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1. Introduction

Advanced cross-sectional and functional imaging techniques enable
non-invasive visualization of tumor extent and functional metabolic ac-
tivity and play a central role in the diagnostic work-up and surveillance
of oncology patients. However, the criteria used for tumor staging and
surveillance are largely based on anatomic criteria at this time. From a
quantitative standpoint, the evaluation in the clinical setting remains
very basic in many instances, largely relying on measurement of size
on initial assessment and for the evaluation of response to treatment,
supplemented with qualitative assessment of other tumor characteris-
tics such as homogeneity and shape [1,2]. This is not without basis,
since sizemeasurements are easy tomake and these criteria can be uni-
versally implemented and used using basic platforms for image display
and analysis, without the need for more complicated infrastructure or
analytic platforms that may not be widely available. However, the
downside is that there is potential for under-utilization, or wasting, of
substantial information that could potentially be used for improvement
in tumor evaluation and treatment planning for oncology patients.

Broadly, texture analysis and radiomics approaches aim to fill this
gap, extracting and analyzing the higher dimensional and quantitative
data with the aim of more accurate, tumor specific evaluation and char-
acterization [3,4]. Coupled with artificial intelligence (AI), these can
serve as biomarkers and can be used to construct prediction models
that have the potential to provide an evaluation far beyond what is
achieved using the largely qualitative approaches to image evaluation
currently performed in the clinical setting. Increasing evidence suggests
that these approaches can be used to enhance non-invasive tumor char-
acterization, including prediction of certain tumor molecular features,
association with tumor spread, better prediction of treatment response
and prognosis [5–20], and this constitutes one area of great interest and
significant research among the broader potential medical applications
of AI that extend far beyond oncology or evaluation of medical images
alone. In this article, we will provide an overview of radiomics and AI
applications for medical image analysis, focusing on oncologic applica-
tions. The article will review the fundamentals of these approaches
and commonly used techniques, followed by a review of selected exam-
ples to illustrate how these techniques can be applied for oncologic
evaluation. Lastly, the article will briefly review the potential challenges
and pitfalls of these techniques and the long-term potential for onco-
logic care and personalized medicine.

2. Texture Analysis and Radiomics

2.1. Overview

Texture analysis refers to computerized analysis and quantification
of the local spatial variations in image brightness that in turn are related
to properties such as coarseness and regularity of the voxel densities or
intensities [21]. For example, on computed tomography (CT), texture
analysis can be used to analyze the distribution and relationship of
pixel or voxel grey levels on an image, quantifying the coarseness and
regularity that results from local spatial variations in image brightness
[4,22]. This in turn can be used to capture and quantify tumor heteroge-
neity and other quantitative patterns with predictive importance, with
thepotential to perform tumor characterization beyondwhat is possible
by qualitative visual analysis alone. Interest in image texture analysis is
not new, dating back to early days of development of advanced cross-
sectional imaging techniques and computerized image analysis for the
evaluation of the images produced using these advanced imaging mo-
dalities [21,23,24]. This interest emerges at least in part from early stud-
ies of human perception demonstrating that despite the impressive
performance of the human visual system in evaluating different pheno-
typic characteristics of an object, the visual system may have difficulty
in effortlessly discriminating certain textural characteristics, such as
those related to higher order statistical features of an object or image
[21,25].

In the last decade, there has been renewed interest in the potential
of this approach for oncologic evaluation, further fueled by interest
and advances in AI that make future wide-scale application achievable.
In oncology, texture analysis can be used to provide an objective and
quantitative evaluation of a tumor, including tumor heterogeneity,
that complements the visual assessment by expert radiologists and
has the potential to predict various characteristics and clinical end-
points of interest. Different approaches can be used for performing tex-
ture analysis that include statistical-based methods, model-based
methods, and transform-based methods [4]. It should be noted that
there is variation in the definitions used for the term texture in this con-
text and confusion regarding what texture analysis entails. In the fields
of computer science and computer vision, texture analysis frequently
refers specifically to second order determinants of spatial inter-
relationships of pixel grey-level values. However, in the medical litera-
ture, including the Radiology literature, some have used the term tex-
ture analysis more broadly to include other features, including
primary statistical features [4]. For the purposes of this article, we will
use the term texture to specifically refer to second order determinants
of spatial inter-relationships or texture matrix-based features [26]. It
should also be noted that although texture analysis and radiomics
have been used to refer to similar analytic processes, it is generally ac-
cepted that radiomics is broader, and includes but is not limited to tex-
ture analysis alone.

The first published occurrence of the term radiomics dates back to
2012 [27,28]. Radiomics was defined as the high-throughput extraction
of large amounts of image features from radiographic images [27]. In a
review published in 2016, the definition was extended to include the
conversion of images to higher dimensional data and the subsequent
mining of these data for improved clinical decision support [26]. There
is disagreement among researchers whether feature extraction needs
to be restricted to imaging modalities that are routine in clinical prac-
tice, or if it is acceptable to include emerging techniques such as molec-
ular imaging [26,27]. In terms of published research, radiomics has been
performed on CT, magnetic resonance imaging (MRI), positron-
emission tomography (PET), and ultrasound images. Later in this sec-
tion, we will briefly discuss the pros and cons of these techniques
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with respect to radiomicmodel building. From a pure research perspec-
tive, there is no reason to limit the possibilities regarding how the im-
ages are acquired or the types of scans that are used for radiomic
analysis as long as a valid research or clinical question is being ad-
dressed. The application of similar feature extraction techniques to im-
ages of histological slides can be referred to as pathomics [29].

In the traditional practice of radiology, images are used as pictures
meant solely for human visual interpretation. The emergence of
radiomics is tied to two major changes [27]. The first change is multi-
factorial and concerns the improvement in the quality of the image.
This was brought about by the emergence of new hardware like com-
binedmodalitymachines (CT/PET) and dual-energy CT (DECT), innova-
tions with respect to imaging contrast agents (e.g. dynamic contrast
enhanced MRI), and the gradual introduction of standardized imaging
protocols and sequences. The other change is tied to how images are
processed and analyzed. This was facilitated by improvement in hard-
ware (higher CPU processing power at a lower cost, GPUs becoming
ubiquitous) as well as availability of free feature extraction software
packages that make it easier to quantify features in a standardized
way. Although radiomics can be applied to any clinical problem where
imaging plays a role, most publications are tied to oncology. Gillies
et al. [26] suggest that this is because of support from the National Can-
cer Institute (NCI) Quantitative Imaging Network (QIN) and other ini-
tiatives from the NCI Cancer Imaging Program.

The guiding philosophy behind radiomics is that images contain in-
terchangeable as well as complementary information to other sources
of patient data, e.g., demographic information, liquid biopsies, and
core biopsies. A related hypothesis is that information reflecting geno-
mic and proteomic patterns is present and can be identified by analysis
of macroscopic patient images [27]. If true, prognostically meaningful
phenotypes or gene-protein signatures can be derived from the quanti-
tative analysis of medical image data. It is not expected that non-
invasive radiomic analysis can replace or reflect in granular detail
tumor molecular profiling. However, it is hypothesized that sufficiently
important tumor characteristics, including certain molecular features,
can be predicted using this approach in a way that would be important
for patient management. In this sense, one of the primary benefits of an
image-based biomarker is its non-invasiveness. However, the scope of
radiomics is grander. Most clinically relevant solid tumors are highly
heterogeneous at the phenotypic, physiologic, and genomic levels and
evolve over time [26]. Genomic heterogeneity within tumors and across
metastatic tumor sites in the same patient is one major reason targeted
therapies may fail and therapy resistance develops. Precision medicine
therefore requires in vivo biomarkers that are spatially and temporally
resolved. Radiomics enables quantitative measurement of intra- and
intertumoral heterogeneity, including the possibility of use in treatment
monitoring and optimization or in active surveillance. Importantly,
radiomics enables analysis of the entire tumor volume, eliminating chal-
lenges related to sampling bias, which is a potentially significant advan-
tage of this approach.

2.2. Radiomic Workflow

In order to understand radiomics and its applications, it is important
to be familiar with the typical radiomic workflow, which starts with
image acquisition. The imaging workhorse of oncology is CT. With re-
spect to the repeatability and robustness of radiomic features, CT
scans are by far the best studied (e.g., “test-retest” studies, meaning
scans repeated on the same patient cohort after a short break; phantom
studies to understand effect of different acquisition parameters offered
by major vendors; examining the usefulness of cone beam CT derived
features) [30]. The greatest strengths of CT are its widespread availabil-
ity, rapid scan acquisition times, the existing normalization of image
brightness or densities, and the relative straightforwardness of agreeing
to a standard imaging protocol. The stability of PET features has also
been well-studied. Unfortunately, various researchers found that PET
radiomic features can be susceptible to differences in reconstruction pa-
rameters as well as to respiratory motion, indicating a need for greater
harmonization efforts [30]. MRI is another exciting imaging modality
for radiomics evaluation because of the exquisite soft tissue contrast
provided (which is superior to CT) and the ability to perform functional
imaging at a high resolution. Early studies also demonstrate technique
related variations in features extracted from MRI images that will have
to be remedied for generalized implementation of radiomic analysis
using thatmodality [31]. Ultrasound is perhaps the least studiedmodal-
ity so far. One major challenge with radiomics analysis of sonographic
images is the high inter-operator variability thatmay represent a barrier
to reliable and reproducible radiomics applications using current tech-
nology [30]. Possible approaches for improving quality and reproduc-
ibility of radiomic features extracted from medical images are
discussed at the end of this section, following the discussion of different
features.

The next step in the workflow is image segmentation (i.e. tumor
contouring or annotation). Before we discuss segmentation, it needs
to be noted that in the ideal setting, or if this is ever seamlessly inte-
grated into the clinical workflow, this would be done in the same view-
ing environment as image interpretation takes place, either using the
same software or through other software integrated with the viewer.
However, this is currently not the case, at least in most instances, for
radiomics research investigations where the data need to be transferred
to another program for analysis. The image sets also need to be de-
identified or anonymized for purposes of research. If one is analyzing
large datasets, these seemingly simple steps can be very time consum-
ing and creation of robust, secure pipelines that automate this part of
the process is a key component for successfully conducting large scale
radiomics research in the future.

Going back to segmentation, this can be done in 2D or 3D. If done in
2D, the delineation is referred to as the region of interest (ROI). If trans-
lated into 3D (by segmenting multiple image slices covering the entire
tumor volume), it may be referred to as a volume of interest (VOI), al-
thoughROI is used aswell.Manual segmentation by clinicians or trained
personnel is often treated as ground truth. However, one needs to be
aware that depending on the problem at hand and expertise level,
there can be high inter-operator variability. Furthermore, manual
contouring is very time-consuming and therefore impractical for curat-
ing large data sets (N~100) or implementation in the clinical setting for
routine use. To this end, automatic or semi-automatic segmentation
methods are being investigated to minimize manual input and increase
consistency and reproducibility [26,30]. There is ongoing debate over
whether reproducibility trumps ground truth. A crude but consistent
method of segmenting a dataset (e.g., by using an edge detection algo-
rithm or using fixed threshold segmentation or growing a region from
a user-defined seed) has to be weighed against manual segmentation
performed by multiple people. Depending on the application, more ad-
vancedmethods such as the fuzzy c-means, fuzzy hiddenMarkov chains
or fuzzy locally adaptive Bayesian segmentation algorithms may be
employed [30]. The introduction of deep learning via U-Net has begun
to tip the scales towards automation [32]. Segmentation of normal tis-
sue can nowbe achievedwith full automation. However, diseased tissue
often requires some human input because of inter- and intra-subject
morphologic and contrast heterogeneity. Ultimately, the success of
any given algorithm as a biomarker would have to be judged based on
the reliability for predicting the outcome of interest, i.e. a given molec-
ular or clinical endpoint, rather than the “ground truth” as it pertains
to the matching of segmentation with expert annotations.

Once the image has been segmented, the next step is feature extrac-
tion. One review separates features into twomain groups: semantic and
agnostic [26]. Semantic features refer to computer-aided quantification
of characteristics or terms commonly used in the radiology lexicon to
describe ROIs (for example size, shape, location, presence of necrosis,
etc.). Since it is known that such descriptors have prognostic value,
there is an inherent justification for this approach. By (semi-)
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automating semantic data generation, there would be higher inter-
observer agreement, faster throughput, and lower variance. Nonethe-
less, there has been relatively few radiomic research done towards
this goal. For practical purposes, and in the rest of this paper, when
discussing radiomic features, agnostic features are implied.

Agnostic features arose from the field of computer vision. In general,
they are not explicitly engineered for the field of medicine. There is no
biological justification for why such features should prove to be prog-
nostic, andmany agnostic features are hard tomentally visualize and in-
terpret. Hence, any observed correlations are purely empirical, and
difficult to gain intuition for. Nonetheless, they still offer the possibility
of hypothesis generation, and the hypothesis can subsequently be
tested on an independent dataset (either retrospective or preferably,
prospectively). The greatest advantage of agnostic features is the ab-
sence of subjectivity and the speed of feature extraction. Another ad-
vantage is the large number (hundreds or even in the thousands) of
features that can be derived by changing extraction parameters. An as-
sociated downside is the prospect of a false discovery arising purely out
of statistical fluctuation, and careful reduction of the feature set size is
essential to avoid such scenarios [33].

In many ways, feature extraction is the easiest part of the workflow
to standardize, since it is entirely software-based and requires no
human input. The pre-eminent effort in this direction is called the
“Image biomarker standardisation initiative” (IBSI) [34]. The discussion
presented in the rest of this section regarding feature extraction is sum-
marized from the IBSI referencemanual. IBSI groups features as follows:
intensity-based statistical features, intensity histogram-based features,
intensity-volume histogram-based features, morphological features,
local intensity features, and texture matrix-based features. The first
five of these groups can jointly be referred to as non-texture features,
using the definition discussed earlier. All texture matrices are
rotationally and translationally invariant. None of the texture matrices
are scale invariant, a property which can be useful for scale optimiza-
tion. Features are calculated on the original image, as well as images ob-
tained using transformation filters (e.g., wavelet).

Intensity-based statistical features describe how grey levels within
the ROI are distributed. The features in this set do not require
discretization and are not meaningful if the intensity scale is arbitrary.
An intensity histogram is generated by discretizing the original set of
grey levels. The (cumulative) intensity-volume histogram describes
the relationship between discretized grey level i and the fraction of
the ROI volume containing at least grey level i. The implementation de-
pends on whether the intensity units are definite or arbitrary. Morpho-
logical features describe geometric aspects of the ROI, such as area and
volume. Local intensity features are calculated using voxel intensities
within a definedneighborhood arounda center voxel.While only voxels
within the ROI are used as a center voxel, the corresponding local neigh-
borhood need not be restricted within the ROI.

Texture featureswere originally designed to assess surface texture in
2D images, but texture analysis has been extended to 3D objects. Tex-
ture features are calculated from different types of matrices. The grey
level co-occurrence matrix (GLCM) expresses how combinations of
discretized grey levels of neighboring voxels are distributed along one
of the image directions. Generally, the neighborhood for GLCM is 26-
connected in 3D and 8-connected in 2D. Thus, there are 13 or 4 (3D or
2D) unique direction vectors within the neighborhood for Chebyshev
distance of 1. The grey level run lengthmatrix (GLRLM) assesses the dis-
tribution of discretized grey levels in terms of run lengths. A run length
is defined as the length of a consecutive sequence of voxels with
the same grey level along a fixed image direction. The GLRLM contains
the occurrences of runs with length j for a discretized grey level i. The
grey level size zone matrix (GLSZM) counts the number of groups (or
zones) of linked voxels. Voxels are linked if the neighboring voxel has
an identical discretized grey level. Whether a voxel classifies as a neigh-
bor depends on its connectedness (26-connectedness in 3D and 8-
connectedness in 2D).
The grey level distance zone matrix (GLDZM) counts the number of
groups (or zones) of linked voxels which share a specific discretized
grey level value and possess the same distance to ROI edge. Two maps
are required to calculate the GLDZM: a grey level zone map (identical
to the map needed to calculate GLSZM) and a distance map. Distance
is defined according to 6 and 4-connectedness for 3D and 2D, respec-
tively. The distance of a voxel to the ROI edge is equal to the minimum
number edges of neighboring voxels that need to be crossed to reach the
ROI edge. The distance for a linked group of voxels with the same grey
value is the minimum distance for the respective voxels in the distance
map. The neighborhood grey tone difference matrix (NGTDM) contains
the sum of grey level differences of voxels with discretized grey level i
and the average discretized grey level of neighboring voxels within a
fixed Chebyshev distance. Neighboring grey level dependence matrix
(NGLDM) aims to capture the coarseness of the overall texture. It is
computed from the grey tone relationship between every voxel in the
ROI and all of its neighboring voxels within a fixed Chebyshev distance
[34,35].

Image features are only as good as the images they are extracted
from. Hence, images may be pre-processed to enhance image quality.
Possible image pre-processing includes image smoothing by averaging,
applying Gaussian filters to reduce image noise, and image enhance-
ment using histogram equalization, deblurring and resampling. Texture
feature calculations require interpolation to isotropic voxel spacing to
be rotationally invariant, and to allow comparison between different
datasets. Many features are sensitive to voxel size. Hence, maintaining
consistent isotropic voxel spacing is important for reproducibility. Inter-
polation via down-sampling requires inference and introduces artificial
information. Upsampling, on the other hand, results in information loss
and may introduce image aliasing artifacts. Neither technique is a clear
winner. Discretization of image intensities inside the ROI is often re-
quired to make calculation of texture features tractable. It may also aid
noise-suppression. Two approaches to discretization are commonly
used. One uses a fixed number of bins, and the other uses bins of a
fixed bin width. Both methods have particular characteristics that may
make them preferable for specific purposes. Once these steps have
been performed, feature calculations can begin. Image normalization
may also be performed using convolutional neural networks (CNN;
see below in section on machine learning) [36]. Various image process-
ing approaches that can improve quality and importantly help stan-
dardize or normalize quantitative features are likely to represent an
important step for reliable radiomic evaluation of images that can over-
come variations related to technique, an essential step for more wide-
spread implementation in the clinical setting.

3. Overview Machine Learning Approaches

Artificial Intelligence (AI) is the development of computer systems
that process data and attempt to simulate human-like reasoning, i.e. al-
gorithms that not only analyze but learn from experience. From its es-
tablishment in the 1950's, AI has been implemented or evaluated in a
range of applications ranging from games, automobiles, economy, avia-
tion industry, and health care, among others. AI continues to grow and
pushes the boundaries of many traditional industries. Early implemen-
tation of AI revolved around systems, known as agents, interacting intel-
ligently with an environment. Sensors interpret the environment and
the most reasonable decision is determined and performed [37]. As
the field evolved, so did these intelligent agents and with the inclusion
of stored data,Machine Learning (ML)was introduced to AI.ML is one of
the major subfields in AI and plays a central role in image analysis and
radiomic or predictive model construction. Therefore, for purposes of
this article, we will focus mainly on ML approaches.

MLmay be defined as algorithms that build classifiers based on anal-
ysis of training data, infer a hypothesis (or function), and predict the la-
bels of unseen observations (e.g. patient outcome or tumor phenotype)
[35]. Training can be subdivided in two major learning methods:
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supervised and unsupervised learning. Supervised Learning utilizes the
training data with associated labels (classes) to learn the relationship
between the training data and labels. Unsupervised Learning corre-
sponds to learning the training data without labels by exploiting the in-
trinsic relationship within the data to cluster the data. Typically,
supervised learning offers better performance, especially for smaller
datasets. However, acquiring labelled data is laborious and can be ex-
pensive. On the other hand, unsupervised learning benefit from an
abundance of unlabelled data since the labelling process is not required.
Furthermore, unsupervised learning has the potential to identify previ-
ously unknown associations and in oncology, cancer subtypes that may
be of prognostic value. When discussingML algorithms, one should also
be familiar with the concept of overfitting. Overfitting refers to amodel-
ing error where the algorithm “memorizes” or reflects the training data
too closely, using noise or random fluctuations in the training data as
concepts that may not be applicable to new datasets and consequently
negatively impact algorithm performance in new datasets (or generali-
zation of the model). Simply put, overfitting provides an overtly opti-
mistic or exaggerated measure of algorithm performance.

There are many types of ML classifiers available including Decision
Trees and Support Vector Machine classifiers, however Deep Learning
(DL) has garnished the most attention in recent years, as illustrated in
Fig. 1 depicting the most popular Google search trends. This section
will give an overview of some Classic ML and DL classifiers.

3.1. Logistic Regression

Logistic Regression is a classical machine learning algorithm typi-
cally used for binary classification. The model attempts to estimate the
probability, P(y = 1| x), that is the probability of a positive outcome
(class y=1)given data x. Using Bayes rule, P(y=1| x) can be expressed
in the form of a logistic function:

P y ¼ 1j xð Þ ¼ 1
1þ e−α

where α is the log-odds ratio (the odds of a positive classification rela-
tive to the odds of a negative classification), which can be expressed
as a linear function:

α ¼ ln
P xjy ¼ 1ð ÞP y ¼ 1ð Þ
P xjy ¼ 0ð ÞP y ¼ 0ð Þ ¼ β0 þ βT

1x

The weights (β0, β1) can be calculated using the maximum likeli-
hood approach [38]. The log-likelihood expression serves as an error
Fig. 1. Google trends data for machine learni
function and using gradient descent, the optimal weights can be itera-
tively solved for to minimize error.

The advantage of logistic regression is that it is fast to train and can
use discrete and continuous variables as inputs. The disadvantages in-
clude that it is a linear model. Therefore, complex data problems may
pose difficulties. Nevertheless, the logistic regression model can work
well on many datasets and can serve as a useful benchmark due to its
ease of implementation.

3.2. Naïve Bayes

Similar to logistic regression, the Naïve Bayes algorithm attempts to
model the probability of an outcome based on the data, P(y | x). How-
ever, it uses a generative learning approach instead. Generative learning
is the indirect estimation of the probability of an outcomeusing the joint
probability. This is achievable due to Bayes' Theorem:

P y j xð Þ ¼ P x j yð Þ P yð Þ
P xð Þ

where, P(x | y) is the likelihoodof the data, P(y) is theprior probability of
the class before observing data, and P(x) is the probability of observing a
data sample x. The term P(x) is treated as a weighing term and can be
disregarded. To estimate the outcome for a given data sample x, with in-
dependent discrete features f1, f2, …, fn, the probability of the positive
class occurring and the probability of the negative class occurring are
compared as follows:

P y ¼ 1jxð Þ∝P f 1jy ¼ 1ð ÞP f 2jy ¼ 1ð Þ…P f njy ¼ 1ð ÞP y ¼ 1ð Þ
¼ PUS y ¼ 1jxð Þ

P y ¼ 0jxð Þ∝P f 1jy ¼ 0ð ÞP f 2jy ¼ 0ð Þ…P f njy ¼ 0ð ÞP y ¼ 0ð Þ
¼ PUS y ¼ 0jxð Þ

These calculated probabilities are unscaled and denoted as PUS. The
probability of each class can be scaled and calculated as:

P y ¼ 1jxð Þ ¼ PUS y ¼ 1jxð Þ
PUS y ¼ 1jxð Þ þ PUS y ¼ 0jxð Þ

P y ¼ 0jxð Þ ¼ PUS y ¼ 0jxð Þ
PUS y ¼ 1jxð Þ þ PUS y ¼ 0jxð Þ

For continuous features, under the linear discriminate analysis
assumption, the likelihood of the data is assumed to be a multivariate
gaussian with class specific means and a common covariance.
ng algorithms between 2008 and 2018.
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The advantages and disadvantages of the Naïve Bayes classifier are
the same as Logistic Regression. Both are faster to train and are simple,
and both have difficulties with complex datasets due to being linear
classifiers. The Naïve Bayes classifier has generally shown to have supe-
rior performance in comparison to the Logistic Regression classifier on
smaller datasets and inferior performance on larger datasets [39].

3.3. Support Vector Machine

The Support Vector Machine (SVM) algorithm is a classical machine
learning algorithm. The premise of the algorithm is to compute the de-
cision boundary that separate two classes with the maximummarginal
distance to provide a robust decision boundary that can tolerate noisy
test data. Thus, the SVM algorithm optimizes between maximum mar-
gin and training error to solve the ideal decision boundary [40]. By set-
ting the margin, m, to be inversely proportional to decision boundary

parameters,m ¼ 1
j jβj j, the softmargin SVM classifier can be formulated

as the followingminimization problem,where x is the training data, y is
the label,β0 andβ are decision boundary parameters,N is the number of
training data, ε is a slack variable to measure misclassification overlap
and C is a penalization cost for misclassification:

minimize
β0 ;β

1
2

βk k2 þ C
XN
i¼1

εi subject to yi β0 þ β∙xTi� �
≥1−εi: εi ≥0; i

¼ 1;…;N

The minimization problem is solved by computing the Lagrange
Dual and performing quadratic optimization. Fig. 2 demonstrates a
graphical example of SVM. The two classes to be separated are repre-
sented by the blue circles and red squares, the decision boundary is rep-
resented by the yellow dotted line, the margins between the class and
the decision boundary is represented by the red dotted lines and the
Support Vectors (SVs), the data closest to the decision boundary and
lying on the margins, are circled data. This decision boundary is then
used to evaluate newdata based on the position of the datawith respect
to the decision boundary.

In the case of non-linearly separable data, SVMuses kernel functions
to transform the data into a higher dimension, in which the data can be
linearly separated [38] (Fig. 3).

The advantage of SVM is the simple mathematics behind the deci-
sion boundary and its application in higher dimensions. However,
since SVM is essentially an optimization problem attempting to balance
between errors in the training set with a larger margin decision
Fig. 2. Support vector m
boundary, it may be slow for large datasets, especially where the class
separation is small.
3.4. Decision Tree

Decision Tree (DT) is another example of a classical machine learn-
ing algorithm. The DT divides the data based on features to determine
the appropriate class. The features used to split the data are determined
using the Information Gain provided by individual features [41]. To de-
termine information gain, first the entropy of a dataset is computed. For
a dataset (S) with two classes, the entropy would be:

Entropy Sð Þ ¼
X2
i¼1

−pi log2pi

Individual feature specific information gain is calculated by the dif-
ference between entropy of the training set and entropy of the feature
[42]. The information gain for a feature A would be as follows:

Information Gain ¼ Entropy Sð Þ−
X

vϵ Values Að Þ

j Sv j
j S j Entropy Svð Þ

where Values(A) is the set of all possible values for a feature A and Sv cor-
responds to the subset of S where feature A has a value v.

Features that provide relevant and valuable information to divide
the classes are then selected and used in the DT. Features that provide
the highest information gain split the data earlier in the tree, and fea-
tures that provide less information gain are at lower stages in the DT.
This hierarchy also allows for pruning (removing lower feature separa-
tion) to avoid overfitting. Furthermore, to ensure overfitting will not
happen, other steps can be taken, depending on the approach used.
For example, Random Forests (RF; one example of a decision tree-
basedML) use multiple small decision trees built from a random subset
of features to vote on the classification. Fig. 4 illustrates an example of
Random Forests.

The advantage of Decision Trees is that they are both easy to visual-
ize and understand. The disadvantage is that feature selection plays a
dominant role in the accuracy of the algorithm. One set of features can
provide drastically different performance than a different set of features.
A large Random Forests can be used to alleviate this problem.
achine example.



Fig. 3. Non-linearly separable data transformed to higher dimension.
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3.5. Neural Networks

Neural Networks (NN) are modelled after the human brain and
function by combining multiple perceptron models (neurons) into a
network, to perform complex calculations (Fig. 5). EachNN is composed
of an input layer, hidden layers, and an output layer, with each layer
composed of individual nodes [43]. Nodes in different layers are con-
nected by weights, depicted by arrows in Fig. 5. The values from each
node in the previous layer are multiplied by the corresponding weights
and are summed at nodes in the next layer. Furthermore, a bias node
and activation functions are included in the hidden layer to introduce
non-linearity into the NN. Outputs at a hidden layer node (oi) can be
represented as:

oi ¼ φ
X
i

wixi þ b

 !

where,wi corresponds with weights connecting to inputs from the pre-
vious layer denoted as xi, b is the bias and φ is the activation function.

The most popular activation for NN is the sigmoid function φðzÞ

¼ 1
1þ e−z because it outputs values between the range of 0 and 1 and
Fig. 4. Random Forests example of
has the simple derivative form:

φ1 zð Þ ¼ φ zð Þ 1−φ zð Þð Þ

After the values from the input layer are traversed forward through
the hidden layer(s), at the output layer a SoftMax function is applied to
calculate the NN's confidence percentage in each class. During training,
the error between the calculated class and the expected class is deter-
mined (typically using the sum-squared error function) and the error
is backpropagated through the network to update the values of the
weights. Backpropagation uses the derivative of the error to update
the weights, which is why simple to derive activation functions, like
the sigmoid function, are favorable. The algorithm iterates through all
training data until the error of the network falls below a certain thresh-
old to avoid overfitting.

An advantage of NN is that although themathematics behind the al-
gorithm are simple, the non-linearities and weights allow the NN to
solve complex problems. Disadvantages of NN include the training
time required for numerous iterations over the training data, tendency
to easily overfit (i.e. provide a falsely optimistic or elevated estimate
of performance) on training data, and numerous additional tuning
hyperparameters including # of hidden layers/hidden nodes are re-
quired for determining optimal performance.
decision tree ML classification.



Fig. 5. Neural network example.
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3.6. Deep Learning

Deep Learning (DL) is based on NN but is composed of many addi-
tional layers with the purpose of adding complexity to the algorithm
to learn features and representations automatically. Networks with
three or more layers are generally considered deep, however there are
some debates on the matter [44]. An example of DL is the Convolution
Neural Network (CNN) model. As illustrated in Fig. 6, CNNs are
composed of multiple convolutional and pooling layers with fully-
connected layers for classification [45]. In the convolutional layers, fil-
ters are convolved with the input to create a stack of filtered images.
In the pooling layer, the stack offiltered images is simplified by reducing
the size. At lower levels of the CNN, the CNN learns simple features such
as edges and corners [46]. These simple features are then used to learn
more complex features at higher layers of the CNN. As in NN, all weights
in the CNN are randomly initialized and are updated throughout train-
ing and backpropagation until the error of the training set falls below
a specified threshold.

One advantage of DL approaches such as the CNN is that they can be
used to perform both image analysis (deep feature extraction) and con-
struction of a prediction algorithm, precluding the need for separate
steps of extracting hand-crafted radiomic features and using that as an
input for a ML algorithm to construct a prediction model. Another
main advantage of CNN is the ability to learn complex datasets and
achieve high performance without prior feature extraction. The disad-
vantage is the additional hyper-parameters required to tune the CNN
for better performance including the number of convolution filters,
the size of the filters, and parameters involved in the pooling. Further-
more, due to the numerousweights in CNN,more data is required to de-
termine the optimal values for the weights involved. Therefore, this
approach may not be the optimal approach for pilot studies with small
datasets.
Fig. 6. Example of a convolu
4. Application ofMachine Learning for Biomarker Development and
Construction of Prediction Models

4.1. Radiomic Models for Prediction and Prognosis

The ultimate goal of the radiomics approach is to build predictive
models for treatment outcome and for risk assessment, based on quan-
titative phenotypic characteristics of the tumor computed from radio-
logical images and other clinically available information [30,47]. In
essence, radiomics consists of converting images into a high-
dimensional feature space that can be studied via statistical and ma-
chine learning methods. It should be noted that extraction of texture
or radiomic features by itself does not necessarily require AI. However,
AI (ML) is used to construct prediction models that can learn from
existing datasets and analyze and perform predictions on related but
new datasets. Therefore, a radiomic pipeline may be constructed by
combining a computerized image analysis software (for image analysis
and feature extraction) and a ML approach (either classic ML or deep
learning) for constructing prediction models. Alternatively, DL may be
used to perform both tasks (i.e. image analysis and construction of pre-
diction models). This is a clear advantage of DL and highlights the great
interest in this technology for applications in medical imaging. How-
ever, the relative disadvantage are the larger datasets required for con-
structing reliable algorithms that may be a disadvantage for early
studies and pilot investigations, especially on uncommon disease enti-
ties or disease entities requiring significant sub-stratification resulting
in small patient numbers, as has been alluded to earlier.

Once a predictive model is built from a training set of images (as-
sumed to be representative of the overall disease population), it then
becomespossible to classify a newpatient into a particular risk category,
or to predict that patient's response to a particular therapy. Ideally, the
classification performance of the model needs to be validated on a
dataset that is independent from the initial training set of images, for in-
stance acquired at a different institution and/or on different scanning
machines. When truly independent validation datasets are not avail-
able, another option is to divide the initial training set into several sub-
sets, train themodel on some of the subsets and validate it on the others,
a method known as cross-validation [38].

If the initial training set contains time-to-event data, for instance pa-
tient survival information, then, in addition to treatment outcome pre-
diction, it also becomes possible to perform prognostic time-to-event
analyses (e.g., [18]). The prognostic performance of radiomic models is
evaluated using metrics different from the ones used to assess predic-
tion performance. While the latter can be evaluated using Receiver Op-
erating Characteristic (ROC) curve metrics, prognostic performance can
be assessed for instance with Kaplan-Meier analysis, using the log-rank
test between risk groups, or via an index of rank correlation between
predicted and observed outcomes. This index is known as the concor-
dance index [48,49] and is a popular measure of model performance
in survival studies. It measures the concordance between the rankings
of the survival times and the model output. In other words, it measures
tional neural network.
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the ability of a model to discriminate between groups of patients based
on survival times.

4.2. Model Building

4.2.1. Feature Selection
Regardless of the final application, the radiomics model building

pipeline begins with an analysis of the individual features computed
from the input images. Given the largenumber of such features involved
in a typical radiomics study, a feature pruning step is required prior to
moving on to the actual classification task. This is because the computa-
tion of a large number of features from a few matrices can result in
many features that are redundant and/or highly correlated, which in-
creases dramatically the dimensionality of the problemwithout adding
useful information. Furthermore, the discriminatory power of features
depends on the task. Thus, many of the computed features may be irrel-
evant for a given task. Because of this, reducing the number of features
by selecting the most relevant features for a particular application can
significantly increase classification performance [50], though this is
not always the case [51].Wenote that feature selection is not a task spe-
cific to radiomics, but rather is common to many, if not all, large scale
data-mining problems. Furthermore, it is important to be aware that
feature selection may results in biased performance with small finite
datasets and imbalanced datasets [52,53]. A more detailed discussion
of feature selection is beyond the scope of this article but can be found
elsewhere [35,52,53].

Three main strategies for feature selection have been proposed in
the literature. Wrapper methods use a given classification algorithm to
score different subsets of features, based on their classification perfor-
mance [54]. Filter methods select features in a pre-processing step, in-
dependently of any classification method. In essence, wrapper
methods measure the “usefulness” of features in a practical classifica-
tion task, while filter methods focus on the ‘intrinsic’ value of each fea-
ture. The third category is that of Embedded methods. They are similar
towrappermethods, in that features are selected as to optimize the per-
formance of a learning algorithm. However, unlike wrapper methods
which use the classificationmethod as an external black box to rank fea-
tures, here the variable selection is an inherent part of the learning algo-
rithm itself [50].

Some of the simplest methods in the filter category consist in the
ranking of features based on their individual discriminatory power,
which can be measured, for instance, with correlation criteria, or
information-theoretic criteria [50], or with tests for statistical signifi-
cance such as the Mann-Whitney U test [55]. The features are then
ranked and a pre-determined number of featureswith the highest rank-
ings are selected. One example is the minimum redundancy maximum
relevance (mRMR) method which computes and ranks features based
on the mutual information between the features and an outcome [35].
Another popularmethodwithin the Filter categorymakes use of Fisher's
linear discriminant, which is defined based on the ratio of between-
class variance to within-class variance (e.g., [56,57]).

While feature ranking is a simple and computationally-efficient ap-
proach, it also comes with several problems. One obvious problem is
that features are considered independently of each other, and any inter-
actions between them are ignored. It can be shown that a better ap-
proach consists in selecting subsets of features that together have a
good predictive power, as opposed to focusing on the predictive
power of individual features. On the other hand, searching for optimal
groups of features is much more computationally expensive than
searching for individual features. In fact, an exhaustive search of all pos-
sible feature combinations becomes quickly intractable.

Because of that, methods within the Wrapper category need to de-
vise search strategies over the feature spacewhich keep the search trac-
table while also optimizing performance and reducing the risk of
overfitting. Greedy search strategies have been shown to be particularly
advantageous, examples of such strategies including e.g. Forward- and
Backward Stepwise Selection [38], or Recursive Feature Elimination al-
gorithms [58]. More advanced search algorithms include, for instance,
genetic algorithms [59].

The advantage ofwrappermethods is that they can be usedwith any
classification algorithm to evaluate the prediction performance of a sub-
set of features, which makes them, in essence, universal. Embedded
methods do not have this advantage of universality, as by definition
they are specific to the particular classificationmethod they are embed-
ded with. At the same time, they are more efficient in several aspects.
For instance, they do not need to re-train the classifier from scratch
for every new feature subset under investigation, as the selection is in-
trinsic to the model training. A prominent example of an embedded
method is the Least Absolute Shrinkage and Selection Operator
(LASSO) [60], which alters standard regression methods by selecting
only a subset of the available covariates.

4.2.2. Predictive Modeling
A range of algorithms for predictive modeling have been proposed

and investigated over time, fallingwithin two broad categories. Classifi-
cation methods aim to predict two or more distinct class labels, for in-
stance, benign vs malignant, or a particular tumor grade, or good vs
bad response to treatment. Regression algorithms typically aim at
predicting continuous variables, for instance, survival time, although re-
gression can also be adapted to predicting discrete outcome variables as
well, as in the case of logistic regression. In either case, the algorithms
learn a mapping from the input feature space to an output variable,
whether a class label or a continuous value [38].

Classical machine learning methods, such as those reviewed in the
earlier sections, have proven very useful in a variety of applications
and produce classifiers that are relatively easy to train and use. How-
ever, heterogeneous datasets of ever-increasing size and complexity
have becomemore andmore common, andoftentimes exceed the capa-
bilities of individual classifiers. This insight has led to the development
of two strategies based on ensembles of classifiers: bagging and
boosting [38]. Both make use of a large number of “weak learners”,
which are relatively simple classifiers, each trained only on part of the
data. The estimate produced by each weak learner is then aggregated
into an overall decision using mechanisms such as voting. In this man-
ner, a large number of weak learners are combined to produce one
strong learner.

In the case of boosting, a sequential training process creates a cas-
cade of weak learners, such that at each subsequent step, weak learners
focus on data that was the most difficult to classify at the previous step.
A prominent example of the boosting strategy is theAdaBoost algorithm
[61]. As for bagging, it is based on the idea of generating random sub-
samples of training data and features to train the weak learners. The
predictions obtained on each random subsample are then combined
to reach anoverall decision.One of themost popular algorithms that fol-
lows the bagging strategy is the Random Forests method discussed ear-
lier, based on the Decision Tree algorithm as a weak learner [62].

As radiomics is still a young and emerging discipline, it seeks to bor-
row the best tools that themachine learning field has to offer. However,
it is not yet clearwhether one particular choice ofmodeling algorithm is
better than another, orwhether one particular feature selection strategy
outperforms another. To address these questions, recent research has
begun to look into comparing different feature selection and classifica-
tion methods in terms of their performance in the radiomics context
[11].

As discussed earlier, more recently, DL has emerged into the main-
streamandhas rapidly becomevery popular in awide variety of techno-
logical domains [63]. Such learning models are implemented with
multi-layer artificial neural networks, and are able to perform simulta-
neously feature construction, feature selection and predictionmodeling,
essentially performing an end-to-end analysis from input data to pre-
diction. As such, they are very powerful learning algorithms, however,
just as any other tool, they come with their own strengths and
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limitations. Because of the inherent model complexity, they require
much larger datasets than classical machine learning algorithms. In
some domains, such as online photo classification or social network
analyses, online data is abundant and lends itself well to deep learning
analyses. In the specific context of radiology, on the other hand, datasets
are often limited due to practical, legal and ethical constraints, and deep
learning algorithms need to be adapted to overcome the limitations of
small radiological datasets. A thorough review of deep learning and its
applications to radiology is outside the scope of the present paper, but
extensive literature has been published on this topic [64–73].

5. Selected Examples of Radiomics and ML for Oncologic Evaluation

In this section, we will provide a few examples of radiomics and ML
applications for tumor evaluation to familiarize the readerwith applica-
tions of these techniques. Thesewere selected by the authors to demon-
strate applications for the evaluation of different pathologies and
provide an example of how this technology may be used, using a com-
bination of work from other groups and the author's groups. It should
be noted that this is not meant in any way to constitute an exhaustive
or representative review of the various applications published in the lit-
erature. In reviewing these examples, the reader should keep in mind
that given the large number of feature selection, classification and pre-
diction modeling algorithms available, it is not a priori clear which par-
ticular method (or a combination of methods) would perform best in a
given study. This is why several radiomics studies have been carried out
with the dual objective of (a) learning a model to predict outcome, or
response to treatment, or to classify tumor histological type and
(b) compare the performance of different feature selection and classifi-
cation methods.

5.1. Example 1

An example is a study byWu et al. [74], which investigates the asso-
ciation between radiomics features and two histological subtypes of
non-small cell lung cancer (NSCLC): adenocarcinoma and squamous
carcinoma. The studyworkedwith two independent cohorts of patients,
one training cohort consisting of 198 patients, and a testing cohort
consisting of 152 patients. In all cases, the histological type of cancer
was confirmed using histopathology.

The image processing pipeline involved 440 3D radiomic features,
described in Aerts et al. [10] and extracted from manually delineated
tumor regions from each patient's pre-treatment CT images. Then, fea-
ture selection was performed in a two-step procedure. First, a correla-
tion matrix representing the correlation coefficients between all pairs
of features was computed, and those features exceeding a certain
correlation threshold were removed, resulting in a smaller set of non-
redundant features. In the second step, 24 different univariate filter-
based feature selection methods were applied to the smaller subset of
non-redundant features. These univariate feature selection methods
rank individual features based on their discriminating abilities between
classes. The top-ranking features were then selected, and classification
into two classes (adenocarcinoma or squamous carcinoma) was per-
formed using one of three different algorithms: Random Forests, Naïve
Bayes, and K-nearest neighbors.

To compare performance across these three different classifiers, a
representative AUC for each classifier was defined as the median AUC
across the 24 feature selection methods used in conjunction with this
classifier. In this manner, Naive Bayes was found to give the best perfor-
mance (AUC= 0.72), while K-Nearest Neighbor showed the worst per-
formance (AUC = 0.64). Random Forests was the least sensitive to
feature selection methods as it showed very little standard deviation
in AUC. This is not surprising, since Random Forests is an ensemble
method with embedded feature selection, as discussed earlier, and
therefore is expected to bemore robust to variations in external feature
selection methods. As for the feature selection methods, one particular
method was found to give the highest performance with all three clas-
sifiers (RELIEF feature selection; [75]).

5.2. Example 2

Whilemore recent radiomics studies use an ever-increasing number
of radiomic features, usually in the hundreds or even in the thousands,
earlier methods usually referred to as ‘texture analysis’ use a much
smaller number of features, as well as simpler statistical analysis
methods. An example of such an approach is found in the study by
Lubner et al. [76], where 77 patients with liver metastases of colorectal
cancer were studied to determine whether features computed on CT
images relate to pathology and clinical outcomes. Single hepatic meta-
static lesions on pre-treatment contrast-enhanced CT scans were man-
ually contoured, the histogram of pixel intensity values in the
contoured region was constructed, and six features were computed
from this histogram: its mean, standard deviation, entropy, kurtosis,
skewness, and mean of positive pixels. The original CT images were
then smoothed at six different smoothing levels, using a Laplacian-of-
Gaussian filter, in order to enhance structures at different spatial scales,
ranging from coarse to fine. The six features were computed at each of
the six different smoothing levels. This processing was carried out
with the commercial software TexRAD (TexRAD Ltd., Somerset, UK),
and is typical for studies falling into the ‘Texture analysis’ category.

Given the small number of features involved, the statistical analysis
is relatively simple. The association of image features with numerical
and ordinal variables (e.g., tumor grade) was tested with least squares
or linear regression analysis, respectively. This analysis was performed
for each of the six features at each level of image smoothing. Logistic re-
gression was used for binary variables, e.g. KRAS mutation status. For
survival and time-to-event analyses, Cox proportional hazards regres-
sions were performed. Based on their results, the authors concluded
that there is an association of CT image features with pathologic charac-
teristics and clinical outcomes. Given that the histogram features used
in this study can be broadly related to image heterogeneity, the authors
suggest that tumors that are more homogeneous (less entropy, smaller
standard deviation and higher in attenuation) are potentially more ag-
gressive, with higher tumor grade and poorer overall survival.

5.3. Example 3

Another example of a texture analysis approach with TexRAD soft-
ware on breast cancer imaging can be found in the study by Chamming's
et al. [77]. In this study, the goal was to test whether the same
histogram-based image features described above, computed on
pre-treatment MRI images, can be associated with pathologic complete
response (pCR) after neoadjuvant chemotherapy in breast cancer. In ad-
dition to response, this study also explores the association between
image features and tumor subtypes on pre-treatment MRIs. Manual
contouring of lesionswas applied on T2-weightedMR imaging and con-
trast material–enhanced T1-weighted MR imaging on 85 patients with
breast cancer.

Univariate analysis discovered two features that underscored a sig-
nificant difference between triple-negative breast cancer and non–
triple-negative breast cancer. Another feature was found to show a sig-
nificant difference between pCR and non-pCR. In addition, multivariate
logistic regression found one feature (kurtosis) that was independently
associated with pCR in non– triple-negative breast cancer (P= .033). A
multivariate model incorporating kurtosis in both T2-weighted and
contrast-enhanced T1-weighted imaging had a good performance for
predicting triple-negative status for breast cancer (AUC = 0.834).

5.4. Example 4

Another example is application of radiomics for the evaluation of
glioblastomas performed in the study by Kickingereder et al. [78]. In
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this study, a total of 119 patients with newly diagnosed glioblastoma
were evaluated. 12,190 radiomic features were extracted from the
multiparametric (contrast material–enhanced T1-weighted and fluid-
attenuated inversion-recovery imaging sequences) and multiregional
(contrast-enhanced and unenhanced) tumor volumes. The MR images
were treated with both discrete and stationary or undecimated wave-
let transformations sequentially along the three spatial dimensions to
generate eight additional transformed images each. Discrete and
undecimated wavelet transformations enabled a multiscale represen-
tation of imaging data while decomposing edges and uniform image
regions into low– and high–spatial frequency regions. Supervised
principal component (SPC) analysis was performed on radiomic fea-
tures of patients in the training set to predict progression-free survival
(PFS) and overall survival (OS). The performance of a Cox proportional
hazards model with the SPC analysis predictor was assessed with C
index and integrated Brier scores (IBS, lower scores indicating higher
accuracy) and compared with Cox models based on clinical (age and
Karnofsky performance score) and radiologic (Gaussian normalized
relative cerebral blood volume and apparent diffusion coefficient) pa-
rameters. SPC analysis allowed stratification based on 11 features of
patients in the training set into a low- or high-risk group for PFS.
The results were verified in the validation set for PFS. The perfor-
mance of the SPC analysis was higher compared with that of the ra-
diologic and clinical risk models. The performance of the SPC
analysis model was further improved when combined with clinical
data. In summary, the authors identified an 11-feature radiomic signa-
ture derived from MRI for prediction of survival and stratification of
patients with newly diagnosed glioblastomas. The signature showed
improved performance compared with that of established clinical
and radiologic risk models.
5.5. Example 5

In this example, we discuss a study using CT and PET imaging data
from 300 head and neck cancer patients from four institutions by
Vallières et al. [18]. The outcomes studied were risk of locoregional re-
currences (LR), distant metastases (DM), and overall survival (OS).
The ROI was the gross tumor volume, from which 1615 radiomic
features were extracted. Clinical variables (age, T-Stage, N-Stage,
TNM-Stage and human papillomavirus status) were also available for
analysis. Initially, only radiomic features were used. Feature set reduc-
tion, feature selection, prediction performance estimation, choice of
model complexity and final model computation processes were car-
ried out using logistic regression, imbalance adjustment, and boot-
strap resampling. Then, radiomic models (CT-only, PET-only, PET-CT)
were combined with clinical variables using Random Forests. The
highest performance for LR prediction was obtained using the model
combining the PET-CT radiomic model with clinical variables, with
an AUC of 0.69. For DM prediction, the highest performance was ob-
tained using the CT radiomic model, with an AUC of 0.86. The highest
performance for OS prediction was obtained by combining the PET
radiomic model with clinical variables, with an AUC of 0.74. Thus,
only for prediction of DM were images able to supplant the need for
clinical variables. In a follow-up study [79], the CT images alone
were used to predict the same outcomes using deep learning. The hy-
pothesis was that CNNs could enhance the performance of traditional
radiomics by detecting image patterns that may not be covered by a
traditional radiomic framework. Instead of relying on transfer learn-
ing, the network was trained de novo. This approach resulted in an
AUC of 0.88 in predicting DM. When the CNN output score was com-
bined with the previous model, the AUC improved to 0.92. This shows
the complementarity of the two approaches of feature-extraction-
based radiomics and deep learning. Certain layers of the CNN were
shown to explicitly recognize the radiomic features that the original
study found to be predictive.
5.6. Example 6

In this final example, we will review applications of radiomics and
ML for evaluating head and neck pathology by using large multi-
energy datasets derived from dual-energy CT (DECT) scans. DECT is an
advanced type of CT where attenuation data acquisition is performed
at two instead of one peak energy [80–82]. This enables multi-energy
or spectral tissue characterization and reconstruction of image sets far
beyond what is possible with a conventional single energy CT. One
type of image that can be reconstructed using DECT is the virtualmono-
chromatic or virtualmonoenergetic image (VMI). These images are cre-
ated using sophisticated computer algorithms and simulate what an
image would look like if acquired at a pre-determined energy level.
The energy range for VMIs that can be created varies based on the scan-
ner used but typically includes at least energies between 40 and
140 keV. There are currently few investigations applying texture analy-
sis or radiomics to DECTdatasets and no standard accepted approach for
radiomic analysis of DECT scan data. However, one proposed approach
is to analyze multiple energy VMIs, ranging from low energy VMIs
that accentuate enhancement characteristics of tumors and other le-
sions to high energy VMIs that approach what an uninfused CT scan
would look like [19,20,83]. The idea is to capture the energy-
dependent properties of tissues which can be different between normal
tissues and pathology. This can then potentially be leveraged to improve
prediction model performance.

In a study by Al Ajmi et al. [19], texture analysis was performed on
multi-energy VMI datasets ranging between 40 and 140 keV, in steps
of 5 keV, resulting in 21 VMI datasets. These were then compared to
the 65 keV VMIs, typically considered equivalent to a standard single
energy CT acquisition [84–86]. 40 patients were evaluated and the
study used a basic testing paradigm: distinction and histologic classifi-
cation of the two most common benign parotid neoplasms as either
pleomorphic adenoma or Warthin tumor. Texture analysis was per-
formed using the commercial software TexRAD, and prediction models
were constructed using Random Forests. The ML part included internal
cross-validation and randomly selected independent training and test-
ing sets. For single-energy datasets, the accuracy for correct tumor clas-
sification was 75%. This accuracy is not very high, considering a
straightforward classification paradigm, but this is not surprising
given the small patient numbers. The design was also done on purpose
as part of the design to enable an evaluation of the potential for multi-
energy analysis, meaning that the potential could be masked if the ref-
erence standard had a very high accuracy to begin with that would
not allow much room for improvement. When the 21 multi-energy
VMI set on the same cases was evaluated, the accuracy increased to
92%. This suggests that the additional quantitative information in
DECT datasets has the potential to improve prediction in radiomic
studies.

Thepotential value ofmulti-energy radiomic analysiswas confirmed
in a subsequent study by Forghani et al. [20] using DECT scans of 87 pa-
tients with head and neck squamous cell carcinoma (HNSCC). In the lat-
ter study, the texture or radiomic features of the primary tumor were
used to predict associated lymph node metastases. This is important
clinically because detection of early nodal micrometastases remains a
challenge using current imagingmethods [87,88], which in turn can re-
sult in over-treatment of some head and neck cancer patients with un-
necessary neck dissections [89–92]. This study also used Random
Forests as ML method, with internal cross-validation and randomly se-
lected independent training and testing sets. Using data extracted
from the 65 keV VMIs typically considered equivalent to a conventional
single energy CT, the prediction accuracy in the subgroup of patients
that had no prior treatment (n = 64) was 60%. However, using multi-
energy analysis, the accuracy increased to 88%. This study again demon-
strates the potential added value of the additional quantitative spectral
information in DECT scans for radiomic studies. It also demonstrates the
potential for a clinical assistant tool that can be combined with expert
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radiologist evaluation to increase accuracy for accurate identification
and exclusion of early nodal metastases.

6. Beyond Image Analytics: Big Data Integration for Oncology
Using AI

In this article, we have focused on radiomics and applications of AI
on analysis of medical images for improving diagnostic tumor evalua-
tion. This is a very exciting area of research and application of AI with
great potential for improving oncologic care. However, it is worth em-
phasizing that medical image analysis is one of many potential applica-
tions of AI in oncology. In the future, AI is likely to assist technologists
and enhance the scan acquisition process, including patient positioning
and tailoring image dose optimally to an individual patient. AI is already
being tested at the time of image acquisition for improving image qual-
ity. As an extension of image evaluation, AImay be used to generate pre-
liminary reports that can then bemodified by the supervising physician,
one step among various potential steps in increasing efficiency. Lastly,
combined with natural language processing, AI can be used to analyze
the entire electronic medical record, providing chart summaries and
combining different clinical information with that obtained from the
patient's imaging studies and laboratory work up to improve the diag-
nosis of challenging cases or rare syndromes, follow up on results, etc.
There is also the entire field of applications of AI for analysis of digital
pathology slides, similar to what is being done with medical images.
These are just a few examples of the potential of this technology to
change and revolutionize the way we practice medicine, if correctly
and successfully implemented.

7. Challenges and Barriers

Despite the great potential of the radiomics and ML approaches
discussed so far, significant challenges remain, and major barriers
have to be overcome if this technology is ever to gain widespread use
and be applied routinely in the clinical setting. We will begin by a dis-
cussion of technical challenges. Some of these were briefly alluded to
in the earlier section on radiomics workflow but will be discussed
more in-depth here. One of the main challenges pertains to the replica-
bility of radiomic studies, a pre-requisite for widespread clinical imple-
mentation. The firstmajor source of variation to be considered are those
related to the image acquisition and reconstruction process. Major
sources of variation include (1) various scan acquisition parameters,
(2) the degree of enhancement achieved on a given scan which in
turn depends on timing of a contrast agent, an individual patient's circu-
latory dynamics, and the specific anatomical location of the area or le-
sion of interest, (3) wear and tear of a given scanner, (4) differences
in manufacturer or model type of a scanner, and (5) differences in re-
construction parameters, including but not limited to application (and
degree) of iterative or other image reconstruction algorithms. There is
a trend for technique standardization that may help but is unlikely to
be sufficient by itself for completely addressing all of the potential
sources of variations described. Application or pre-processing with dif-
ferent image normalization or style transfer methods is one potential
solution for overcoming these technical barriers.

The next step, image segmentation, also represents a significant
source of variability. When done by a human, the two main reasons
for discrepancies are differences in education and training
(e.g., between a radiologist, a radiation oncologist, or other specialist in-
volved in the care of an oncology patient) and differences in experience
level. Even though in principle, both of these sources can be addressed
by having an unambiguous delineation protocol, in practice, studies
show that this may not work [93]. Semi-automated approaches can
help reduce this variability but are still reliant on human input [30].
Fully automatic segmentation may be achieved through deep learning;
in this case, the choice of training set is crucial, as the algorithm will
learn to faithfully reproduce the contouring practice of the humans
who annotated the training data. At the core of this uncertainty is the
question whether there is such a thing as the objective “ground truth”.
Current clinical gold standards are not absolute, although in that regard
the consistency of an algorithmmay actually be an advantage, as long as
one focuses on the specific clinical endpoint of interest. Therefore, the
ideal way to eliminate this problem is to avoid segmentation altogether
and have the deep learning algorithm establish the relevant parts of the
image without the need for a ROI. However, while this is theoretically
possible given enough training data, there are no publications to date
that have shown a convincing proof of principle.

As mentioned previously, the third step of the workflow, feature ex-
traction, is the easiest to standardize. However, there is the possibility
that instead of a consensus in the form of a single software platform
that is used globally, there emerge several competing platforms. None-
theless, even this turn of events would be sufficient for replicability,
since by adhering to a certain standard, it would make the task of fea-
ture traceability (exact definition and method of computation) trivial.
Contrast this with the status quo of using in-house software and provid-
ing insufficient detail in resulting publications.

The final step, which includes feature set reduction, model building,
and validation, is unlikely to be standardized. This is because this step is
critical in terms of achieving high model performance (e.g., accuracy),
and researchers (and companies providing radiomic models) are
going to use their ingenuity to push performance to its limit. For re-
searchers, a requirement of sharing the code used for a published
study is the best way to enhance replicability. For companies, they
may not agree to share code, in order to avoid losing their competitive
edge and to protect their intellectual property. In this case, it would be
useful if the company made the model available to researchers free of
cost for widespread testing. A mandatory component for any clinically
implemented algorithm would be periodic independent testing to en-
sure proper functioning of the algorithms and ensure that the algorithm
has not been corrupted, as part of an active quality assurance process.
Lastly, it is important to emphasize the need for basic fundamentals, in-
cluding readily mineable systems and records and robust information
technology health infrastructure with systems that can readily ex-
change data. As simple as thismay sound, thismaybe thebiggest imme-
diate challenge to taking advantage of the full potential of AI.

Beyond the technical considerations that have been discussed in de-
tail, there are also ethical and regulatory considerations thatmust be ad-
dressed. By default, successful implementation of any big data project
will likely require access to large datasets. This brings up important is-
sues pertaining to informed consent, protection of patient privacy, and
the principle of “the right to benefit from science”. For example, is it ac-
ceptable to imply consent unless explicitly withdrawn or do patients
have to explicitly consent to have their data used anonymously for re-
search and algorithm construction? This requires a risk benefit analysis
for the patient and society as a whole. The practicality of access to large
datasets will also vary based on the health care systemorganization. For
example, one may argue that access to data would be easier in a single
payer system covering large territories (assuming there is interest and
buy in from the decisionmakers) compared tomore fragmented health
systems, although the latter may have the advantage of more efficient
(presumably) decisionmaking and implementation compared to larger
government run systems. Regardless of which approach is taken, i.e. im-
plied versus explicit consent, strong protection of patient privacy and
systems that would prevent misuse of patient protected information
are mandatory.

There are also important regulatory and legal considerations. The
first is a certification process that is reliable and robust. This can be a
challenge given that some of ML approaches at least in part include a
“black box” component, but it is not insurmountable. The use of inde-
pendent testing platforms and periodic monitoring and quality assur-
ance will be helpful in this regard for ensuring proper performance
and increasing public confidence. The other major issue that arises is
who is to blame, or liable, when things go wrong? So far, the approach
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has been to use different software as supporting tools, and the supervis-
ing physician is ultimately responsible, and by extension liable, for the
final decisionmade. However, with increasing complexity and sophisti-
cation of the clinical assistant AI tools, there will likely be a component
of liability for the companies providing these algorithms, just like any
other medical device. The liability will further be shifted towards soft-
ware developers if certain routine tasks are ever completely automated
without human supervision, or certain types of studies, for example cer-
tain types of normal studies (for example amammogram that is normal
– i.e. does not demonstrate any pathology), are evaluated solely by a
software without human intervention. These are challenges that will
likely require inter-disciplinary engagement by medial professionals,
legal professionals, ethicists, and society as a whole for optimal resolu-
tion and decision making.

8. Conclusions

In this article, we have provided an overview of radiomics and AI/
ML, focusing on radiomic analysis and prediction model construction
in oncology. We have provided an overview of the fundamentals of
these approaches, their potential, as well as barriers for widespread im-
plementation. Although there are clearly significant challenges that
need to be overcome, there is undoubtedly great potential for the use
of radiomics for improving diagnostic evaluation and care of oncology
patients. By enabling extraction of higher-level data that is currently
largely under-utilized in routine clinical practice, the field of radiomics
and AI has the potential to revolutionize oncology, providing a platform
for more personalized, higher quality, and cost-effective care for oncol-
ogy patients. The multiple challenges highlighted in this article repre-
sent exciting areas for future research and development.
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