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Abstract: Existing national- or continental-scale models of nitrogen dioxide (NO2) exposure have a
limited capacity to capture subnational spatial variability in sparsely-populated parts of the world
where NO2 sources may vary. To test and validate our approach, we developed a land-use regression
(LUR) model for NO2 for Ningxia Hui Autonomous Region (NHAR) and surrounding areas, a
small rural province in north-western China. Using hourly NO2 measurements from 105 continuous
monitoring sites in 2019, a supervised, forward addition, linear regression approach was adopted to
develop the model, assessing 270 potential predictor variables, including tropospheric NO2, optically
measured by the Aura satellite. The final model was cross-validated (5-fold cross validation), and
its historical performance (back to 2014) assessed using 41 independent monitoring sites not used
for model development. The final model captured 63% of annual NO2 in NHAR (RMSE: 6 ppb
(21% of the mean of all monitoring sites)) and contiguous parts of Inner Mongolia, Gansu, and
Shaanxi Provinces. Cross-validation and independent evaluation against historical data yielded
adjusted R2 values that were 1% and 10% lower than the model development values, respectively,
with comparable RMSE. The findings suggest that a parsimonious, satellite-based LUR model is
robust and can be used to capture spatial contrasts in annual NO2 in the relatively sparsely-populated
areas in NHAR and neighbouring provinces.

Keywords: air pollution modelling; nitrogen dioxide; satellite-based model; land-use regression;
exposure assessment; China
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1. Introduction

Air pollution is implicated in an estimated 4 million premature deaths globally each
year [1]. The increasing global health burden attributable to air pollution is driven by
population and economic growth, reflecting rapid industrialisation and urbanization,
particularly in developing nations [2,3]. The highest burden of disease due to outdoor air
pollutants as quantified by Disability Adjusted Life Years (DALYs) or years lost due to
ill-health has consistently been recorded in Asia and Africa (2029–2751 age-standardised
DALYs per 100,000 population) [4,5]. Similarly, global death rates (age-standardised)
attributable to ambient air pollution vary by a factor of 10 between high-income countries
(8 per 100,000 population) and low-to-middle-income countries (LMICs, 85 per 100,000
population) [1]. These severe health inequalities highlight the need for valid estimates of
air pollution exposure in LMICs.

Of the major outdoor air pollutants, nitrogen dioxide (NO2) is one of the key indi-
cators of anthropogenic sources, such as traffic and industrial emissions [6,7]. NO2 is
also an important precursor of other important air pollutants, such as ground-level ozone.
However, the spatially heterogenous nature and diverse range of NO2 sources presents
several challenges for modelling [8,9]. For instance, NO2 levels have been shown to decay
rapidly within ~150 to 200 m of major roads [6,9]. Industrial activities such as combustion
of fossil fuels in power stations can affect NO2 concentrations more subtly but over greater
distances [10]. Generally, in urban settings, NO2 sources include coal combustion and
vehicle emissions, whilst in less populated areas, contributors to NO2 levels are more likely
to be regional-scale industrial emissions [11,12].

The rural and urban contrast in terms of NO2 sources is particularly apparent in China.
At the start of this century, environmental policies in growing urban centres, such as Beijing
and Shanghai, have led to a transition from coal to cleaner energy sources. There have
also been restrictions on high-emitting vehicles [12,13]. In rural areas, however, coal is
still widely used for power generation and at household level for cooking and heating. In
farming areas, the use of agricultural fertilisers, machinery, and equipment can also affect
NO2 concentrations [14]. As a result, NO2 exposure assessment requires consideration
of both local and regional sources of the pollutant. This is particularly relevant to China,
which has distinctively different sources of NO2 in large cities compared with sparsely
populated rural areas in the north-west of the country [12,14].

Land-use regression (LUR) is an approach to NO2 exposure assessment modelling that
has been used since the mid 1990s. More recently, however, LUR models have sought to
combine satellite observations and ground level measurements with known predictors of
NO2 pollution [15,16]. An LUR model offers improved spatial coverage and discrimination
compared with what is achievable with fixed monitoring stations alone, as it can be applied
to estimate air pollution exposure even in non-measured locations at an intra-urban or local
scale [17,18]. There has been increased research interest in satellite-based LUR modelling of
NO2, where tropospheric NO2 and other remotely sensed variables are used as a spatially-
varying predictor of measured ground-level concentrations. However, existing literature is
limited to global, continental models or large urban centres [7,15,16,18–20].

Current LUR models in China have potential limitations regarding their coarse spatial
resolution (>10 km) and temporal span, which may limit validity of estimates of fine-scale
intra-urban NO2 concentrations [21–23]. Additionally, the relatively limited number of
monitoring sites (sample size) included in model development in previous sub-national
models for China may limit the validity of their NO2 predictions [21,23–26]. The use of
less spatially refined (13 × 24 km2 at nadir) NO2 satellite measurements and other ge-
ographically varying predictors is also a limiting feature in current NO2 models in the
country [21,23–27]. Whilst spatially refined and cross-validated global and national LUR
models exist for China, their validity and generalisability to sparsely populated areas is un-
known, as is the question of whether models with smaller spatial extent (e.g., sub-national)
are valid in those areas [7,28].
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As existing air pollution models have focused on understanding the spatial variability
of NO2 in more densely inhabited local urban environments, and at a national scale,
the ability of such models to assign exposure associated with rural emissions is unclear.
Therefore, the objective of this study was to develop a LUR model for annual NO2 levels in
Ningxia Hui Autonomous Region (NHAR) a sparsely populated province with income
levels and life expectancy well below the average for China [29]. The development of the
model was motivated by intention of examining the effects of NO2 and other ambient
pollutants on respiratory disease outcomes in Ningxia Hui Autonomous Region. We
aimed to capture important sources of NO2 exposure in a sparsely-populated region
of China for which there are no comparable sub-national models. We also sought to
independently validate the model against historical measurements. The findings presented
in this study may inform future NO2 exposure assessment applications outside the study
area by identifying important predictors of NO2 in other rural and semi-rural regions in
China and beyond.

2. Materials and Methods
2.1. Study Area

Ningxia Hui Autonomous Region is the smallest provincial-level autonomous region
located in Northwest China. Ningxia’s territory covers an area of 66,400 km2. Administra-
tively, NHAR is divided into five prefecture level cities (Yinchuan (2.3 million population);
Shizuishan (734,400 population); Wuzhong (1.4 million population); Guyuan (1.2 million
population); and Zhongwei (1.2 million population)) that are subsequently subdivided
into counties/districts/county-level cities, townships, and villages [29–31]. The total popu-
lation of NHAR exceeds 7.2 million people (>46% of the population inhabit rural areas),
ranking 30th and 28th in population size and density (108 persons per km2), respectively,
of 34 provincial level administrative divisions in China [31]. NHAR has one of the lowest
GDP outputs in the country [29,31].

The study area was extended to a 500 km radius centred on Ningxia province as
a balance between increasing the number of monitoring stations without substantially
changing the relationship between predictors and NO2 (i.e., the study area was assumed
to be broadly similar to NHAR in NO2 sources and spatial variability). By expanding the
study area beyond Ningxia, the number of available monitoring stations increased from
19 to 123 (Table S1). As a result, the study area also encompassed parts of Inner Mongolia
Autonomous Region (24 million population), Gansu (25 million population), as well as
Shaanxi Province (24 million population) (Figure 1). Including Shaanxi Province ensured
inclusion of important regional sources and predictors of NO2 pollution, such as mining
sites and coal power stations. Dominant sources of NO2 emissions are primarily located
in south-eastern parts of Shaanxi, namely in Tongchuan and Xi’an as well as in Baoji.
Shaanxi Province accounted for 34% of monitoring sites in the study region. Nitrogen oxide
emitting iron ore processing sites located in western areas of Gansu Province (Lanzhou,
Linxi, and Baiyin) were also captured in addition to petrochemical processing bases and
refining industries found in north-east of Yinchuan in Ningxia Province [32].

2.1.1. Measured NO2

Continuous, hourly ground-level NO2 measurements were obtained for the period
of 1 January to 31 December 2019 through OpenAQ [33]. This year was the first year for
which hourly NO2 measurements were publicly available for a full calendar year. OpenAQ
is an open-source portal that aggregates government-measured ambient air pollution data
and obtains air monitoring data for China from the Chinese Environmental Monitoring
Center (CEMC) as well as provincial-level Environmental Monitoring Agencies [33]. All
measurements were performed using standard chemiluminescence methods, following
Chinese Ambient Air Quality Standards (GB 3095—2012) and Ambient Air Quality Index
(AQI) technology (HJ 633—2012).
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Figure 1. Location and distribution of air quality monitoring sites in study area.

Quality control and consistency checks were applied to the daily monitoring data
to exclude monitoring sites with incomplete data (i.e., where measurements were not
available for at least 75% of the year) and/or missing coordinates (latitude and longitude to
five decimal places). A total of 123 sites were identified within a 500 km radius centred on
NHAR. Due to the strong seasonal variation in NO2, we sought to limit the potential for bias
due to missing data, and 14 sites were therefore removed (>25% missing daily monitoring
data in the year) [34]. Annual averages for 2019 were calculated for the remaining 109 sites.

2.1.2. Variables

Satellite and non-satellite-based predictors of NO2, were extracted from various data
sources (Table S2) and are summarised in Table 1. Selection of predictors that could best
capture the spatial variability of NO2 was informed by previous global, continental, and
national LUR models [7,15,17,19,28]. Predictors were calculated as averages within an area
defined by a circle of a specified radius around the monitoring site location (“buffers” with
22 radii ranging from 100 m to 10 km) or point estimates for the monitoring site.

Table 1. Predictor variables included in LUR model development *.

Variable (Units) Spatial Resolution Point or Buffer Estimate

OMI (Ozone Monitoring Instrument) NO2 observations (ppb) 10 km Point
Elevation (m) 90 m Point

Annual mean Temperature (◦C) 1 km Point
Annual mean Precipitation (mm) 1 km Point

Distance to nearest major road (km) - Point
Distance to nearest coal power station (km) - Point

Vegetation cover (%) 250 m Buffer Average
Tree cover (%) 30 m Buffer Average

Impervious surfaces (%) 250 m Buffer Average
Water cover (%) 500 m Buffer Average

Active Fires (fires/1000 km2/day) 10 km Buffer Sum
Population density (persons/km2) 1 km Buffer Average

Major roads (km) - Buffer Sum
Minor roads (km) - Buffer Sum

Power Plant Emissions (tons of CO2/year) - Buffer Sum
Land use by type—Residential, Commercial, and Industrial (%) - Buffer Average

* Further infor mation on predictor data sources can be found in Table S2. Buffer estimates were obtained for 22 buffer sizes, ranging from
100 m, 200 m, 300 m, 400 m, 500 m, 600 m, 700 m, 800 m, 1000 m, 1200 m, 1500 m, 1800 m, 2000 m, 2500 m, 3000 m, 3500 m, 4000 m, 5000 m,
6000 m, 7000 m, 8000 m, and 10,000 m.
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2.2. Model Development
2.2.1. Variable Selection

A total of 270 predictors were included for initial model development for the year 2019,
consisting of 264 buffer and six point variables. Predictors with >75% missing, repeating
(i.e., identical), or zero values across the monitoring sites were excluded (n = 88), leaving
182 for model development [16]. The predictors were centred and standardised to aid
interpretation and model convergence. The expected coefficient direction of each predictor
variable, based on empirical knowledge, was pre-defined (Table S2) following standard
LUR modelling practice [35,36]. Briefly, predictors reflecting sources of NO2 such as roads,
impervious surfaces, and population density, were defined to be positively associated with
NO2 levels. Predictors, such as water and tree and vegetation cover, were defined as being
negatively associated with NO2.

2.2.2. Model Development

A supervised forward stepwise linear regression approach was used. Starting with
the variable most correlated with measured NO2, variables were added to the model if:
(i) the regression coefficient followed the prespecified effect direction, (ii) they did not
change the coefficient direction of a variable already in the model, and (iii) they increased
adjusted R2 of the model by >1% [16,17,19]. The selection process was repeated until no
variables remained that satisfied the inclusion criteria. Forward stepwise linear regression
and diagnostic checks was performed using olsrr package in RStudio Version 1.4.1106 [37].

2.2.3. Model Diagnostics and Cross-Validation

Residual plots were visually checked (Figure S1), while collinearity was assessed
using variance inflation factor (VIF), with values >3 suggesting collinearity (Table 2). An
examination of influential observations was conducted using Cook’s distance (>4/n) and df-
beta values (>2/

√
n) (Figures S2 and S3). For all diagnostic metrics, any suspect sites were

sequentially removed and their effect on model composition and performance evaluated.
Each of these sites was also manually investigated in Google Earth to understand the
nature of the site and inform decisions about retaining or excluding the monitoring site
in the final model. For example, one of the sites was situated on a mountain peak, which
due to its elevated location, may have been subject to greater dispersion and wind dilution.
Concentrations captured by this site (7 ppb) were significantly lower than measurements
recorded in other areas in the city of Tianshui (Gansu Province) (26–40 ppb). Moran’s I was
used in ArcGIS to detect spatial autocorrelation in model residuals (Figure S4).

Table 2. Summary of final LUR Model.

Final Model Output Predictor, Buffer (Units) B * SE Adj. R2 VIF Contribution to Model (%)

R2: 0.64 Intercept 27.40 0.59
Adj. R2: 0.63 (OMI) tropospheric NO2, (ppb) 6.03 0.83 0.45 1.96 45%

RMSE: 6.1 ppb Major roads, 5 km (km) 3.02 0.80 0.53 1.76 8%
% RMSE: 21.9 % Vegetation cover, 1.8 km (%) −3.43 0.71 0.61 1.47 8%

Impervious surface, 7 km (%) 1.87 0.76 0.63 1.67 2%

* All predictors, including intercept, were significant at <0.05. Predictors were standardised and mean centred to allow for better
interpretation of coefficients (see supplementary information). Predictors are listed in the order they were added to the model. SE, standard
error; VIF, variance inflation factor; RMSE, root mean squared error (expressed as absolute in ppb and % of mean NO2 for all sites); ppb,
parts per billion.

The prediction error in terms of root-mean-square error (RMSE (in ppb and also as
a percentage of the mean of all monitoring sites)), mean absolute error (MAE), and R2 of
the final model was evaluated using 5-fold cross-validation. This approach partitions the
data into a training and a model building sub-set. The monitoring sites were randomly
divided into five sub-sets using the caret package in RStudio Version 1.4.1106 [38]. Four
data sub-sets were used to train the model and the remaining group to test the model
developed. The cross-validation process was repeated between 50 and 500 times to assess
stability of validation metrics (Table S3).
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2.2.4. Independent Evaluation

Independent evaluation of the final model was conducted using historical annual
NO2 measurements for 2014 and 2015 from monitoring sites in the study area that were
not available for developing the 2019 annual model (n = 41) (Table S4). Independent sites
were identified using a previously published global scale NO2 model [19]. As with the
development sites, the independent monitoring stations also used chemiluminescence
to measure NO2 concentrations. The LUR model was applied to estimate the average
yearly concentration for these sites (year 2014 = 16; year 2015 = 25) by matching annual
time-varying predictor variables to the same period and using the 2019 regression coeffi-
cients [16]. The aim was to externally evaluate the LUR model’s performance using new
measurements. Specifically, we assessed the validity of applying 2019 model coefficients up
to five years earlier. The same validation metrics as cross-validation were used (Table S5).

2.2.5. Model Predictions

Model predictions were gridded at 100 m × 100 m for visualisation of spatial patterns
across the study area. NO2 estimates for each grid cell centroid were calculated by multiply-
ing the year 2019 regression coefficients to the corresponding predictor values. Historical
predictions (2005–2018) were obtained by matching annual time-varying predictor vari-
ables for each year and using the 2019 regression coefficients. Population-weighted annual
average NO2 levels for the 358 township-level divisions across NHAR (mean township
population 2005–2018 = 17,602 people; mean township area = 144 km2) were calculated
by combining the predicted NO2 concentrations with 100-m gridded annual population
estimates [39,40].

3. Results
3.1. NO2 Measurements

Mean annual NO2 concentrations at model development sites (n = 105) ranged from
7 to 49 ppb, with an overall mean of 27.6 ppb (SD = 10 ppb) (Figure S5).

3.2. Model Performance

The final LUR model is shown in Table 2. Overall, the model captured 63% of annual
NO2 in NHAR (RMSE: 6 ppb (21% of the mean of all monitoring sites)) in 2019. The
satellite-derived estimate of tropospheric NO2 accounted for the large majority of prediction
performance of the model (incremental adjusted R2 = 45%), while the major roads (8%),
vegetation (8%), and impervious surfaces variables (2%) made more modest contributions.

3.3. Model Diagnostics and Cross-Validation

There was no evidence of autocorrelation or other violations of linear regression as-
sumptions in model residuals (Figures S1 and S4). VIF values did not suggest collinearity
among the predictors (Table 2). Cook’s distance and df-beta plots identified four sites
with pronounced influence on model predictions and coefficients. Initially, each of these
monitoring locations were checked for errors in input data and manually searched to as-
sess the nature of the sites and value of retaining them in the data. Additionally, they
were sequentially removed and their effect on model parameters and output evaluated
(predictors selected, coefficients, significance values of included variables, and adjusted R2).
Ultimately, all four were excluded, leaving 105 sites. Minimal changes to model output
metrics (RMSE, R2, and MAE) were observed when the cross-validation process was re-
peated 50 (RMSE: 6.1; R2: 0.63; MAE: 4.9) and 500 times (RMSE: 6.1; R2: 0.64; MAE: 4.9)
(Table S3).

3.4. Historical Validation

Results of independent evaluation performed using historical NO2 measurements
from monitoring sites not included (n = 41) in model development are shown in Table S5.
When the final 2019 LUR model coefficients were applied to the corresponding predictor
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values for the 16 new sites from year 2014 and additional 25 monitoring locations from
2015, a reduction of−0.09 to−0.10 in R2 (RMSE: 4.9 ppb) was observed. Based on the mean
bias (MB) values, our LUR model on average underpredicts historic NO2 concentrations
by −0.5 to −0.6 ppb when exposed to new data (Figure S6).

3.5. Model Predictions

Model predictions for annual NO2 concentrations for Ningxia and surrounds are
displayed in Figure 2. In less densely populated and more remote areas in the south-
western parts of the region, the model estimated NO2 concentrations ranging from 4 to
6 ppb.
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Figure 2. Mean annual NO2 model predictions for Ningxia and surroundings (2019), gridded at 100 m (black polygon
lines represent provincial level divisions in the region). Inset (A) is of Yinchuan (2.3 million population), capital of Ningxia
Province (7.2 million population). Inset (B) highlights local variability in NO2 concentrations in urban locations in Yinchuan
(Estimated range: 12–38 ppb) (white polylines in insets (A,B) represent major roads).

Inset A of Figure 2 focuses on Yinchuan (capital of NHAR; population: 2.3 million).
Maximum NO2 levels (40 ppb) were observed in congested areas along major roads as well
as industrial and commercial districts. This pattern was consistent in other urban areas,
such as Xi’an (Shaanxi Province), Lanzhou (Gansu Province), Batou (Inner Mongolia), and
Hohhot (Inner Mongolia). Historic predictions (2005–2018) for 358 township-level divisions
in Ningxia province are shown in Table 3. Overall, a slightly increasing trend in estimated
population-weighted annual average concentrations was observed.

Figure 2. Mean annual NO2 model predictions for Ningxia and surroundings (2019), gridded at 100 m (black polygon
lines represent provincial level divisions in the region). Inset (A) is of Yinchuan (2.3 million population), capital of Ningxia
Province (7.2 million population). Inset (B) highlights local variability in NO2 concentrations in urban locations in Yinchuan
(Estimated range: 12–38 ppb) (white polylines in insets (A,B) represent major roads).

Inset A of Figure 2 focuses on Yinchuan (capital of NHAR; population: 2.3 million).
Maximum NO2 levels (40 ppb) were observed in congested areas along major roads as well
as industrial and commercial districts. This pattern was consistent in other urban areas,
such as Xi’an (Shaanxi Province), Lanzhou (Gansu Province), Batou (Inner Mongolia), and
Hohhot (Inner Mongolia). Historic predictions (2005–2018) for 358 township-level divisions
in Ningxia province are shown in Table 3. Overall, a slightly increasing trend in estimated
population-weighted annual average concentrations was observed.
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Table 3. Selected percentiles of NO2 concentrations (ppb) predicted for 358 township-level divisions
in Ningxia Province (2005–2018).

Year 5th 25th 50th 75th 95th Unweighted Average Population Weighted Average

2005 11.0 13.6 14.5 17.4 21.7 14.9 15.6
2006 11.1 14.0 14.7 17.6 21.9 15.4 16.1
2007 11.2 14.1 15.0 17.9 22.0 15.6 16.3
2008 11.4 14.3 15.1 17.9 22.2 15.7 16.4
2009 11.5 14.3 15.1 18.0 22.4 15.9 16.6
2010 11.6 14.3 15.3 18.0 22.6 15.9 16.6
2011 11.8 14.4 15.5 18.0 22.8 16.1 16.7
2012 12.0 14.5 15.6 18.1 23.0 16.5 17.0
2013 12.2 14.7 15.6 18.2 23.1 16.7 17.2
2014 12.3 14.8 15.7 18.4 23.3 16.8 17.3
2015 12.4 14.8 15.8 18.6 23.5 16.7 17.3
2016 12.5 14.8 15.8 18.7 23.7 16.8 17.4
2017 12.7 15.0 15.9 18.7 23.7 16.9 17.5
2018 12.8 15.2 16.1 18.7 23.8 16.9 17.5

4. Discussion
4.1. Overall Findings and Model Performance

The model captured 63% of annual NO2 in NHAR (RMSE: 6 ppb (21% of the mean
of all monitoring sites) in 2019 (Table 2). When evaluated for prediction performance and
error using independent sites from 2014 and 2015 (n = 41 different sites), a reduction of
−0.09 to −0.10 in R2 (RMSE: 4.9 ppb) was observed, which was consistent with other com-
parative LUR models in the literature (Table S5) [7,20,21,23,26,27,41,42]. As the increases in
estimates noted for township-level divisions in NHAR (2005–2018) are minimal (0.2 ppb
annual average increase) and within the prediction error of the model (RMSE: 6.5 ppb)
and historical validation (2014–2015) (RMSE: 4.9 ppb), there was no clear evidence of an
increasing trend.

4.2. Comparison with Existing LUR Models in China

The relatively low adjusted R2 value (63%) of our model highlights the challenges of
capturing the diverse range of mobile and static sources of a highly spatially heterogenous
pollutant, such as NO2. However, the parsimonious nature of the model (four predictors)
may also explain why a modest 9–10% reduction in R2 (RMSE: 4.9 ppb) from training to ex-
ternal validation was observed, suggesting robustness when predicting at locations beyond
the training sites, as is done in epidemiological studies. However, the spatial variation in
NO2 concentrations explained by the LUR model is within the range of R2 values (0.51–0.78)
reported for previous LUR models for NO2 estimation in China [7,20,21,23,26,27,41,42]. Of
the eight comparable annual LUR models (five city-level models, R2: 0.51–0.67; two regional
models, R2: 0.51–0.67; and one national model, R2: 0.78), only two included satellite obser-
vations of NO2 in model development [7,23]. In these models (regional model = R2: 0.61;
national model = R2: 0.78), tropospheric NO2 measurements improved model performance
by 12 to 13.5 percentage points [7,23]. In our LUR model, which has been developed for a
less densely populated region, satellite measurements alone accounted for 45% of prediction
of NO2 levels. We assume that the satellite observations captured important regional-scale
emissions from other provinces that affected local variations in NO2 in Ningxia.

The reported differences in R2 values among annual LUR models for NO2 in China can
be attributed to variation in the availability of data to inform the models. In particular, the
distribution and density of monitoring sites, the availability of high-resolution data on land
cover, and the use of satellite-based observations of NO2 are important factors that differ
among the reported models [7,19]. Furthermore, regional and city-specific models explored
smaller buffer radii around each monitoring site (0.3 to 3 km) compared to our model
(0.1 to 10 km), which may have affected overall performance [20–23,26,41]. Improved
performance was only noted in one national-level model (78%). Xu and colleagues included
ground-level measurement data from China’s expanding national monitoring network
consisting of more than 1382 sites [7]. The number and density of sites used likely increased
their model’s ability to capture fine-scale distribution patterns of NO2 [7].
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Despite methodological differences between our LUR model and existing regional and
national models, some similarities were observed. For instance, predictors of traffic-related
NO2 pollution (major road length) were included in all models since vehicle emissions
are a major source of the pollutant. Similarly, the inclusion of predictors of man-made
or impervious surfaces were also prominent in most models, as they account for anthro-
pogenic activities. Likewise, vegetation cover, which is negatively associated with ambient
NO2 concentration, was commonly featured in existing LUR models [7,20,21,23–28,41,42].
Industrial land use was not chosen by the forward stepwise regression process in our
model. Considering the remoteness of the region, there are generally fewer industrial
sources of NO2 than in larger metropolitan centres and their surrounding peri-urban ar-
eas in eastern China. The study domain also had a lower density of coal power stations
(~3 per 10,000 km2) compared to more populated regions in China (~9 per 10,000 km2) [32].
However, tropospheric OMI observations, which explained 45% of the spatial variability of
the pollutant in the study area, likely captured industrial contributions to NO2 emissions,
in addition to other sources.

4.3. Limitations

There was evidence of underestimation of historical NO2 concentrations by 0.5 to
0.6 ppb (~22%). However, underestimation of NO2 levels is more likely at higher values
rather than across the range of NO2 predictions (Figure S7). LUR models are also known to
be more reliable in estimating mean exposures than extreme values of NO2 (Xu et al. 2019).

When evaluated using independent sites from 2014 and 2015, which is a more rigor-
ous and realistic test of a model’s performance (including historical performance up to
five years prior), a drop of −0.09 to −0.10 in R2 was observed (Table S5). The RMSE of
4.9 ppb obtained for historic validation (2014–2015) and for the 2019 model (RMSE: 6.1 ppb)
suggest that the level of uncertainty or error in predictions for 2005–2019 is likely in the
range of 4.9 to 6.5 ppb. This decrement in performance and in general RMSE error range is
consistent with other LUR models [16]. Possible explanations include the fact that major
road length and impervious surface cover were not available historically. However, as
tropospheric satellite observations of NO2 (data dating back to 2004) accounted for most of
the prediction performance, it provided confidence in applying our model to earlier years.

Additional sources of error may include the use of open-source ground-level monitor-
ing data, which may have been incomplete. As the data were not obtained directly from
environmental monitoring agencies in China, sites measuring important local sources of
NO2 may have been missed. The locations of air quality monitors in the study area (primar-
ily near government institutions, including schools, universities, and recreational areas)
may have limited their ability to capture important spatial gradients relating to industry
and airports. Model performance may also be overly optimistic, as we were unable to test
our LUR model against more historic ground-level monitoring measurements (apart from
2014 and 2015) due to unavailability of data for the region.

5. Conclusions

The finding that 45% of NO2 was captured by satellite-derived estimates of tropo-
spheric NO2 alone, which date back to 2004, along with the historical validation we
undertook, provides support for applying 2019 coefficients to earlier years. The traditional
LUR approach we used, which emphasised empirical plausibility and interpretability
of coefficients, offered modestly improved predictions (2–4% improvement in R2) com-
pared with other sub-national models for China. More importantly, the model yields valid
estimates of annual NO2 in Ningxia and its immediate surrounding areas, and it will
be used to estimate NO2 exposure within that spatial domain in an epidemiological study.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijerph182412887/s1, NO2 LUR Model Manuscript—Supplementary Information. Figure S1:
Distribution of final LUR model residuals, Figure S2: Cook’s distance plot for all sites included in
final LUR model, Figure S3 (A): DF-BETA statistics plots for each predictor included in final LUR
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model. *OMINO2 represents tropospheric NO2 measurements. MR5000, VC1800 & IS7000 stand
for major roads (5 km), vegetation cover (1.8 km) and impervious surfaces (7 km), Figure S3 (B):
DF-BETA statistics plots for each predictor included in final LUR model. * MR5000, VC1800 & IS7000
stand for major roads (5 km) and vegetation cover (1.8 km), Figure S3 (C). DF-BETA statistics plots
for each predictor included in final LUR model. *IS7000 stands for impervious surfaces (7 km),
Figure S4: Global Moran’s I Summary for final LUR model residuals, Figure S5: Distribution of mean
annual hourly average NO2 (ppb) concentrations observed at 123 monitoring sites in Ningxia and
surrounding areas in 2019, Figure S6: Bland-Altman Plot showing the level of agreement between
predicted NO2 concentrations (using coefficients from 2019 LUR model applied to time-varying
predictors) and actual concentrations measured at historical sites (2014 & 2015) not used in model
development (n = 41), Figure S7: Predicted vs. observed annual mean NO2 (ppb) concentrations
(2019) with a 1:1 regression line, Table S1: Location and number of monitoring sites by province
(year 2019), Table S2: Data sources of predictor variables, Table S3: Results of k-fold cross-validation
(5-fold cross-validation, Table S4: Descriptive statistics of annual mean NO2 (ppb) at model evaluation
sites for years 2014 and 2015, Table S5: Independent Evaluation of LUR model at 41 Monitoring sites
(Measured NO2 regressed on Predicted NO2 using LUR model).

Author Contributions: The authors confirm contribution to the manuscript as follows: Conceptual-
ization: I.P. and L.D.K.; data collection: I.P., L.D.K., Y.Y. and S.Y.; formal analysis: I.P.; interpretation
of results and validation: I.P. and L.D.K.; writing: original draft preparation: I.P.; writing: review and
editing: I.P., L.D.K., G.B.M., R.J.S.M., S.Y., Y.Y., E.G., B.Y., G.D. and X.W. All authors have read and
agreed to the published version of the manuscript.

Funding: Yurong Yang acknowledges funding from the National Science Foundation of China
(NSFC) (NSFC Project Grant 81460311). The funding bodies had no role in the study or the decision
to publish it.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article and supplementary material. The
data presented and used in this study are available in [NO2 LUR Model Manuscript—Supplementary
Information].

Acknowledgments: The authors acknowledge the invaluable contribution made by the Aura Val-
idation Data Centre, NASA Earth Observations, GeoFrabrik, SEDAC (Columbia University), and
Open AQ by making landcover and land use, as well as ground monitoring and satellite observations
of NO2 (OMNO2d standard level 3 product, Version 4.0) publicly available. This has made the
development of our air pollution model possible.

Conflicts of Interest: The authors have no conflict of interest to declare.

References
1. WHO. Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease; World Health Organization: Geneva,

Switzerland, 2016.
2. Babatola, S.S. Global burden of diseases attributable to air pollution. J. Public Health Afr. 2018, 9, 813. [CrossRef] [PubMed]
3. Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution:

A Review. Front. Public Health 2020, 8, 14. [CrossRef] [PubMed]
4. GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990-2019: A systematic

analysis for the Global Burden of Disease Study 2019. Lancet 2019, 396, 1223–1249. [CrossRef]
5. Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.;

Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis
of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [CrossRef]

6. Batterman, S.; Berrocal, V.J.; Milando, C.; Gilani, O.; Arunachalam, S.; Zhang, K.M. Enhancing Models and Measurements of
Traffic-Related Air Pollutants for Health Studies Using Dispersion Modeling and Bayesian Data Fusion. Res. Rep. Health Eff. Inst.
2020, 202, 1–63.

7. Xu, H.; Bechle, M.J.; Wang, M.; Szpiro, A.A.; Vedal, S.; Bai, Y.; Marshall, J.D. National PM2.5 and NO2 exposure models for China
based on land use regression, satellite measurements, and universal kriging. Sci. Total Environ. 2019, 655, 423–433. [CrossRef]
[PubMed]

http://doi.org/10.4081/jphia.2018.813
http://www.ncbi.nlm.nih.gov/pubmed/30687484
http://doi.org/10.3389/fpubh.2020.00014
http://www.ncbi.nlm.nih.gov/pubmed/32154200
http://doi.org/10.1016/S0140-6736(20)30752-2
http://doi.org/10.1016/S0140-6736(17)30505-6
http://doi.org/10.1016/j.scitotenv.2018.11.125
http://www.ncbi.nlm.nih.gov/pubmed/30472644


Int. J. Environ. Res. Public Health 2021, 18, 12887 11 of 12

8. Kobza, J.; Geremek, M. Do the pollution related to high-traffic roads in urbanised areas pose a significant threat to the local
population? Environ. Monit. Assess. 2016, 189, 33. [CrossRef]

9. Richmond-Bryant, J.; Owen, R.C.; Graham, S.; Snyder, M.; McDow, S.; Oakes, M.; Kimbrough, E.S. Estimation of on-road NO2
concentrations, NO2/NOX ratios, and related roadway gradients from near-road monitoring data. Air Qual. Atmos. Health 2017,
10, 611–625. [CrossRef] [PubMed]

10. Paraschiv, S.; Paraschiv, L.-S. Analysis of traffic and industrial source contributions to ambient air pollution with nitrogen dioxide
in two urban areas in Romania. Energy Procedia 2019, 157, 1553–1560. [CrossRef]

11. Hoek, G. Methods for Assessing Long-Term Exposures to Outdoor Air Pollutants. Curr. Environ. Health Rep. 2017, 4, 450–462.
[CrossRef] [PubMed]

12. Di Tommaso, M.R.; Spigarelli, F.; Barbieri, E.; Rubini, L. Challenges for the Future and the Role of Industrial Policy. In International
Business and Emerging Economy Firms; Springer: Singapore, 2020; pp. 163–183.

13. Kan, H. Environment and Health in China: Challenges and Opportunities. Environ. Health Perspect. 2009, 117, A530–A531.
[CrossRef]

14. Han, W.; Li, Z.; Guo, J.; Su, T.; Chen, T.; Wei, J.; Cribb, M. The Urban–Rural Heterogeneity of Air Pollution in 35 Metropolitan
Regions across China. Remote Sens. 2020, 12, 2320. [CrossRef]

15. Knibbs, L.D.; Hewson, M.G.; Bechle, M.J.; Marshall, J.D.; Barnett, A. A national satellite-based land-use regression model for air
pollution exposure assessment in Australia. Environ. Res. 2014, 135, 204–211. [CrossRef]

16. Knibbs, L.D.; Van Donkelaar, A.; Martin, R.V.; Bechle, M.J.; Brauer, M.; Cohen, D.D.; Cowie, C.; Dirgawati, M.; Guo, Y.; Hanigan,
I.; et al. Satellite-Based Land-Use Regression for Continental-Scale Long-Term Ambient PM2.5 Exposure Assessment in Australia.
Environ. Sci. Technol. 2018, 52, 12445–12455. [CrossRef]

17. Beelen, R.; Hoek, G.; Vienneau, D.; Eeftens, M.; Dimakopoulou, K.; Pedeli, X.; Tsai, M.-Y.; Künzli, N.; Schikowski, T.; Marcon,
A.; et al. Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in
Europe–The ESCAPE project. Atmos. Environ. 2013, 72, 10–23. [CrossRef]

18. Vienneau, D.; de Hoogh, K.; Bechle, M.J.; Beelen, R.; van Donkelaar, A.; Martin, R.V.; Millet, D.B.; Hoek, G.; Marshall, J.D. Western
European Land Use Regression Incorporating Satellite- and Ground-Based Measurements of NO2 and PM10. Environ. Sci. Technol.
2013, 47, 13555–13564. [CrossRef]

19. Larkin, A.; Geddes, J.A.; Martin, R.V.; Xiao, Q.; Liu, Y.; Marshall, J.D.; Brauer, M.; Hystad, P. Global Land Use Regression Model
for Nitrogen Dioxide Air Pollution. Environ. Sci. Technol. 2017, 51, 6957–6964. [CrossRef]

20. Jin, L.; Berman, J.D.; Warren, J.L.; Levy, J.I.; Thurston, G.; Zhang, Y.; Xu, X.; Wang, S.; Zhang, Y.; Bell, M.L. A land use regression
model of nitrogen dioxide and fine particulate matter in a complex urban core in Lanzhou, China. Environ. Res. 2019, 177, 108597.
[CrossRef] [PubMed]

21. Chen, L.; Bai, Z.; Kong, S.; Han, B.; You, Y.; Ding, X.; Du, S.; Liu, A. A land use regression for predicting NO2 and PM10
concentrations in different seasons in Tianjin region, China. J. Environ. Sci. 2010, 22, 1364–1373. [CrossRef]

22. Qin, K.; Rao, L.; Xu, J.; Bai, Y.; Zou, J.; Hao, N.; Li, S.; Yu, C. Estimating Ground Level NO2 Concentrations over Central-Eastern
China Using a Satellite-Based Geographically and Temporally Weighted Regression Model. Remote Sens. 2017, 9, 950. [CrossRef]

23. Yang, X.; Zheng, Y.; Geng, G.; Liu, H.; Man, H.; Lv, Z.; He, K.; de Hoogh, K. Development of PM 2.5 and NO 2 models in a LUR
framework incorporating satellite remote sensing and air quality model data in Pearl River Delta region. China. Environ. Pollut.
2017, 226, 143–153. [CrossRef]

24. Huang, L.; Zhang, C.; Bi, J. Development of land use regression models for PM2.5, SO2, NO2 and O3 in Nanjing, China.
Environ. Res. 2017, 158, 542–552. [CrossRef] [PubMed]

25. Li, C.; Du, S.-Y.; Bai, Z.-P.; Shao-Fei, K.; Yan, Y.; Bin, H.; Dao-Wen, H.; Li, Z.-Y. Application of land use regression for estimating
concentrations of major outdoor air pollutants in Jinan, China. J. Zhejiang Univ. A 2010, 11, 857–867. [CrossRef]

26. Liu, C.; Henderson, B.H.; Wang, D.; Yang, X.; Peng, Z.-R. A land use regression application into assessing spatial variation of intra-
urban fine particulate matter (PM2.5) and nitrogen dioxide (NO2) concentrations in City of Shanghai, China. Sci. Total Environ.
2016, 565, 607–615. [CrossRef]

27. Meng, X.; Chen, L.; Cai, J.; Zou, B.; Wu, C.-F.; Fu, Q.; Zhang, Y.; Liu, Y.; Kan, H. A land use regression model for estimating the
NO2 concentration in shanghai, China. Environ. Res. 2015, 137, 308–315. [CrossRef] [PubMed]

28. Zhang, Z.; Wang, J.; Hart, J.E.; Laden, F.; Zhao, C.; Li, T.; Zheng, P.; Li, D.; Ye, Z.; Chen, K. National scale spatiotemporal land-use
regression model for PM2.5, PM10 and NO2 concentration in China. Atmos. Environ. 2018, 192, 48–54. [CrossRef]

29. Yang, Y.R.; McManus, D.P.; Gray, D.J.; Wang, X.L.; Yang, S.K.; Ross, A.G.; Williams, G.M.; Ellis, M.K. Evaluation of the tuberculosis
programme in Ningxia Hui Autonomous region, the People’s Republic of China: A retrospective case study. BMC Public Health
2012, 12, 1110. [CrossRef]

30. Restrepo, A.M.C.; Yang, Y.R.; McManus, D.P.; Gray, D.J.; Barnes, T.S.; Williams, G.M.; Magalhaes, R.S.; Hamm, N.A.S.; Clements,
A.C.A. Spatiotemporal patterns and environmental drivers of human echinococcoses over a twenty-year period in Ningxia Hui
Autonomous Region, China. Parasites Vectors 2018, 11, 1–19. [CrossRef]

31. UN Data. City Population by Sex, City and City Type; U.N.S. Division, Ed.; United Nations: New York, NY, USA, 2021.
32. Carbon Brief. Global Coal Power Plant Emissions; Carbon Brief: London, UK, 2019.
33. OpenAQ. OpenAQ Platform; Open AQ Inc.: Washington, DC, USA, 2019.

http://doi.org/10.1007/s10661-016-5697-1
http://doi.org/10.1007/s11869-016-0455-7
http://www.ncbi.nlm.nih.gov/pubmed/30245748
http://doi.org/10.1016/j.egypro.2018.11.321
http://doi.org/10.1007/s40572-017-0169-5
http://www.ncbi.nlm.nih.gov/pubmed/29064065
http://doi.org/10.1289/ehp.0901615
http://doi.org/10.3390/rs12142320
http://doi.org/10.1016/j.envres.2014.09.011
http://doi.org/10.1021/acs.est.8b02328
http://doi.org/10.1016/j.atmosenv.2013.02.037
http://doi.org/10.1021/es403089q
http://doi.org/10.1021/acs.est.7b01148
http://doi.org/10.1016/j.envres.2019.108597
http://www.ncbi.nlm.nih.gov/pubmed/31401375
http://doi.org/10.1016/S1001-0742(09)60263-1
http://doi.org/10.3390/rs9090950
http://doi.org/10.1016/j.envpol.2017.03.079
http://doi.org/10.1016/j.envres.2017.07.010
http://www.ncbi.nlm.nih.gov/pubmed/28715783
http://doi.org/10.1631/jzus.A1000092
http://doi.org/10.1016/j.scitotenv.2016.03.189
http://doi.org/10.1016/j.envres.2015.01.003
http://www.ncbi.nlm.nih.gov/pubmed/25601733
http://doi.org/10.1016/j.atmosenv.2018.08.046
http://doi.org/10.1186/1471-2458-12-1110
http://doi.org/10.1186/s13071-018-2693-z


Int. J. Environ. Res. Public Health 2021, 18, 12887 12 of 12

34. Van Der A, R.J.; Peters, D.H.M.U.; Eskes, H.; Boersma, K.F.; Van Roozendael, M.; De Smedt, I.; Kelder, H.M. Detection of the trend
and seasonal variation in tropospheric NO2 over China. J. Geophys. Res. Atmos. 2006, 111, D12. [CrossRef]

35. Eeftens, M.; Beelen, R.; De Hoogh, K.; Bellander, T.; Cesaroni, G.; Cirach, M.; Declercq, C.; Dedele, A.; Dons, E.; De Nazelle, A.; et al.
Development of Land Use Regression models for PM(2.5), PM(2.5) absorbance, PM(10) and PM(coarse) in 20 European study
areas; results of the ESCAPE project. Environ. Sci. Technol. 2012, 46, 11195–11205. [CrossRef] [PubMed]

36. de Hoogh, K.; Gulliver, J.; van Donkelaar, A.; Martin, R.V.; Marshall, J.D.; Bechle, M.J.; Cesaroni, G.; Pradas, M.C.; Dedele, A.;
Eeftens, M.; et al. Development of West-European PM(2.5) and NO(2) land use regression models incorporating satellite-derived
and chemical transport modelling data. Environ. Res. 2016, 151, 1–10. [CrossRef]

37. Hebbali, A. Tools for Building OLS Regression Models; Rsquared Academy: Chennai, India, 2020.
38. Kuhn, M.W.J.; Western, S.; Williams, A.; Keefer, C.; Engelhardt, A.; Cooper, T.; Mayer, Z.; Kenkel, B.; Benesty, M.; Lescarbeau, R.

Caret Package’-Misc functions for training and plotting classification and regression models. J. Stat. Softw. 2008, 28, 5.
39. Shakor, A.; Su’ad, A.; Pahrol, M.A.; Mazeli, M.I. Effects of Population Weighting on PM10 Concentration Estimation. J. Environ.

Public Health 2020, 2020, 1561823.
40. WorldPop. Global High Resolution Population Denominators Project; U.o.S. School of Geography and Environmental Science, Ed.;

University of Southampton: Southampton, UK, 2020.
41. Liu, W.; Li, X.; Chen, Z.; Zeng, G.; León, T.; Liang, J.; Huang, G.; Gao, Z.; Jiao, S.; He, X.; et al. Land use regression models coupled

with meteorology to model spatial and temporal variability of NO2 and PM10 in Changsha, China. Atmos. Environ. 2015, 116,
272–280. [CrossRef]

42. Liu, Z.; Guan, Q.; Luo, H.; Wang, N.; Pan, N.; Yang, L.; Xiao, S.; Lin, J. Development of land use regression model and health risk
assessment for NO2 in different functional areas: A case study of Xi’an, China. Atmos. Environ. 2019, 213, 515–525. [CrossRef]

http://doi.org/10.1029/2005JD006594
http://doi.org/10.1021/es301948k
http://www.ncbi.nlm.nih.gov/pubmed/22963366
http://doi.org/10.1016/j.envres.2016.07.005
http://doi.org/10.1016/j.atmosenv.2015.06.056
http://doi.org/10.1016/j.atmosenv.2019.06.044

	Introduction 
	Materials and Methods 
	Study Area 
	Measured NO2 
	Variables 

	Model Development 
	Variable Selection 
	Model Development 
	Model Diagnostics and Cross-Validation 
	Independent Evaluation 
	Model Predictions 


	Results 
	NO2 Measurements 
	Model Performance 
	Model Diagnostics and Cross-Validation 
	Historical Validation 
	Model Predictions 

	Discussion 
	Overall Findings and Model Performance 
	Comparison with Existing LUR Models in China 
	Limitations 

	Conclusions 
	References

