis, patients with RFC-ACS have more complex lesions com-
pared with those with IFC-ACS. Patients with RFC-ACS have higher rates of multivessel
disease (39.1% vs. 32.5%, p < 0.001) and complex type B2/C lesions (79.6% vs. 60%,
p < 0.001) [38], with lower survival compared with patients with IFC-ACS at 12 months [60].
The degree of luminal diameter stenosis is significantly greater in the RFC-ACS (83% vs.
77%, p < 0.001), and thrombolysis in myocardial infarction (TIMI) flow grading reflects
higher rates of absent or faint perfusion distal to the lesions in the RFC-ACS compared
with IFC-ACS (TIMI ≤ 1: 39.9% vs. 25.0%, p < 0.001) [38].

Culprit lesions are predominantly detected in the proximal and middle LAD artery
for both RFC-ACS and IFC-ACS across multiple studies [35,38,57,58]. In patients with RFC-
ACS, a higher prevalence of culprit lesions in the RCA is found compared with IFC-ACS
(40.5% vs. 28.5%, p = 0.002). Lesions with IFC are more prevalent at coronary bifurcations
and branch points [58]. A recent study using dual quantitative coronary angiography
suggested that lesions with RFC have a larger thrombus volume compared with lesions
with IFC (3.48 mm3 vs. 1.69 mm3, p = 0.13) [61]. The prevalence of concentric lesions
(symmetrical lesions with only slight irregular borders) is higher in the plaques with IFC,
whilst lesions with RFC have a greater proportion of type 2 eccentric lesions (asymmetrical
stenosis with irregular borders or scalloped profile) [61,62].

Calcified plaques in ACS present most commonly in the LAD artery and are more
likely to involve multiple vessels with greater lesion length compared with both RFC-ACS
(multivessel disease: 52% vs. 39%, p = 0.004; lesion length: 17.8 mm vs. 16.1 mm, p = 0.02)
and IFC-ACS (multivessel disease: 52% vs. 32.5%, p < 0.001; lesion length: 17.8 mm vs.
15.1 mm, p < 0.001) [38].

5. Culprit Plaque Evaluation Using Intravascular Imaging

While coronary angiography remains the main imaging modality for assessment of
anatomy, it has significant limitations in quantifying functional significance or discerning
the etiology of ACS. There is a high interobserver variability in visual estimation of the
degree of stenosis [63]. Moreover, on angiography, detection of the non-stenotic atheroscle-
rotic plaques (i.e., plaques that exhibit a high degree of compensatory positive remodeling
to maintain the luminal area) is limited [64].

Detailed in vivo characterization of coronary plaque morphology in ACS is feasible
by using intravascular imaging modalities, such as IVUS [65] and OCT [57]. Imaging
modalities such as near-infrared spectroscopy can identify lipid-rich plaques without
defining the morphological structure [66]. During OCT acquisition, near-infrared light
spectrum is directed at the vessel wall while the blood is flushed from the coronary artery
lumen. OCT generates high-resolution, cross-sectional and three-dimensional images of
the vessel. The shorter wavelength of the infrared light used in OCT (1.3 µm) compared
with ultrasound waves in IVUS (∼40 µm in soft tissue at 40 MHz) allows for greater axial
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resolution (10–20 µm vs. 50–150 µm). The axial resolution is improved on high-definition
IVUS at 60 MHz (~22 µm) at the expense of reduced depth penetration compared with
IVUS at 20 MHz. Overall, OCT light has lower penetration depth than IVUS (1–2 mm vs.
5–6 mm), which limits OCT imaging particularly in the presence of highly attenuating
structures, such as red thrombus or lipid and necrotic core [47].

OCT, due to its high axial resolution, is the imaging modality of choice in ACS. On
OCT, the inner most tunica intima is visualized as a signal-rich layer, the tunica media as
signal-poor, and the outer most adventitia as a signal-rich area [67]. This detailed visual-
ization provides immediate, almost histology grade, definition of the plaque morphology
in vivo and aids in elucidating, in real-time, the mechanisms of plaque disruption [67].
OCT has exhibited good inter- and intra-observer reliability in histopathologically con-
trolled studies (κ = 0.83–0.84), with good sensitivity and specificity across multiple plaque
morphologies (fibrous, fibrocalcific and lipid-rich plaques) [68,69]. Nevertheless, since
image acquisition with OCT in thrombotic culprit lesions usually requires pre-dilatation
and/or thrombectomy to restore antegrade flow and improve the quality of OCT images,
morphology of the underlying plaque may be distorted. The prevalence of substrates of
ACS based on all OCT studies thus far are summarized in Table 1 [33,35,38,57–59,70–86].
The total number of lesions with RFC was 3794 (56.9%), the total lesions with IFC was 2222
(33.3%) and the total of calcified nodules was 303 (4.5%), all of which are similar in their
overall prevalence to the postmortem histopathologic series.

Table 1. Substrates of Acute Coronary Syndromes on Optical Coherence Tomography.

Study Cohort Lesions RFC-ACS IFC-ACS Calcified Nodule Other Causes

Leistner et al. [33] ACS 170 98 32 3 37

Guagliumi et al. [70] STEMI 128 63 32 - 33

Dai et al. [58] STEMI 822 564 209 5 44

Yamamoto et al. [85] ACS 1241 607 477 157 -

Jia et al. [57] ACS 126 55 39 10 22

Chandran et al. [71] STEMI 40 23 15 - 2

Niccoli et al. [72] ACS 139 82 57 - -

Yonetsu et al. [83] ACS 318 141 131 - 46

Kajander et al. [73] STEMI 70 34 31 5 -

Kwon et al. [33] ACS 133 90 43 - -

Higuma et al. [74] STEMI 112 72 30 9 1

Kubo et al. [75] STEMI 30 22 7 - 1

Khalifa et al. [76] ACS 288 172 82 34 -

Nishiguchi et al. [86] ACS 326 160 153 - 13

Wang et al. [87] STEMI 80 37 25 2 16

Fang et al. [79] STEMI 1442 972 348 23 99

Shibuya et al. [80] ACS 483 237 218 28 -

Kobayashi et al. [81] ACS 362 163 149 21 29

Sun et al. [82] STEMI 211 123 82 6 0

Hu et al. [59] ACS 141 79 62 - -

Total, n (%) 6662 (100%) 3794
(56.9%)

2222
(33.3%)

303
(4.5%)

343
(5.0%)

ACS: acute coronary syndromes; IFC-ACS: intact fibrous cap–acute coronary syndrome; RFC-ACS: ruptured fibrous cap–acute coronary
syndrome; STEMI: ST-segment elevation myocardial infarction.



Cells 2021, 10, 865 9 of 18

5.1. Plaques with RFC on Intravascular Imaging

OCT-defined RFC is characterized by the presence of a thrombus rich in red blood
cells (the “red thrombus”) in association with a disrupted fibrous cap that overlies a lipid-
rich core with or without cavity formation (Figure 4) [88]. The thrombus appears as a
protruding mass within the lumen, causing backscattering of the infrared spectrum emitted
by OCT, thus casting a shadow behind the red thrombus. In contrast to a red thrombus, a
“white thrombus” is defined as a predominantly platelet-rich thrombus, which generally
causes low signal attenuation and is most frequently detected in culprit lesions with IFC
(Figure 4).
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Figure 4. Plaques with Disrupted or Intact Fibrous Cap on Optical Coherence Tomography. (A). Mixed white and red
thrombus (asterisk) in the left anterior descending (LAD) artery of a patient presenting with ST-segment elevation myocardial
infarction. (B). After aspiration thrombectomy, a disrupted fibrous cap (arrow) with an empty crater (asterisk), typical
for the ruptured plaques, is visualized. (C). “Definite” plaque erosion in the LAD artery of a patient presenting with
non-ST-segment elevation myocardial infarction. Irregular plaque surface and predominantly white thrombi (arrows) are
noted. (D). “Probable” plaque erosion is detected in a patient presenting non-ST-segment elevation myocardial infarction by
the presence of irregular plaque surface (arrows) without overlying thrombus in the LAD artery.

On OCT, most RFCs are located at the proximal or mid segments of the culprit lesion
(80.7% vs. 19.3% in the distal segment) [87]. Compared with RFCs at the proximal or mid
segments of culprit lesions, RFCs at the distal segment are associated with higher thrombus
volume (4.50 vs. 2.02 mm3, p = 0.027) and incidence of no re-flow (31.7% vs. 12.8%,
p = 0.003) [87]. On OCT, frequency of plaques with RFC is not different between diabetics
and non-diabetics (74.5% vs. 62.5%, p = 0.59) [89], a finding that is in contrast with previous
OCT [58] and IVUS-near-infrared spectroscopy-based [90] studies that showed higher
frequency of plaque rupture in diabetic patients. With OCT assessment, a clear circadian
pattern is recognized in the incidence of plaque rupture, with a peak at 09:00, whereas such
pattern is not evident in plaque erosion or calcified nodules [91]. The probability of plaque
rupture varies during specific weekdays times, while these patterns do not exist over
weekend days. These observations support a role for catecholamine surge in triggering
ACS secondary to RFC.

On IVUS, RFC is commonly associated with a vessel wall cavity, formed through
downstream embolization of the necrotic core. RFC is detected as an IVUS signal void and
with confirmation of the communication between the cavity and the coronary artery by
injection of saline or contrast to enhance the visualized contours [92]. Compared with high-
resolution imaging with OCT, detection of a thrombus on IVUS is challenging. Assessment
of a thrombus by IVUS can be improved by stationary imaging at the site of the suspected
thrombus and injection of contrast to better delineate the luminal contour [93]. Moreover,
high-definition IVUS provides superior resolution and may improve identification of
ruptured plaques, but studies comparing the diagnostic performance of high-definition
IVUS with OCT are warranted.

5.2. Plaques with IFC on Intravascular Imaging

OCT-defined plaques with IFC are visualized as thrombi overlying an irregular lumi-
nal surface, with no evidence of cap rupture on multiple frames (Figure 4) [94]. When the
underlying plaque is difficult to assess due to signal attenuation by the thrombus, “proba-
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ble” IFC is diagnosed if superficial lipid or calcification are absent immediately proximal
or distal to the thrombus [93,95]. Probable IFC can also be diagnosed in the setting of an
irregular surface in the absence of thrombus (Figure 4). This definition contrasts with early
autopsy studies, which mandated the overlying thrombus to be present [57]. The resolution
of OCT is not adequate to allow for identification of endothelial cells on plaque surface [96];
therefore, compared with plaque rupture, diagnosis of plaque erosion with OCT remains
challenging and needs further validation and refinement. Detection of plaque erosion on
IVUS, defined as a lack of “dissection or cleft” at the culprit plaque surface [97], is more
challenging than on OCT.

The findings of the recent OPTICO-ACS study (Optical Coherence Tomography in
Acute Coronary Syndrome) [35] closely correlated with the histopathologic features, show-
ing that lesions with RFC were more often lipid rich (100% vs. 91%, p = 0.01), had greater
calcification (mean calcium arc 48 ± 39° vs. 32 ± 33°, p = 0.01) and were associated with
larger thrombi (thrombus score 126 ± 87 vs. 85 ± 74, p = 0.02) compared with the lesions
with IFC. Thin cap fibroatheromas were present in almost all lesions with RFC compared
to nearly half the lesions with IFC (98% vs. 50%, p < 0.01). Lesions with RFC had a lower
mean fibrous cap thickness (55.1 ± 7 µm vs. 80.1 ± 55 µm, p < 0.001). Mixed thrombus
predominated in lesions with RFC (71%), whereas white thrombus was most common in
lesions with IFC (69%). Interestingly, there was no red thrombus identified in lesions with
IFC; however, this finding may have been confounded by exclusion of n = 28 patients be-
cause of suboptimal image quality due to marked OCT signal attenuation, likely secondary
to red thrombus.

The EROSION study (Effective Anti-Thrombotic Therapy Without Stenting: Intravas-
cular Optical Coherence Tomography-Based Management in Plaque Erosion) [59] evaluated
60 patients presenting with IFC-ACS with OCT at baseline and 1 month after enrollment.
Findings in this study also showed white thrombus as the predominant thrombus type
(73.3%); however, there was also red thrombus detected in one-fourth of the patients
(26.7%). The reason for this large discrepancy is unclear; however, one contributing factor
was that the EROSION study was binary in its classification of thrombus and did not
report on a mixed phenotype. Macrophage infiltration (signal-rich punctuate regions with
heterogenous backward shadowing on OCT [38]) was more frequently detected in RFCs
compared with IFCs (79.9% vs. 51.2%, p < 0.001 [58] and 80.1% vs. 55.1%, p < 0.001 [38]). In
patients with ST-segment elevation ACS included in the EROSION study, culprit lesions
with RFC had a smaller luminal area compared with the lesions with IFC (1.6 vs. 1.8 mm2,
p = 0.001). Inclusion of patients with non-ST-segment elevation ACS may explain why this
finding was not replicated in the OPTICO-ACS study.

5.3. Eruptive Calcified Nodules on Intravascular Imaging

At culprit lesion sites, three morphological subtypes of calcium are detected on OCT:
eruptive calcified nodules, superficial calcific sheets and calcified protrusions (Figure 3) [38].
Eruptive calcified nodules present as an expulsion of a cluster of small calcified nodules into
the lumen by rupturing the fibrous cap (Figure 3), similar to calcified nodules on histopathol-
ogy [3]. Like lipid-rich lesions with RFC, eruptive calcified nodules are predominantly
associated with overlying red thrombus (83.3%) [38]. Imaging of eruptive calcific nodule
is possible with IVUS and OCT, with OCT providing superior detection of thrombus, de-
lineation of superficial and deep boundaries of calcium and plaque disruption. However,
there are limitations to OCT imaging, for instance the presence of protruding calcium can
pose challenges in tissue differentiation, particularly by attenuation of deeper structures,
resulting in misrepresentation as red thrombus and potential misdiagnosis of an acute event.
Similarly, distinguishing lipid core from calcium if the boundaries are ill-defined or detecting
calcium when there is overlying thrombus can be better achieved with IVUS and virtual
histology-IVUS [93].

Superficial calcific sheets appear as sheet-like calcific plates without a protruding
mass into the lumen and can be associated with RFC or IFC and most commonly are
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associated with white thrombus (66.3%). Calcified protrusions, referred to as protruding
nodular calcifications in histopathology, have a smooth leading edge (Figure 3) and can be
associated with IFCs or RFCs. The latter two subtypes of calcific plaques are novel findings,
detected with OCT, with no histopathologic studies confirming these subtypes as distinct
etiologies of ACS [98]. These calcified plaque subtypes are likely “bystanders” rather than
the actual causes of the ACS, but more studies are needed to further elucidate their roles in
ACS. Calcific plaques have the least lipidic components and macrophage accumulation
compared with the other culprit lesions (RFC-ACS and IFC-ACS). Calcified plaques also
have the largest minimal luminal area (1.78 mm2 vs. 1.38 mm2 vs. 1.43 mm2) compared
with RFC-ACS (p < 0.001) and IFC-ACS (p < 0.001), respectively.

6. OCT-Guided Treatment of ACS

The ability of OCT to determine the site of plaque rupture or erosion, thrombus bur-
den and the longitudinal extent of underlying plaque, as well as to accurately measure
reference lumen and vessel diameters, suggest the utility of OCT in guiding percutaneous
coronary intervention (PCI) in ACS. By OCT assessment in TROFI (Randomized study
to Assess the Effect of Thrombus Aspiration on Flow Area in Patients With STEMI) in
141 patients with ST-segment elevation ACS, manual thrombectomy did not increase the
effective flow area or minimal stent area. [99]. Although routine aspiration thrombectomy
is not recommended, a retrospective OCT-based study reported a correlation between
post-thrombectomy residual thrombus and the extent of microvascular dysfunction and
myocardial damage, suggesting potential use of thrombectomy in lesions with high throm-
bus burden to reduce distal embolization and preserve microcirculatory function [74]
This approach requires prospective validation before adoption in clinical practice. In a
retrospective analysis of 588 lesions in 507 patients in CLI-OPCI ACS (Centro per la Lotta
Contro L’Infarto-Optimization of Percutaneous Coronary Intervention Database Undergo-
ing PCI for ACS), predictors of stent-related events on OCT were similar to the elective
setting: underexpansion (minimal stent area <4.5 mm2 (hazard ratio [HR] = 2.72, p < 0.01)),
stent inflow/outflow disease (reference lumen area <4.5 mm2 at the distal (HR = 6.07,
p < 0.01) or proximal (HR = 8.5, p < 0.001) stent edges) and dissection at the distal stent
edge >200 µm (HR = 3.84, p < 0.001) [100]. Additionally, intrastent plaque or thrombus
protrusion (HR = 2.35, p < 0.01) was an independent predictor of adverse outcomes [100].

In a 2:1 propensity-matched prospective cohort study, pre- and post-stenting OCT
guidance in 214 patients with ST-segment elevation ACS resulted in larger final minimum
lumen diameter compared with angiographic guidance in 428 patients (2.99 ± 0.48 mm vs.
2.79 ± 0.47 mm, p < 0.0001), potentially because of further post-dilatation in suboptimally
deployed stents in the OCT arm [101]. In the randomized DOCTORS study (Does Optical
Coherence Tomography Optimize Results of Stenting), higher post-PCI fractional flow
reserve values were achieved with OCT guidance vs. angiography guidance in 240 pa-
tients with non-ST-segment elevation ACS (0.94 ± 0.04 vs. 0.92 ± 0.05, p < 0.005) [102].
In a retrospective analysis of 11,731 patients in the Korea AMI Registry database with
acute myocardial infarction who underwent PCI, intravascular modalities were utilized
in 2659 (22.7%) patients, including 2333 (19.9%) IVUS and 277 (2.4%) OCT. Compared
with a propensity-matched cohort of angiography guidance alone, the patient-oriented
composite endpoint (all-cause death, any infarction and any revascularization) was lower
with intravascular imaging guidance (5.9% vs. 7.7%; HR = 0.74; 95% confidence interval
0.60–0.92; p = 0.006), and the device-oriented composite endpoint (cardiac death, target-
vessel reinfarction and target-lesion revascularization; 5.0% vs. 6.8%; HR = 0.72; 95%
confidence interval 0.57–0.90; p = 0.004) followed a similar trend [103]. Patients with ACS
within 24 h of symptom onset were excluded from the large-scale ILUMIEN IV: OPTIMAL
PCI trial (Optical Coherence Tomography Guided Coronary Stent Implantation Compared
to Angiography: A Multicenter Randomized Trial in PCI) [104] because of the relatively
high rates of non-analyzable pre-PCI OCT acquisitions due to high thrombus burden,
inefficacy of thrombectomy to reduce the thrombus burden and poor blood clearance [101].
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Appropriately powered randomized controlled trials are warranted to substantiate the
potential benefits for OCT-guided optimization of PCI in ACS that are suggested by the
non-randomized studies.

Immediately post-stenting, unfavorable findings on OCT (e.g., malapposition, tissue
protrusion and thrombus burden) were more frequently observed in PCI on plaque rupture
compared with plaque erosion [59]. In contrast, strut coverage on OCT in follow-up, with
its known caveat as a surrogate for vascular healing around the stent struts [96], was
less pronounced in eroded plaques compared with ruptured plaques [105]. Since the
fibrous cap is still intact in IFC-ACS, conservative management without exposing patients
to the long-term risk of permanent stent placement appears as an appealing strategy if
effective reperfusion and favorable long-term outcomes can be achieved. In a cohort of
31 patients, Prati et al. [100] compared a conservative strategy of anti-platelet therapy after
thrombectomy without stent placement to the standard practice in ST-segment elevation
ACS due to plaques with IFC. Post-procedural residual stenosis and TIMI 3 reperfusion
were similar across both groups. After a median follow-up of approximately 2 years, none
of the 12 conservatively managed patients required revascularization, while one of the
19 patients from the standard practice cohort required intervention during this follow-up
period [100]. It is important to recognize that the study was a prospective non-randomized
trial, where the choice of management was at the discretion of the operator, with several
potential confounding factors. The conservative group was also on average 10 years
younger (52.2 vs. 62.6 years) than the standard therapy group, which may have contributed
to the relatively comparable outcomes.

This conservative strategy was subsequently investigated in the single-arm proof-
of-concept EROSION study [59] in which patients with OCT-detected IFC-ACS either
underwent manual thrombus aspiration or received bolus glycoprotein IIb/IIIa inhibitor.
In the instances where TIMI 3 grade reperfusion together with <70% luminal diameter
stenosis was achieved, the lesions were not stented, and patients were treated with long-
term aspirin and ticagrelor. Of the 60 patients eventually enrolled, 47 met the primary
criterion of >50% reduction of thrombus at one-month as assessed by OCT, and 53 patients
were free of adverse events (cardiac death, reinfarction, rehospitalization, target lesion
revascularization, stroke or major bleeding). In the one-year follow-up study [106], 49
of 53 (92.5%) patients analyzed remained free of events. Among 52 patients who com-
pleted a median follow-up of 4.8 years, there were no incidences of death, myocardial
infarction, stroke, bypass surgery or heart failure, while 11 (21.1%) patients underwent
elective target lesion revascularization [107]. The patients who did not require target lesion
revascularization during the follow-up had a larger reduction in thrombus volume on
repeat OCT at 1 month compared with the group who required revascularization (95%
vs. 45%, p = 0.001) [107]. Large randomized controlled trials are warranted to establish
whether a no-stenting approach is safe and effective in ACS secondary to plaque erosions.

Given the recent evidence of neutrophil and CD8+ lymphocyte involvement in the
pathogenesis of IFC-ACS, targeting inflammatory pathways may be a useful therapeutic
approach [35]. The effect of canakinumab (an IL-1β monoclonal antibody) [108] and
colchicine [109] in reducing the rates of ischemic cardiovascular events in patients with
ACS supports the inflammatory hypothesis in atherothrombosis. The anti-inflammatory
effects of colchicine include a reduction in the formation of NETs in patients with ACS
undergoing PCI [110]. Long-term therapy with colchicine has resulted in a reduction in the
low attenuation plaque volume on CT angiography and in a reduction in ischemic events
in patients presenting with ACS [109,111].

Treatment of calcific plaques in ACS remains challenging. Minimal stent area was the
smallest in PCI on calcific nodules compared with plaques with IFC or RFC (5.20 mm2 vs.
5.44 mm2 and 6.44 mm2, respectively, p = 0.001) [76]. Rates of stent edge dissection were also
highest in the OCT-defined calcific nodule compared with the other two lesion subtypes,
as were the rates of stent malapposition. The use of rotational or orbital atherectomy may
improve these results; however, these devices are contraindicated in thrombotic lesions,
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while intravascular lithotripsy has not been tested in ACS and may theoretically cause
arrhythmias by the R-on-T phenomenon [112]. We have reported deferred intravascular
lithotripsy-facilitated stenting after initial establishment of TIMI 3 flow in ST-segment
elevation MI due to severely calcified culprit lesion as a safe and effective therapeutic
approach [113]; nevertheless, further studies are needed to establish whether this approach
or other strategies lead to better procedural and long-term outcomes in this subset of
challenging lesions in ACS.

7. Conclusions

Mechanistic insights gained by postmortem histopathologic studies have been repro-
duced by intravascular imaging in vivo, especially by high-resolution OCT imaging. While
the culprit lesions in more than half of the patients presenting with ACS are ruptured
plaques, plaque erosions are responsible for ACS in approximately one-third of cases.
A conservative no-stenting approach with antithrombotic therapy in plaque erosion is
supported by small, non-randomized studies and warrants testing in large, randomized
trials. Intracoronary imaging with OCT is also a useful adjunctive tool in the diagnosis and
appropriate management of the rarer causes of ACS, such as eruptive calcified nodules.
Insights gained by the mechanistic studies into the pathogenesis of ACS due to lesions
with OCT-defined IFC, in particular the role of innate and adaptive immunity, may provide
treatment opportunities beyond coronary intervention and antithrombotic therapies, such
as with immune modulation.
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