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Abstract

In a mass casualty incident, the factors that determine the survival rate of injured patients

are diverse, but one of the key factors is the time for triage. Additionally, the main factor that

determines the time of triage is the number of medical personnel. However, when relying on

a small number of medical personnel, the ability to increase survivability is limited. There-

fore, developing a classification model for survival prediction that can quickly and precisely

triage via wearable devices without medical personnel is important. In this study, we

designed a consciousness index to substitute the factor by manpower and improved the

classification accuracy by applying a machine learning algorithm. First, logistic regression

analysis using vital signs and a consciousness index capable of remote monitoring through

wearable devices confirmed the high efficiency of the consciousness index. We then devel-

oped a classification model with high accuracy which corresponds to existing injury severity

scoring systems through the machine learning algorithms. We extracted 460,865 cases

which met our criteria for developing the survival prediction from the national sample project

in the national trauma databank which contains 408,316 cases of blunt injury and 52,549

cases of penetrating injury. Among the dataset, 17,918 (3.9%) cases died while the other

survived. The AUCs with 95% confidence intervals (CIs) for the different models with the

proposed simplified consciousness score as follows: RTS (as baseline), 0.78 (95% CI =

0.775 to 0.785); logistic regression, 0.87 (95% CI = 0.862 to 0.870); random forest, 0.87

(95% CI = 0.862 to 0.872); deep neural network, 0.89 (95% CI = 0.882 to 0.890). As a result,

we confirmed the possibility of remote triage using a wearable device. It is expected that

the time required for triage can be effectively reduced by using the developed classification

model of survival prediction.
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Introduction

Triage is a method used to prioritize clinical options according to the severity of injured

patients who need first aid [1], thereby-aiming to improve the survival rate by providing effec-

tive treatments. Among the various types of triage methods, the most basic form is the way in

which on-site practitioners evaluate many trauma patients and identify treatment priorities

during a mass casualty incident (MCI), such as a natural disaster, fire, terrorism, battlefield,

etc. [1]. Although triage based on the diagnosis of clinicians is the most reliable method, it can

take a long time for a small number of specialists to directly determine the conditions of many

injured patients. For example, based on a review of 4,596 casualties on the battlefield from

2001 to 2011, 87.3% of all injury- related deaths occurred before triage, and 24.3% of these

injuries were estimated to be potentially survivable [2]. In such an MCI situation, it is crucial

to quickly identify the states of all trauma patients and determine the priority of treatment to

increase the survival rate However, the most obvious solution to minimize the time spent on

triage is employing enough medical personnel; a shortage of medical manpower results in a

decrease in the survival rate of the wounded.

Therefore, it is necessary to develop algorithms that do not rely on medical personnel that

can accurately classify trauma patients in a limited time.

Studies quantifying the conditions of injured patient, to classify the severity, began around

the 1970s. A representative method is the abbreviated injury scale (AIS) method, which was

first designed in 1969 [3] and reported in 1971 [4]. Subsequently, the injury severity score

(ISS) [5], which scored the severity according to the complexity of an injury, was developed

based on AIS. Thus, AIS and ISS were used in the fields of emergency medicine and critical

care medicine in the 1970s; based on the professional experience and judgment of clinicians,

these were the most reliable trauma severity scoring systems. Since the 1980s, more studies

have investigated the scoring and classification of traumatic injuries based on biological infor-

mation [6–9]. These methods scored the severity of injuries and estimated survival probabili-

ties according to severity scores using statistical methods. These scoring systems focused on

classifying the acute scale of injured patients in a short period of time; one such method relies

on the revised trauma score (RTS). A revised version of the trauma score (TS), reported in

1981, RTS classifies the acute scale and survival probability using three indicators: the systolic

blood pressure (SBP), respiration rate (RR), and Glasgow Coma Scale (GCS) [7]. The trauma

and injury severity score (TRISS) was also developed by utilizing existing scoring systems. As

an upgraded version of RTS, TRISS is scored by adding the age and ISS score of an injured

patient to the SBP, RR, and GCS values used for RTS scoring [8,9]. In addition, TRISS has

been applied to different scoring forms according to the type of trauma, such as blunt or

penetrating.

RTS and TRISS were developed to improve the efficiency and accuracy by simplifying pre-

vious methods; however, they have not ruled out all medical judgment indicators (e.g., ISS and

GCS). Because GCS is a scoring system that summarizes three scaled values (i.e., eye opening,

verbal response, and motor response) to classify a patient’s conscious state from a value of 3 to

15 [10], the weight of GCS is higher than those of SBP and RR in the regression equation for

RTS scoring [7]. These results demonstrate that medical judgment indicators are still more

influential on the classification results than vital signs during the triage of trauma patients.

Similar to TRISS, ISS and GCS are also used as important indices to quantify the severity of

trauma; however, both indicators have certain limitations in applications where medical per-

sonnel cannot directly identify injured patients. Therefore, the main objective of this study is

to develop a casualty classification model with high accuracy based on minimum vital signs

while replacing medical judgment indicators. For this study, we formed two hypotheses. First,
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as an indicator for triage, GCS can be replaced with a simplified consciousness score. In previ-

ously reported studies that scored consciousness, it has already been shown that GCS can be

simplified for certain situations [11,12]. Thus, we hypothesized that GCS can be substituted

with a simplified index when it is applied to the casualty classification algorithm for triage. Sec-

ond, machine learning techniques can improve the accuracy of the casualty classification

model. Machine learning approaches help a computer learn all of the complicated and non-

linear interactions between variables by optimizing the error between predicted and observed

outcomes [13]. Machine learning methods have shown improved prediction performance in

many medical and clinical applications [14]. Based on these advantages, recent studies have

adopted machine learning to develop clinical decision support models [15–18].

In this study, we developed a casualty classification model based on machine learning

approaches for triage in mass casualty incidents by using a simplified consciousness score and

vital signs that can be remotely monitored through wearable devices, without relying on medi-

cal practitioners.

Materials and methods

In order to develop proposed casualty classification model, we used four types of machine

learning algorithms; logistic regression [19], random forest [20], neural network [21], which

were trained and evaluated with the National Trauma Data Bank. These classification models

were developed through five input variables such as age, systolic blood pressure, heart rate, res-

piration rate and consciousness score.

Data source

We used information from the National Trauma Data Bank (NTDB) [22], which is the largest

traumatic injury dataset; this was assembled by the American College of Surgeons. The NTDB

contains over 3 million records, which were voluntarily submitted by over 900 U.S. trauma

centers. Among the NTDB, we selected the National Sample Project (NSP) dataset, which was

collected separately by 100 trauma centers. The initial dataset was composed of NSP data col-

lected between 2007 and 2013. From this dataset, we extracted incident cases where patients

were transported with emergency medical services; patients must also have been over 18 years

of age. The records of the NSP dataset were classified by the diagnostic code ICD-9 and can be

grouped into specific injury mechanisms. Among more than 25 different injury mechanisms,

we selected cases with blunt and penetrating injuries, which are analogous to the traumatic

injuries suffered during MCI situations. Each incident case contains data from either the emer-

gency medical service (EMS) or the emergency department (ED).

Among the selected dataset, there are some cases annotated with missing code values. Miss-

ing codes means that the variables are not applicable to the case or not recorded during hospi-

talization. There are three methods that can be used to treat missing data: discarding data,

parameter estimation, and data imputation [23]. Among these methods, we applied the com-

plete case analysis [24], which discards samples that contain missing variables. This method is

suitable when the missing data are completely random [23] and do not depend on other

known values or distributions. Therefore, we excluded cases that contain missing variables

from this study.

Selection of input variable

In this study, five variables were used to develop the casualty classification model. We selected

biological features that can be measured with wearable devices. Based on previous studies, a

patient’s age is known to have a negative correlation with their survival probability [25].
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Therefore, we also included age as a basic characteristic of patients. The systolic blood pressure

(SBP), heart rate (HR), and respiration rate (RR) are also included as input variables based on

vital signs. In addition to these variables, we proposed a new coma scale, referred to as the sim-

plified consciousness score (SCS), which adjusts GCS when a patient is equipped with a wear-

able device. The proposed SCS is made up of two types of responses: verbal and motor. Each

response is determined based on a binary decision, as shown in Table 1. The scoring method

of SCS was based on the GCS classification criteria and can be discriminated by a wearable

device. Verbal and motor responses were determined based on a consciousness-based

response rather than on simple sound response. Thus, the verbal response was determined

when any words were detected, and the motor response was determined by considering the

response to local stimulation only.

Outcome

The primary outcome was the recorded survival or death after discharge into the emergency

department. This record was documented in the ED chart of the NSP dataset. To delimit the

cause of death clearly, cases of death were confined to patients who died in the emergency

department before being discharged to other places, like an operating room or a patient’s

home.

Machine learning algorithms

To develop the classification model for survival prediction, we selected three methods. Logistic

regression [19] is a basic machine learning method for binary decision making in the medical

field. It is a linear model that estimates the logarithmic probability of a dependent variable (tar-

get class) as a linear combination of independent variables (input features). The random forest

method [20] is a kind of ensemble learning algorithm that fuses several models as base classifi-

ers to produce the output. It has the advantage of reducing the variability of models. The ran-

dom forest method uses decision trees as the base learner and bagging as the ensemble

method. The bagging method creates diverse models by randomly partitioning the training

Table 1. Score table of Glasgow coma scale (GCS) and simplified consciousness score (SCS).

Criteria GCS score SCS score

Eye opening Spontaneous 4 -

To speech 3

To pain 2

None 1

Verbal response Oriented 5 2

Confused conversation 4

Inappropriate word 3

Incomprehensible sounds 2 1

None 1

Motor response Obeys commands 6 2

Localizes pain 5

Normal flexion (withdrawal) 4 1

Abnormal flexion (decorticate) 3

Extension (decerebrate) 2

None 1

Total score 3–15 2–4

https://doi.org/10.1371/journal.pone.0206006.t001
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data (i.e., randomly sampling the training examples or randomly selecting a subset of features)

and produces outputs by combining the model with major voting. Neural network [21] is a

machine learning algorithm that emulates the synaptic structure of the brain. It consists of

three types of layers: the input layer, hidden layers, and the output layer. The output of each

layer node (except for the input layer) consists as a weighted linear combination of the output

of the previous layer nodes that were transformed by a nonlinear function, such as a rectified

linear unit (RELU) [26]. This characteristic of nonlinearity enables the neural network to learn

complex relationships between input variables, which can increase performance as a data-

driven machine learning model [27, 28].

When it comes to developing machine learning algorithms, the total dataset was split into a

training set and a test set. The training set is used for deriving the survivability prediction algo-

rithms and the test set is used for evaluating the derived algorithms. This process guarantees

the generalized performance of the trained model for new incoming data that has never been

seen before. To evaluate the generalized performance, we used a stratified 10-fold cross-valida-

tion test. This randomly divides all the data into 10 partitions (folds), then trains a model with

nine of the partitions and tests the model with the remaining fold. This process is repeated 10

times by changing the folds for training and testing, evaluating the performance of the models

at the end. These processes guarantee the generalized performance of a model by avoiding the

risk of overfitting to the samples. However, the dataset has a small number of samples for the

death class (less than 3.89%), so random sampling has the risk of creating a fold without sam-

ples from the death class. Therefore, we applied stratified sampling [29], which guarantees that

each fold maintains the same ratio between classes as the total population.

Classification model for survival prediction

First, to develop the survival prediction algorithm, we compared the influence of the input var-

iables via the logistic regression, which is the basic machine learning algorithm that is used in

RTS and TRISS [8,9]. We developed and compared the discriminative power of each logistic

regression model with different input variable compositions using the vital signs, vital signs

with GCS, and vital signs with SCS. Second, we compared the performance of the machine

learning algorithms. Thus, we trained the survivability prediction model via the logistic regres-

sion, random forest, and deep neural network methods. Among these machine learning algo-

rithms, the random forest and neural network algorithms are sensitive to the balance of classes

in the training data. Therefore, we applied the weighted cost for learning of each algorithm.

When it comes to training machine learning, certain hyperparameters can be tuned empiri-

cally to improve the performance of algorithms. In the case of the random forest algorithm, we

tuned the size of the leaf, the maximum number of splits for branches, the number of input

variables to the sample, and the number of trees. The deep neural network structure consists

of two hidden layers, which have 128 nodes at each. We applied the dropout [30] layer in the

network for regularization. We set the batch size as 64 and performed training for 60 epochs.

We also performed learning rate scheduling to avoid overfitting. We set the learning rate as

0.0001 at first, and then decreased the rate by 1/10 at 20 and 40 epochs. During these training

procedures, we stopped the training process when the validation performance reached its

peak. We used the Adam Optimizer [31] for optimization of the network. Finally, we devel-

oped a survivability prediction algorithm with the neural network, which showed the most dis-

criminative power, and compared the influence of SCS and GCS. The development of these

survivability prediction algorithms was conducted with MATLAB Release 2017b (MathWorks,

Inc., Natick, Massachusetts, United States) software, and the neural network process was con-

ducted with the tensorflow [32] library in Python.
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Statistical analysis

The characteristics of the study population were described for each dataset, including the

mean and standard deviation for each variable. The performance of machine learning surviv-

ability prediction algorithms, developed from the training dataset, was evaluated using the test

data by calculating the area under the receiver operating characteristics curve (AUC) [33]. The

AUC values of models were also statistically compared with the Wilcoxon signed-rank test

[34]. Standard errors and 95% confidence intervals were also estimated for the AUC values

using a jack-knife procedure [35]. Statistical analyses assessing algorithm performance were

performed using GraphPad Prism version 5.00 for Windows (GraphPad Software, San Diego

California USA, www.graphpad.com) and MATLAB Release 2017b (MathWorks, Inc., Natick,

Massachusetts, United States) software.

Results

Data extraction

A total of 1,156,091 recorded incidents were collected from the NSP dataset for 7 years (from

2007 to 2013), of which 460,865 cases met our criteria (Fig 1). The refined dataset contains

408,316 cases of blunt injury and 52,549 cases of penetrating injury from EMS. In Table 2, the

input variables show a significant difference (p< 0.001) between death and survival.

Prediction performance

The performance was evaluated with the AUC value, which represents the discriminative

power of the proposed algorithm for survival prediction. We conducted experiments investi-

gating the influence of SCS as the input features for survival prediction. We trained three types

of logistic regression models with the same training data, but each model used different input

variables. One model was trained with vital signs only, another model was trained with vital

signs and the GCS score, and the final model with trained with vital signs and the SCS score.

In Table 3, the AUC values of the model that were developed with vital signs and SCS or GCS

showed significantly increased performance relative to the models that were developed using

only vital signs. The performance was comparable between the models that used SCS and GCS

as input variables.

The AUC values for each machine learning method and conventional models are also

described in Table 4. All the machine learning algorithms showed improved performance rela-

tive to RTS, which showed a mean AUC value of 0.78±0.007. The logistic regression and ran-

dom forest models showed AUC values of 0.87±0.005 and 0.87±0.007, respectively. However,

the deep neural network model achieved the best AUC value of 0.89±0.005, which is compara-

ble with the performance of TRISS (0.90±0.005). The performance of TRISS seems to be

slightly higher, but TRISS consists of two models that are developed for blunt and penetrating

trauma separately. Therefore, the performance of the TRISS model was separately computed

with the blunt trauma group and penetrating trauma group.

Classification analysis

We analysed and compared the false positive ratio (FPR) and true positive ratio (TPR) for each

machine learning and conventional model. The FPR and TPR values were computed with the

optimal operating point in the ROC curve, in which the classifier shows the best performance.

In Fig 2, the neural networks developed with GCS and SCS achieve similar ROC curve and

same AUC scores and they outperformed the RTS model. The deep neural network model

showed an FPR of 19.7% and a TPR of 79.7%, while RTS showed values of 33.9% and 85.8%,

Artificial intelligence model for remote triage
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Fig 1. The flowchart for patient data extraction procedure.

https://doi.org/10.1371/journal.pone.0206006.g001

Table 2. Characteristics of each input variable from the patient data in the NTDB.

Input Variable Units Death Survival P-value�

AGE years (SD) 58.4 (22.7) 48.8 (21.1) <0.001

SBP mm HG (SD) 122.9 (53.1) 134.9 (29.8) <0.001

HR beat per minute (SD) 86.6 (34.9) 90.7 (20.9) <0.001

RR breath per minute (SD) 15.1 (9.8) 18.4 (5.3) <0.001

SCS score (SD) 2.9 (1.0) 3.8 (0.5) <0.001

GCS score (SD) 8.5 (5.3) 14.0 (2.6) <0.001

� The p-values were estimated using one-way analysis of variance

https://doi.org/10.1371/journal.pone.0206006.t002
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Table 3. Performance of the machine learning algorithms for survivability predictions.

Algorithms Input Variables Mean AUC Standard Deviation 95% Confidence Interval�

LCL UCL

RTS (Baseline) SBP, RR, GCS 0.78 0.007 0.775 0.785

Logistic Regression Age, SBP, RR, HR 0.71 0.009 0.705 0.718

Logistic Regression Age, SBP, RR, HR, SCS 0.87 0.005 0.862 0.870

Logistic Regression Age, SBP, RR, HR, GCS 0.88 0.005 0.872 0.880

Random Forest Age, SBP, RR, HR, SCS 0.87 0.007 0.862 0.872

Neural Network Age, SBP, RR, HR, SCS 0.89 0.005 0.882 0.890

Neural Network Age, SBP, RR, HR, GCS 0.89 0.007 0.885 0.895

TRISS Age, SBP, RR, GCS, ISS 0.90 0.005 0.901 0.909

� The standard errors were estimated by the jackknife procedure for 10-fold cross-validation results.

https://doi.org/10.1371/journal.pone.0206006.t003

Table 4. Comparison of false positive ratio (FPR) and true positive ratio (TPR) for machine learning algorithms

for survivability predictions.

Algorithms Input Variables FPR (%) TPR (%)

RTS (Baseline) GCS, SBP, RR 33.9 85.8

Logistic Regression Age, SBP, RR, HR, SCS 21.2 78.8

Random Forest Age, SBP, RR, HR, SCS 20.8 77.5

Neural Network Age, SBP, RR, HR, SCS 19.7 79.7

Neural Network Age, SBP, RR, HR, GCS 19.5 80.9

TRISS Age, SBP, RR, GCS, ISS 18.5 84.0

https://doi.org/10.1371/journal.pone.0206006.t004

Fig 2. ROC curves with AUC values for the neural networks and RTS. Comparison between the neural network with simplified

consciousness score (SCS), the neural network with Glasgow coma scale (GCS) and existing triage model, RTS. Neural networks developed

without the injury severity score (ISS) outperformed the revised trauma score (RTS).

https://doi.org/10.1371/journal.pone.0206006.g002
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respectively. We also compared the predicted survival scores for survivor and death cases for

the test dataset with the neural network model. In Table 5, the survival class showed an average

predicted survival score of 0.9906 in the total EMS dataset, while the death class showed a

value of 0.8661. We also computed the predicted scores for the blunt trauma groups and pene-

trating trauma groups. The predicted score for the survivor class was 0.9910, while the death

class showed a score of 0.8673 in the blunt trauma groups. Similarly, in the penetrating trauma

groups, the survivor class score was 0.9877 while the death class scored 0.8603. These predicted

survival scores showed a significant difference (P < 0.0001) between survivors and deaths,

both overall and for each trauma group.

Ranking of machine learning variables

We evaluated how well each input variable worked in combination as well as how much each

variable contributed to the models. For logistic regression, we computed the odds ratio of each

input variable from our trained modes. In the case of the random forest method, we estimated

the predictor importance by summing the change of the risk due to splits on every variable

and dividing the sum by the number of branch nodes in the trained models. For the deep

neural network method, we performed sensitivity analysis of the neural network [36,37] and

created a benchmark dataset as the input of the neural network in order to measure the rela-

tionship between the input and output of trained models. Table 6 shows the results of feature

importance analysis for the logistic regression, random forest, and neural network algorithms.

In the logistic regression model, SCS is proven to be the most important feature for survival

prediction, while SBP is determined to be the second-most important feature. The random for-

est and neural network methods also showed that SCS is the most important variable.

Discussion

Firefighters who engage in rescue operations related to terrorism, fire, and natural disasters

or combatants involved in battlefield operations are exposed to the risk of death. Combatants

are at high risk of traumatic injuries and firefighters may be exposed to unforeseen accidents

such as secondary collapse during rescue operations in the field. To prepare for these types of

trauma situations at remote sites, attempts have been made to classify patients based only on

the continuous measurement of their vital signs [38,39]. However, it is not accurate to estimate

the survival of trauma patients based only on their vital signs because there are homeostatic

mechanisms in the human body that attempt to maintain consistency against internal and

external changes. Although a patient’s heart rate and respiration rate are remarkably changed

Table 5. Comparison of the predicted survival score for the total dataset and each injury mechanism with the neural network.

Total Dataset Blunt Dataset Penetrating Dataset

Survivors (Pmean ± SEM) 0.9906 (± 0.00008) 0.9910 (± 0.00008) 0.9877 (± 0.0003)

Deaths (Pmean ± SEM) 0.8662 (± 0.0015) 0.8673 (± 0.0004) 0.8603 (± 0.0032)

https://doi.org/10.1371/journal.pone.0206006.t005

Table 6. Feature ranking of the machine learning algorithms; a lower number indicates a greater importance.

Ranking Age SBP RR HR SCS

Logistic Regression 5 2 3 4 1

Random Forest 4 2 3 5 1

Neural Network 5 3 2 4 1

Average Ranking 4.6 2.3 2.6 4.3 1

https://doi.org/10.1371/journal.pone.0206006.t006
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in the case of hypovolemic shock [40,41], these are not enough to accurately evaluate trauma

patients. Therefore, it is necessary to develop a casualty classification model with high predic-

tion accuracy while minimizing the time and manpower needed to reach a diagnosis in order

to increase the survival rate in mass casualty incidents.

For this purpose, this study first focused on the development of SCS, which adjusts GCS

values for remote monitoring. A study by Gill et al., conducted in 2005, showed only a 3% dif-

ference between the simplified score (0–3 points) and the GCS score (3–15 points) when pre-

dicting the outcome of traumatic brain injuries [11]. Also, GCS, which has high complexity,

was reported to have a low interrater reliability [42], and it was confirmed that the interrater

reliability of the simplified scale of GCS was highest among various types of consciousness

evaluation methods (e.g., GCS, simplified scale, AVPU, ACDU, etc. [12]). Based on the results

of these studies, we believe that simplifying GCS enables monitoring through smart or wear-

able devices. The verbal response can be categorized via smart devices [43]; if a verbal response

can be recognized by automatic speech recognition technology via a smart device, it is scored

as 2 points (and 1 point otherwise). Additionally, the motor response can be scored based on

the response to local pain through a wristband or earphone. To test the motor response, a stim-

ulus can be applied to the wearable device, and the injured patient can directly turn off the

stimulus. If the stimulus is turned off, it is scored as 2 points (and 1 point otherwise).

Before developing the machine learning algorithms, we statistically analysed each variable

via one-way analysis of variance. As shown in Table 2, the selected input variables were signifi-

cantly different between the death and the survival for most of the dataset. We also quantified

the importance of each feature in determining the survivability of the developed algorithms.

Our analysis revealed that the level of consciousness, e.g., the GCS or SCS score, is the most

important feature for survivability prediction. Moreover, in Table 3, the logistic regression sur-

vivability prediction model with SCS showed slightly inferior performance compared to the

logistic regression model with GCS. For the deep neural network algorithm, however, the

performance difference between using GCS and SCS as input features was not significant

(Table 4). Since the logistic regression handles the input variables linearly, the informative loss

of SCS deteriorated the survivability prediction performance. However, the neural network

features nonlinear characteristics when learning the complex relationships between input fea-

tures, which can compensate for the loss of information [27, 28]. Furthermore, when compar-

ing the machine learning algorithms, RTS was basically developed with the logistic regression.

The random forest and neural network methods have more discriminative power due to their

nonlinear relationship between the input and output. Therefore, the random forest and the

neural network algorithms showed improved performance compared to the logistic models.

This is also due to the nonlinear characteristic of the neural network, which computes non-lin-

ear input-output mapping to express a hyperplane for discrimination [27, 28].

We proposed the development of a unified remote triage algorithm for blunt and penetrat-

ing trauma; however, TRISS requires the ISS score, which is difficult to automate as an input

variable. Therefore, we excluded ISS as an input variable in this research. However, to investi-

gate the applicability of machine learning to triage, we also trained and tested the deep neural

network model with the same input variables as TRISS. This method achieved an AUC value

of 0.93±0.005, which is significantly improved compared to TRISS (Table 7). In Fig 3, the neu-

ral networks developed with GCS and SCS achieve similar ROC curve and same AUC scores

and they outperformed the TRISS model. Additionally, we also trained and tested our neural

network model in the ED dataset. Although the triage situation is different, the deep neural

network method showed similar performance with an AUC value of 0.90±0.002. Based on the

results of the current study, the machine learning approach for remote triage showed compa-

rable performance with a standard triage model (i.e., TRISS). However, the proposed approach
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can be automated and is implantable with a wearable device, which will be useful in prehospital

environments.

Limitations

This study used the secondary retrospective dataset from the NTDB and has the limitations

about the bias of the dataset which exist in any retrospective study. Most of the dataset is col-

lected from patients who suffer an accident in daily life rather than a disaster. Therefore, the

deficiency of samples collected from the patients in a disaster is the limitation of this study.

Nonetheless, the dataset contains various injury mechanism that may occur in a disaster site.

We expect that our approach is applicable to the triage of patients at the site of a disaster with

the practical optimization in the field.

Our machine learning-based survivability prediction algorithm achieved comparable per-

formance to TRISS in terms of its discriminative power, as represented by the AUC value.

The predicted score value itself has a biased output toward 1 for survival (0.9906) and death

Table 7. Performance of the machine learning algorithms for survivability predictions. The standard errors were estimated by the jack-knife procedure.

Algorithms Input Variables AUC Standard Error 95% Confidence Interval

LCL UCL

TRISS Age, SBP, RR, GCS, ISS 0.90 0.005 0.901 0.909

Neural Network Age, SBP, RR, HR, SCS, ISS 0.93 0.005 0.921 0.929

Neural Network Age, SBP, RR, HR, GCS, ISS 0.93 0.005 0.922 0.930

https://doi.org/10.1371/journal.pone.0206006.t007

Fig 3. ROC curves with AUC values for the neural network and TRISS. Comparison between the additionally developed neural network

models with the injury severity score (ISS) and existing triage model, TRISS. In both model, with SCS and GCS, the neural network developed

with the ISS also outperformed the trauma and injury severity score (TRISS).

https://doi.org/10.1371/journal.pone.0206006.g003
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(0.8662), which could be caused by the imbalance of the dataset between death and survival.

Therefore, to practically implement our approach in the field, a practitioner who comprehends

the output meaning of machine learning should scale the output with the field data to provide

a more conclusive probability. Even though the proposed SCS achieved improved survivability

prediction performance with this data-driven machine learning approach, the SCS data that

are used to develop and evaluate the algorithm are reproduced from GCS values of the NTDB

data. Therefore, the SCS values and the developed survivability prediction algorithm should be

evaluated with real field data collected in wearable situations. However, the current improve-

ment of wearable device technology indicates that this may be achieved in the near future.

Conclusions

The goal of this study was to develop a survival classification model that can quickly and auto-

matically triage via wearable devices without medical personnel. For this purpose, we proposed

a simplified consciousness score that does not rely on the presence of medical personnel and

developed a classification model of survival prediction with high accuracy based on vital signs.

In conclusion, we investigated the possibility to triage remotely through wearable devices. The

classification model for survival prediction is expected to effectively reduce the time for triage

and increase the survival rate of injured patients in prehospital environments during mass

casualty incidents.
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