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Background. Asthma significantly impacts human life and health as a chronic disease. Traditional treatments for asthma have
several limitations. Artificial intelligence aids in cancer treatment and may also accelerate our understanding of asthma
mechanisms. We aimed to develop a new clinical diagnosis model for asthma using artificial neural networks (ANN). Methods.
Datasets (GSE85566, GSE40576, and GSE13716) were downloaded from Gene Expression Omnibus (GEO) and identified
differentially expressed CpGs (DECs) enriched by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis. Random forest (RF) and ANN algorithms further identified gene characteristics and built clinical models. In addition, two
external validation datasets (GSE40576 and GSE137716) were used to validate the diagnostic ability of the model. Results. The
methylation analysis tool (ChAMP) considered DECs that were up-regulated (n=121) and down-regulated (n=20). GO results
showed enrichment of actin cytoskeleton organization and cell-substrate adhesion, shigellosis, and serotonergic synapses. RF
(random forest) analysis identified 10 crucial DECs (cg05075579, cg20434422, cg03907390, cg00712106, cg05696969, cg22862094,
cg11733958, cg00328720, and cg13570822). ANN constructed the clinical model according to 10 DECs. In two external validation
datasets (GSE40576 and GSE137716), the Area Under Curve (AUC) for GSE137716 was 1.000, and AUC for GSE40576 was 0.950,
confirming the reliability of the model. Conclusion. Our findings provide new methylation markers and clinical diagnostic models
for asthma diagnosis and treatment.

1. Introduction

Asthma is a chronic, heterogeneous respiratory disease that
affects people of all age groups. Recently, asthma-related
morbidity and mortality have increased annually. The clinical
manifestations of asthma are mainly respiratory symptoms.
The main pathological features include chronic airway inflam-
mation, high airway response, and airway remodeling [1–3].
Immunoglobulin E (IgE), interleukin-5 (IL-5) and its receptors,
and interleukin-4 (IL-4) receptors are used as molecular targets
for clinical diagnosis of asthma; however, specific and individ-
ual differences are very large, and the clinical treatment of
asthma patients is still inadequate [4, 5].

DNA methylation, a major epigenetic component of
humans, has a profound effect on the occurrence and devel-
opment of various diseases [6, 7]. There is substantial evi-
dence that the mechanisms and characteristics of asthma
depend on methylation patterns. Gaffin et al. [8] studied
DNA methylation in peripheral blood mononuclear cells
nuclear airway epithelial cells of atopic, non-atopic, and
healthy asthmatic children and confirmed that multiple
CpG sites in the ARDB2 gene promoter region were associ-
ated with reduced dyspnea in children. RNA methylation
provided new options for asthma treatment [9, 10].

Although multiple studies have been performed to distin-
guish the disease from healthy patients by identifying CpGs loci,
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however, the results are not encouraging [11]. Reliable quantita-
tive measurements using fewer markers are a viable option. The
application of machine learning technology in the medical field
has significantly accelerated the research to understand the dis-
eases [12, 13]. Machine learning can describe the complexity
and unpredictability of human diseases as reported in various
studies [14–16]. Cao et al. [17] identified key genes for Th2-
high asthma using weighted by weighted gene co-expression
network analysis. There is currently no standard diagnostic
model for screening and early detection of asthma. The rapid
development of machine learning methods, such as random
forests (RF) and artificial neural networks (ANN), is frequently
used in biomarker research [18–21].

This is the first study in which we have analyzed the
methylation expression profile of asthma samples by machine
learning (RF and ANN) and obtained DECs. The receiver
operating characteristic (ROC) curve evaluated the diagnostic
performance of our model. The external validation datasets also
confirmed the efficiency of the model. This study aimed to
identify asthma diseases by analyzing methylation data. The
workflow of the study is shown in Figure 1.

2. Methods and Materials

2.1. Data Acquisition and Preprocessing. The methylation
expression profiles GSE85566 [22] (asthma samples: 74, nor-
mal samples: 41), GSE40576 [23] (asthma samples: 97, normal
samples: 97), and GSE13716 [24] (asthma samples: 16, normal
samples: 17) were downloaded from Gene Expression Omni-
bus (GEO) database. The missing data from expression profiles
were filled using the ChAMP package and normalized.

2.2. Differential Analysis and Design Grouping of GSE85566
Methylation Expression Profiles. Filter probes (p-value < 0.01)
through champ.filter function of ChAMP package (ver-
sion:2.24.0) performed CpGs difference analysis (deltaBeta > 0)

with champ function and obtained top 1000 CpGs heat map
according to the analysis results of champ. The threshold
was deltaBeta <-0.05, p-value <-10-8, and matched gene sym-
bols based on methylation array 450k for later GO and KEGG
analysis (clusterProfilter, version: 4.3.3). The above analysis
was performed using the R environment installation package.

2.3. Random Forest (RF) Classification. The DECs obtained by
ChAMP were initially identified and classified using the R
package randomForest (version 4.7.1). The value of err.rate
was minimized by calculating the average model miscalcula-
tion rate of all DECs in the data to ensure the best node (mtry).
In this study, the optimal variable setting of the binary tree in
the node was seven, and the optimal number of trees for the
random forest was 600. The Gini coefficient selected signifi-
cant DECs (top 10) as specific candidates for asthma. The heat
map of these DECs was constructed by pheatmap (version:
1.0.12) to show their classification ability.

2.4. Artificial Neural Network Model Construction. The arti-
ficial neural network model of important candidate variables
was constructed using R package (neuralnet, version: 1.44.2).
According to the specification, the number of hidden neu-
rons should be 2/3 of the size of the input layer plus 2/3 of
the size of the output layer; the number of hidden neurons
should be between the sizes of the input layer and output layers.
The base expression profile data were normalized (0 to 1) and
processed in neuralnet. The output was set to normal and
asthma, and the output of the first hidden layer (input of the
last output layer) was regarded as the result of gene weights.
The termination condition was the absolute derivative of the
error function (reaching the threshold < 0.01).

2.5. Model Performance Evaluation.Different R packages in the
R environment (R version 4.1.3, https://www.r-project.org)
were used to evaluate the model performance. For model

GSE85566
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Differentially expressed
CpGs (DECs)

GO and KEGG
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Screening DECs 
by RF 

ANN models
construction

GSE40576, GSE13716
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Figure 1: The workflow of our study.
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Figure 2: Continued.
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prediction and identification, caret (version: 6.0-91) and confu-
sionMatrix were used. For RF, pROC (version: 1.18.0) was used,
and for ANN and AUC (Area Under Curve), ggplot2 (version:
3.3.5) was used. Classification and Regression Trees (CART),
Support Vector Machines (SVM), eXtreme Gradient Boosting
(XGBoost) algorithm by rpart (version 4.1.16), xgboost (version
1.6.0.1), and e1071 (version 1.7-9) packages were used for
model validation on GSE40576 and GSE137716 datasets.

3. Results

3.1. CpGs Landscape of GSE85566. Methylation plays a key
role in various diseases, as reported previously [25–27]. The
methylation ChAMP package champ.DMP was used to ana-
lyze and process the methylation expression profile in the
dataset GSE85566 (74 asthma samples and 41 normal sam-
ples) to understand the methylation structure of asthma sam-
ples and to calculate the differential CpGs sites. The top 1000
CpGs heat map landscape (asthma and normal samples) is
displayed in Figure 2(a). Further methylation targets were
searched to differentiate between asthma and healthy samples.
The DECs (asthma vs. healthy) of this methylation chip data-
set were identified according to champ.DMP, and the results
were presented in the volcano plot (Figure 2(b)). The thresh-
old was set as adj.P.Val <10-8, deltaBeta <-0.05 for up-
regulated DECs (n=121) and down-regulated DECs (n=20).

The up-regulated and down-regulated DECs are shown in
the heat map (Figure 2(c)). In the heat map, we observed that
the asthma group (blue) and the healthy group (red) samples
are almost separable, but some asthma samples were still
mixed in the healthy group (red). Thus, the recognition ability
of DECs for asthma and healthy samples still needs to be
improved.

3.2. GO and KEGG Analyses of DECs.GO and KEGG analyses
were used to understand the biological function and regulation
of DECs GO results indicated that regulation of actin cytoskel-
eton organization and cell-substrate adhesion was enriched
(Figure 3(a)). KEGG analysis showed the enrichment in shig-
ellosis and serotonergic synapses (Figure 3(b)). The above
results further confirmed that methylation played a key role
in the pathogenesis of asthma. The identification of asthmatic
and normal patients through a single CpGs site or multiple
CpGs models is an urgent problem to be solved.

3.3. Differential CpGs (DECs) in the Random Forest (RF). The
above results provided a preliminary understanding of the key
role of methylated CpGs in asthma. Although CpGs played an
important role in differentiating asthma from healthy samples,
the results are not satisfactory (Figure 2(c)). These DECs were
used as the input of the random forest classifier. In order to
make the error rate as small as possible, we calculated the mean
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Figure 2: Methylation landscape of GSE85566. (a) Heat map of the top 1000 most divergent CpGs; the gradient from dark blue to yellow
represented the change in expression level. (b) Results of differential expression analysis of volcano plots (asthma vs healthy). The X-axis was
log(deltaBeta), and the ordinate was -log10(adj.P.Val) value; DOWN (red): DECs with down-regulated expression, UP (gray): DECs with
up-regulated expression, NOT (dark blue): meaningless. (c) Heat map of DECs. Dark blue to light blue means high to low expression,
green represents asthma samples, red represented healthy samples, and a clustering tree aggregated similar samples together.
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Figure 3: GO and KEGG analysis results. (a) GO analysis (including molecular function, cellular component, and biological process). (b)
KEGG analysis.
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Figure 4: Continued.
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error rate (err.rate), the parameter of the variable was consid-
ered to be 7, and the final neural network model incorporated
600 trees as the final model parameters to ensure that the errors
were stable (Figure 4(a)). The random forest model dimension
importance was obtained according to the Gini coefficient
method (MeanDecreaseAccuracy and MeanDecreaseGini;
Figure 4(b)). The top 10 DECs of importance were identified
(cg05075579, cg20434422, cg03907390, cg00712106, cg056969
69, cg22862094, cg11733958, cg00328720, cg13570892, and
cg03325522). As follow-up candidates for the classification of
our random forest classification results, in these DECs,
cg05075579 was considered the most important, with the
mean decrease of the Gini index being much higher than
DECs (Table 1). The heat map (Figure 4(c)) showed that these
10 DCGs were better at clustering asthma samples together
than in Figure 2(c).

3.4. The Construction of Artificial Neural Network Model. The
random forest classifier identified the most important 10
DECs with a significant discriminative effect to distinguish
between asthma and healthy samples. The artificial neural net-
work calculated the weights of these 10 DECs, 10 input layers,
seven hidden layers, and two output layers in the GSE85566

methylation expression profile and constructed a new model
(Figure 5(a)). For an effective evaluation of the results of the
neural network model, we chose the 10-fold cross-validation
method. The data were randomly divided into a training set
and validation set and used the pROC installation package to
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Figure 4: (a) The effect of the number of decision trees on the error rate. The X-axis was the number of decision trees, and the Y-axis was
the error rate. The increase of trees did not affect the reduction of the error rate. (b) After the variables were entered into the random forest,
the top 10 DECs were listed in order of importance according to MeanDecreaseAccuracy (left) and MeanDecreaseGini (right). (c)
Hierarchical clustering results of 10 DECs in GSE85566 dataset; dark colors represent high expression, light colors represent low
expression, the red band above the heat map represents normal samples, and green represents asthma samples.

Table 1: MeanDecreaseGini of 10 DECs by random forest process.

CpGs MeanDecreaseGini

cg05075579 1.427152626

cg20434422 1.421703772

cg03907390 1.395149582

cg00712106 1.355657539

cg05696969 1.099293192

cg22862094 0.981588017

cg11733958 0.933543882

cg00328720 0.897459032

cg13570892 0.880545548

cg03325522 0.879691331

DECs: differentially expressed CpGs.
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Figure 5: Neural network topology. (a) Artificial neural network visualization results for the train dataset. (b) ROC results (cg05075579,
cg20434422, cg03907390, cg00712106, cg05696969, cg22862094, cg11733958, cg00328720, cg13570892, and cg03325522) analysis
visualization for 10-fold cross-validation method.
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visualize the results (Figure 5(b)). In addition, we adopted the
confusion matrix of the caret package to evaluate the accuracy
of the neural network models (accuracy: 0.9739). Using meth-
ylation expression profiles, we developed a novel model to dif-
ferentiate asthma and healthy sample classifications based on
what we demonstrated above.

3.5. ROC Identification of the Dataset.We showed the classifi-
cation of asthma and normal samples based on neural network
construction. Then, we utilized two methylation datasets
(GSE40576 and GSE137716) to evaluate the classification per-
formance of our neural network model. The receiver operating
characteristic curve (ROC) calculated accuracy (Figures 6(a)
and 6(b)), GSE137716 dataset has AUC: 1.000, the sensitivity
and specificity of 100% under the best threshold, GSE40576
dataset has AUC: 0.950, the sensitivity and specificity were
0.959 and 0.969, respectively. Comparing SVM, CART, and
XGBoost machine algorithms (Table 2), the AUCs for
GSE40756 are 0.825%, 0.773%, and 0.619%, respectively, and
for GSE137716, AUCs are 0.938, 0.818, and 0.881, respec-
tively. These results indicate that our neural network model
had high-precision classification performance and is indicative
of the classification of asthmatic patients.

4. Discussion

This was the first study to utilize DNA methylation-based
machine learning to identify a series of asthma-related meth-
ylation loci (DECs). Interestingly, the selectedmethylation sig-
natures were associated with actin cytoskeleton organization
and cell-adhesion substrate, shigellosis, and serotonergic syn-
apses, supporting the hypothesis that airway structural reorga-
nization in asthma results from changes in DNA methylation
in the epigenetic group [28, 29]. Then, ten distinct specific
DECs were identified based on RF, and ANN model was built
by calculating the weight coefficient of ANN. The model had
high accuracy and stability (the AUC of the external validation
datasets was 1 and 0.95, respectively).

Recently, due to the rapid advancement of computing
power, artificial intelligence methods such as machine learn-
ing have been widely employed in medicine, including dis-
ease diagnosis and disease prognosis, thereby accelerating
our understanding of various diseases. In addition, it facili-
tates the clinicians in patient management. Multiple studies
have developed novel models to predict clinical outcomes
of asthma [30–32]. In this study, we focused on the key role
of epigenetics (methylation) in asthma. The asthma-related
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Figure 6: Two datasets determine neural network classification efficiency. (a) ROC result of GSE137716 dataset. (b) ROC result of
GSE40576. The points marked on ROC curve are the optimal threshold points, and the values in parentheses indicate sensitivity and
specificity. The AUC value was the Area Under ROC Curve, X-axis was the specificity, and Y-axis was the sensitivity. The optimal
threshold was marked at the inflection point, and sensitivity and specificity were listed in parentheses.

Table 2: ROC validation results of three machine learning models (SVM, CART, and XGBoost).

Methods
GSE40576 GSE137716

AUC Specificity Sensitivity AUC Specificity Sensitivity

SVM 0.825 0.845 0.804 0.938 1.000 0.875

CART 0.773 0.856 0.691 0.818 0.824 0.812

XGBoost 0.619 0.619 0.619 0.881 0.824 0.938

CART: Classification and Regression Trees; SVM: support vector machines; XGBoost: eXtreme Gradient Boosting; AUC: Area Under Curve.

9Computational and Mathematical Methods in Medicine



DECs were obtained through differential analysis, 10 crucial
candidate DECs were identified based on the random forest
classifier, and the asthma-related neural classification scores
were generated by artificial neural networks. We also com-
pared the classification efficiency of individual CpGs with
the classification efficiency of the model.

We identified the methylation landscape of the methylation
data (GSE85566) and obtained 142 differentially expressed
CpGs. GO analysis suggested that asthma was enriched in reg-
ulation of actin cytoskeleton organization [33], cell-substrate
adhesion [34], and response to nutrient levels, and KEGG
results identified the potential signaling pathways, shigellosis
serotonergic synapse, and yersinia infection. In addition, 10
DECs obtained through the MeanDecreaseGini importance
screening of the random forest model provided a base for the
construction of a neural network model. The model was highly
accurate (accuracy: 0.9739), and the results were also validated
with two other datasets, giving the accuracy and high classifica-
tion level (AUC: 1.000 and 0.950, respectively) of this neural
network. We compared our model with other currently avail-
able machine learning algorithms (SVM, CART, and XGBoost)
[35, 36] and found that the diagnostic ability of the methylation
machine model constructed by ANN was higher than other
models.

There are several limitations to this study. First, our
analysis results were based on an online database. There
were more influencing factors between different datasets,
which can be biased in the results. In addition, our study
was limited and could not be validated in clinical patient
samples. Due to the paucity of available methylation data,
our dataset contains data from children’s peripheral blood
single cells, which may have affected the results. In future
studies, we will verify our results with prospective studies
in an effort to implement them in clinical practice and pro-
vide doctors with a treatment formulation source.

5. Conclusion

In general, our neural network model based on methylation
epigenetics has a significant clinical value for the prediction
of asthma, which is beneficial for early diagnosis of asthma.
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