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Purpose: To investigate the value of radiomics features derived from preoperative multi-
sequence MR images for predicting early recurrence (ER) in patients with solitary
hepatocellular carcinoma (HCC) ≤5 cm.

Methods: One hundred and ninety HCC patients were enrolled and allocated to training
and validation sets (n = 133:57). The clinical–radiological model was established by
significant clinical risk characteristics and qualitative imaging features. The radiomics
model was constructed using the least absolute shrinkage and selection operator
(LASSO) logistic regression algorithm in the training set. The combined model was
formed by integrating the clinical–radiological risk factors and selected radiomics
features. The predictive performance was assessed by the area under the receiver
operating characteristic curve (AUC).

Results: Arterial peritumoral hyperenhancement, non-smooth tumor margin, satellite
nodules, cirrhosis, serosal invasion, and albumin showed a significant correlation with ER.
The AUC of the clinical–radiological model was 0.77 (95% CI: 0.69–0.85) and 0.76 (95%
CI: 0.64–0.88) in the training and validation sets, respectively. The radiomics model
constructed using 12 radiomics features selected by LASSO regression had an AUC of
0.85 (95% CI: 0.79–0.91) and 0.84 (95% CI: 0.73–0.95) in the training and validation sets,
respectively. The combined model further improved the prediction performance
compared with the clinical–radiological model, increasing AUC to 0.90 (95% CI: 0.85–
0.95) in the training set and 0.88 (95% CI: 0.80–0.97) in the validation set (p < 0.001 and
p = 0.012, respectively). The calibration curve fits well with the standard curve.

Conclusions: The predictive model incorporated the clinical–radiological risk factors and
radiomics features that could adequately predict the individualized ER risk in patients with
solitary HCC ≤5 cm.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is the sixth most common
malignancy and the third leading cause of cancer-related
mortality globally (1). In China, newly diagnosed cases of HCC
account for almost half of the global cases annually, which
seriously threatens the life and health of the Chinese people
(2). For patients with early-stage HCC (solitary HCC ≤5 cm or
up to three nodules ≤3 cm, without macrovascular invasion and
extrahepatic spread) and adequate liver function (3),
hepatectomy is still widely accepted as the first-line treatment
option in most centers; in particular, early solitary HCC is an
ideal surgical indication in clinical practice. Unfortunately, the
long-term survival in patients with HCC remains unsatisfactory,
with the 5-year recurrence rate at 50%–70% (4).

According to the current clinical practice guidelines, HCC
recurrence is usually divided into early and late recurrence by the
2-year cutoff point (5–8). Early recurrence (ER) accounts for
more than 70% of tumor recurrence, which is likely caused by
occult metastasis of the primary tumor (6). The time of
recurrence is a significant survival factor, and the overall
survival time for HCC patients with ER is often lower than for
those without ER (8–10). Previous studies have reported several
risk factors of ER, such as large tumor volume, multiple tumors,
poor differentiation, satellite lesions, non-smooth tumor
margins, vascular invasion, and peritumoral parenchymal
enhancement in the arterial phase (AP) (11–16).

Radiomics is a process of converting digital medical images
into high-throughput, innumerable quantitative features using
different algorithms, which provide valuable diagnostic,
prognostic, or predictive information (17). To date, radiomics
has been used to predict the postoperative ER of other types of
cancer (18–20). As a non-invasive and effective tool, radiomics
plays an important role in predicting ER of HCC after
hepatectomy, transcatheter arterial chemoembolization, and
radiofrequency ablation (15, 16, 21,), with relatively excellent
diagnostic accuracy. However, few studies focused on radiomics
analysis derived from multi-sequence MR images to predict
postoperative ER of solitary HCC with a diameter ≤ 5 cm.

Previous studies showed that tumor diameter greater than 5 cm
was closely related to ER and high mortality (22–24). However,
few studies specifically predict ER of solitary HCC with a diameter
≤ 5 cm after hepatectomy. Therefore, it is very important to
identify risk factors related to ER for guiding further clinical
treatment and improving the long-term survival of HCC patients.

The aim of this study was to develop and validate an effective
and visualized model based on multi-sequence MR images to
predict ER in patients with solitary HCC ≤5 cm.
Abbreviations: AFP, alpha-fetoprotein; AP, arterial phase; APHE, arterial
peritumoral hyperenhancement; AUC, area under the curve; DCE, dynamic
contrast-enhanced; DP, delayed phase; DWI, diffusion-weighted imaging; ER,
early recurrence; HCC, hepatocellular carcinoma; ICC, interclass correlation
coefficient; LASSO, least absolute shrinkage and selection operator; MVI,
microvascular invasion; NPV, negative predictive value; PPV, positive predictive
value; PVP, portal venous phase; ROC, operating characteristic curve; T2WI/FS,
fat-suppression.
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MATERIALS AND METHODS

Patients
This retrospective study received ethical approval, and the
requirement for informed consent was waived. From January
2012 to December 2017, 712 consecutive patients underwent R0
resection in our hospital. The inclusion criteria were the
following: a) histologically proven HCC with a negative
resection margin, b) solitary tumor ≤5 cm, c) no preoperative
history of cancer-related treatments (including surgery and
interventional therapy), d) high-quality MR images performed
4 weeks preoperatively (the lesions were clearly displayed
without obvious external and respiratory motion artifacts), and
e) at least 2 years of follow-up. Finally, a total of 190 HCC
patients (80 patients with ER and 110 patients with non-ER)
were included in this retrospective study. The enrolled patients
were divided into a training set (56 patients with ER and 77
patients with non-ER) and a validation set (24 patients with ER
and 33 patients with non-ER) at a ratio of 7:3 (Figure 1).

The clinical and pathological variables were obtained from
the electronic medical record system for all patients, including
demographic characteristics, preoperative laboratory data, and
postoperative pathological data.
MRI Acquisition and Imaging Analysis
All MR examinations were performed using 3.0 T scanners
(Signa HDx, GE Medical System, Milwaukee, WI, USA;
Discovery MR 750, GE Medical System) with an 8-channel
phased-array body coil. After localizer images were obtained,
in-phase and opposed-phase T1-weighted imaging, fat-
suppression T2-weighted imaging (T2WI/FS), diffusion-
weighted imaging (DWI; b-values of 0 and 800 s/mm2), and
dynamic contrast-enhanced (DCE) T1-weighted three-
dimensional spoiled gradient echo liver acceleration volume
acquisition were performed. The contrast-enhanced images
were acquired at 20–30 s (AP), 60–70 s (portal venous phase
(PVP)), and 180 s (delayed phase (DP)). Gadodiamide
(Omniscan 0.5 mmol/ml; GE Healthcare) at a standard dose
(0.2 ml/kg) was administered at a rate of 2.0 ml/s and flushed
with 20 ml of 0.9% sterile saline via an automatic injector.

Two abdominal radiologists (LW and BF with 3 and 6 years’
experience, respectively) reviewed all MR images. Both
radiologists were blinded to any clinical and pathological
information. They reached a consensus through discussion
when any disagreements existed. They independently evaluated
and recorded the following basic MR image features: a)
maximum tumor diameter (maximum diameter measured on
axial MR images in the PVP), b) liver background (cirrhosis or
non-cirrhosis), c) location (left lobe, right lobe, left and right
lobes, or caudate lobe), d) intratumoral fat (presence or absence,
defined as the signal in the opposed-phase reduced compared to
the in-phase), e) DWI intensity (hyperintense or slightly
hyperintense), f) capsule (complete or absent/incomplete), g)
dynamic enhancement pattern (gradual enhancement, persistent
enhancement, wash in and wash out, or minimal/no
enhancement), h) tumor margin (smooth or non-smooth), and
June 2022 | Volume 12 | Article 899404
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FIGURE 1 | A flowchart of the study cohort.
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i) arterial peritumoral hyperenhancement (APHE; defined as
relatively high intensity of the liver parenchyma outside the
tumor boundary in AP that became isointense in the subsequent
phases) (12).
Tumor Segmentation and Radiomics
Feature Extraction
T2WI/FS images and three-phase DCE-MR images were used for
feature extraction. Before tumor segmentation, all preoperative
MR images were resampled into a uniform voxel size of 1 × 1 × 1
mm3 using Artificial Intelligence Kit software (version 3.3.0, GE
Healthcare, China). Three-dimensional manual segmentation
was performed by a radiologist with 3 years’ MR experience
using ITK-SNAP software (v.3.6.0;www.itksnap.org;open-source
software). The volumes of interest (VOIs) were manually drawn
along the boundary of the tumor on each consecutive slice for all
190 lesions. To assess the intraclass correlation coefficient (ICC),
40 VOIs were randomly chosen and performed independently by
another radiologist with 6 years’ experience. In total, 1,316
radiomics features were extracted from each sequence using
the Artificial Intelligence Kit software based on the open-
source Pyradiomics python package, which included the
following parameters: first-order histogram features (n = 18),
texture features (n = 89, including 14 shape features, 16 gray-
level zone size matrix (GLZSM) features, 16 gray-level run-
length matrix (RLM) features, 24 gray-level co-occurrence
matrix (GLCM) features, 14 gray-level dependence matrix
features, and 5 neighboring gray-tone difference matrix
features), wavelet features (n = 744), local binary pattern
features (n = 279), and Laplacian of Gaussian (logSigma =
2.0/3.0) features (n = 186).
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Radiomics Feature Selection and
Signature Construction
Features with ICC > 0.75 indicated satisfactory consistency and
were retained for subsequent analysis. The least absolute
shrinkage and selection operator (LASSO) logistic regression
algorithm was used to identify the most predictive radiomics
features, and 10-fold cross validation was used to tune the model
parameter as the inner resampling loop (Figure 2). The
radiomics score (Rad-score) was calculated via the linear
combination of the selected features weighted by their
respective LASSO coefficients. Considering the small sample
size of our datasets, this radiomics model was further verified
by using 100-time bootstrap for the outer resampling loop. The
whole dataset was randomly divided into the training set and
validation set 100 times. The existing radiomics model was tested
on the new 100 testing datasets.

Clinical–radiological variables with p < 0.05 in the univariate
analysis were included in the multivariate logistic regression
analysis to confirm risk factors associated with ER, and the
clinical–radiological model was generated. A combined model
was developed by incorporating the clinical–radiological risk
factors and the Rad-score. Receiver operating characteristic
(ROC) curves were generated for those three models (a
clinical–radiological model, a radiomics model, and a
combined model). Accuracy, sensitivity, specificity, positive
predictive value (PPV), negative predictive value (NPV), and
the area under the ROC curve (AUC) were calculated.
Follow-Up
Serum alpha-fetoprotein (AFP) levels and contrast-enhanced
CT/MRI were performed every 3–6 months for 2 years after
June 2022 | Volume 12 | Article 899404
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surgery. ER was defined as intrahepatic tumor relapse (with
typical HCC imaging features or confirmed by pathology) and
metastasis (distant metastasis or lymph node metastases) within
2 years after surgery.

Statistical Analysis
Categorical variables were compared by using the chi-square test
or Fisher’s exact test, and continuous variables were compared by
using Student’s t-test or the Mann–Whitney U test, as
appropriate. All statistical analyses were performed with SPSS
software (version 25.0, IBM). The performance of each model
was compared using the Delong test. A two-sided p < 0.05
indicated a statistical significance.
RESULTS

Clinical Characteristics
Overall, 190 HCC patients (male/female, 163/27; mean age, 54.86 ±
9.03 years; age range, 27–80 years) who met the inclusion criteria
were included and divided into the training set (n = 133; male/
female, 112/21; mean age, 54.39 ± 9.04 years) and validation set
(n = 57; male/female, 51/6; mean age, 55.95 ± 8.98 years). Eighty
(42.1%) of 190 patients with solitary HCC ≤5 cm experienced
postoperative ER. Of the 80 patients with ER, cirrhosis was
presented in 63 patients, and cirrhosis was strongly associated
with ER in both the training set (p = 0.011) and validation set
(p = 0.001). Except for prothrombin time (p = 0.047), no statistical
difference was observed between the two sets in the clinical and
radiological characteristics (all p > 0.05), as shown in Tables 1a, 1b.
Frontiers in Oncology | www.frontiersin.org 4
Clinical–Radiological Model Construction
and Validation
Univariate analysis showed that eleven clinical and radiological
characteristics including age, cirrhosis, enhancement pattern, non-
smooth tumor margin, APHE, T stage, microvascular invasion
(MVI), satellite nodules, serosal invasion, gamma-glutamyl
transpeptidase level, and albumin level were significantly different
between the ER and non-ER groups in the training set (all p < 0.05).
Multivariate logistic regression analysis demonstrated that the
APHE (odds ratio [OR], 5.03; 95% CI, 1.18–21.43), non-smooth
tumor margin (OR, 0.42; 95% CI, 0.16–1.05), satellite nodules (OR,
6.21; 95% CI, 1.45–26.62), cirrhosis (OR, 2.98; 95% CI, 1.20–7.39),
serosal invasion (OR, 2.08; 95% CI, 0.91–4.73), and albumin (OR,
0.89; 95% CI, 0.80–0.99) were independent predictors for ER in the
training set, which were used to construct the clinical–radiological
model (Table 2). The AUCs of the clinical–radiological model were
0.77 (95% CI: 0.69–0.85) in the training set and 0.76 (95% CI:
0.64–0.88) in the validation set.

Radiomics Model Construction
and Validation
Among 1,316 radiomics features extracted from multi-sequence
MR images, the LASSO analysis selected 12 features with non-
zero coefficients to calculate the Rad-score (two, two, two, and six
features from T2WI, AP, PVP, and DP images). The following
formula was used to obtain the corresponding Rad-score for each
patient: Rad-score=-0.3*T2_original_shape_Sphericity-
0.157*AP_wavelet_HLL_glcm_ClusterShade+0.363*DP_lbp
_3D_k_glrlm_ShortRunLowGrayLevelEmphasis-0.223*
AP_wavelet_LHH_glszm_HighGrayLevelZoneEmphasis
FIGURE 2 | The least absolute shrinkage and selection operator (LASSO) regression for radiomics features selection and signature construction. The top graph
represents in LASSO model, with the penalization parameter l selection using 10-fold cross-validation as the minimum criteria. The log (l) (x-axis) was plotted
against the partial likelihood of deviance (y-axis). Dotted vertical lines were drawn at the minimum criteria and the 1 − SE criteria. l value of 0.019, with log (l), −3.96
was chosen (1 − SE criteria). The bottom graph represents LASSO coefficient profiles of the radiomics features. Ten-fold cross-validation in the log (l) sequence was
used to draw the vertical line at the value selected; also indicated are 12 features with non-zero coefficients.
June 2022 | Volume 12 | Article 899404
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+0.118*DP_wavelet_LHL_glcm_ClusterProminence-0.473*DP
_wavelet_LLL_firstorder_Minimum-0.3*VP_original_glrlm
_LongRunLowGrayLevelEmphasis-0.343*T2_log_sigma
_2_0_mm_3D_glrlm_LongRunEmphasis-0.21*DP_wavelet_
LHL_firstorder_Skewness-0.141*DP_lbp_3D_k_firstorder
_10Percentile-0.31*VP_original_shape_Sphericity+0.228*DP_
log_sigma_3_0_mm_3D_glcm_ClusterProminence-0.411.

The AUCs of the radiomicsmodel were 0.85 (95%CI: 0.79–0.91)
in the training set and 0.84 (95% CI: 0.73–0.95) in the validation set.
The outer resampling loop using the 100-time bootstrap method
delivered a mean AUC of 0.85 (range from 0.70 to 0.96). Among
them, 86% of AUC values were greater than 0.80, which showed
good reliability of this radiomics model.

Combined Model Construction
and Validation
The combined model was developed by incorporating the
clinical–radiological risk factors and the Rad-score. The AUCs
of the combined model were 0.90 (95% CI, 0.85–0.95) in the
Frontiers in Oncology | www.frontiersin.org 5
training set and 0.88 (95% CI, 0.80–0.97) in the validation set. In
the training set, the combined model displayed accuracy,
sensitivity, specificity, PPV, and NPV of 81.20%, 71.83%,
91.94%, 91.01%, and 74.03%, respectively. When applied in the
validation set, the combined model exhibited accuracy,
sensitivity, specificity, PPV, and NPV of 84.21%, 85.71%,
83.33%, 75.00%, and 90.91%, respectively. The predictive
performances of the clinical–radiological model, radiomics
model, and the combined model in the training and validation
sets are listed in Table 3.

For ER prediction, the combined model outperformed both
the clinical–radiological model (p < 0.001) and the radiomics
model (p = 0.023) in the training set. However, no significant
difference was observed between the combined model and the
radiomics model in the validation set (p = 0.174), although the
combined model showed better performance than the clinical–
radiological model in the validation set (p = 0.012). ROC curves
for the prediction of ER were compared among the clinical–
radiological, radiomics, and combined models (Figure 3).
TABLE 1a | Comparisons of clinical factors in the training and validation sets.

Characteristic Training set (N = 133) Validation set (N = 57) Pinter

ER (N = 56) Non-ER (N = 77) Pintra ER (N = 24) Non-ER (N = 33) Pintra

Age (years), mean ± SD 56.32 ± 10.08 52.99 ± 7.98 0.035 56.92 ± 9.51 55.24 ± 8.65 0.492 0.277
Gender (male/female) 47/9 65/12 0.939 19/5 32/1 0.084 0.341
Hepatitis, no. (%) 0.189 0.013 0.922
Hepatitis B 40 (71.43%) 63 (81.82%) 19 (79.17%) 20 (60.61%)
Hepatitis C 5 (8.93%) 2 (2.60%) 4 (16.67%) 2 (6.06%)
None 11 (19.64%) 12 (15.58%) 1 (4.17%) 11 (33.33%)
AFP level (U/ml), no. (%) 0.846 0.972 0.652
<400 43 (76.79%) 58 (75.32%) 19 (79.17%) 26 (78.79%)
≥400 13 (23.21%) 19 (24.68%) 5 (20.83%) 7 (21.21%)
Satellite lesions, no. (%) 0.002 0.847 0.37
Present 12 (21.43%) 3 (3.90%) 2 (8.33%) 2 (6.06%)
Absent 44 (78.57%) 74 (96.10%) 22 (91.67%) 31 (93.94%)
Histologic grade, no. (%) 0.808 0.448 0.308
Well 4 (7.14%) 8 (10.39%) 1 (4.17%) 1 (3.03%)
Moderate 35 (62.50%) 47 (61.04%) 18 (75.00%) 20 (60.61%)
Poor 17 (30.36%) 22 (28.57%) 5 (20.83%) 12 (36.36%)
T stage, no. (%) 0.018 0.481 0.844
I 35 (62.50%) 64 (83.12%) 16 (66.67%) 24 (72.73%)
II 18 (32.14%) 12 (15.58%) 7 (29.17%) 9 (27.27%)
III 2 (3.57%) 1 (1.30%) 1 (4.17%) 0 (0.00%)
IV 1 (1.79%) 0 (0.00%) 0 0
MVI, no. (%) 0.01 0.926 0.891
Present 24 (42.86%) 17 (22.08%) 7 (29.17%) 10 (30.30%)
Absent 32 (57.14%) 60 (77.92%) 17 (70.83%) 23 (69.70%)
Serosal invasion 0.016 0.516 0.409
Present 38 (67.86%) 36 (46.75%) 13 (54.17%) 15 (45.45%)
Absent 18 (32.14%) 41 (53.25%) 11 (45.83%) 18 (54.55%)
ALT (U/L) 27.00 (17.45, 38.55) 26.00 (18.00, 34.30) 0.92 32.50 (21.90, 72.55) 19.00 (16.70, 32.00) 0.001 0.839
AST (U/L) 28.00 (20.45, 35.00) 24.00 (20.00, 30.00) 0.152 29.50 (24.00, 41.10) 22.00 (18.00, 27.30) 0.001 0.968
LDH (U/L) 167.50 (151.70, 185.55) 163.00 (145.70, 182.30) 0.232 171.00 (148.75, 189.50) 172.00 (145.50, 186.50) 0.679 0.841
GGT (U/L) 44.00 (27.00, 68.10) 34.00 (21.00, 53.60) 0.041 52.00 (26.45, 84.20) 29.00 (20.50, 42.90) 0.024 0.81
TBIL (mmol/L) 73.50 (61.00, 86.00) 12.30 (8.74, 15.92) 0.929 11.55 (9.05, 13.60) 13.60 (11.50, 16.35) 0.097 0.596
DBIL (mmol/L) 4.60 (3.49, 6.46) 4.40 (3.17, 5.83) 0.443 4.55 (3.84, 5.61) 4.60 (3.77, 6.33) 0.948 0.58
IBIL (mmol/L) 6.90 (5.33, 9.25) 7.50 (5.67, 10.00) 0.402 4.55 (3.84, 5.61) 4.60 (3.77, 6.33) 0.948 0.586
TP (g/L) 70.10 (63.60, 75.58) 71.20 (67.60, 75.75) 0.252 68.80 (66.33, 72.98) 70.40 (67.80, 75.45) 0.386 0.499
ALB (g/L) 42.45 (39.30, 44.98) 44.10 (40.90, 46.90) 0.02 40.95 (38.73, 42.97) 44.70 (41.97, 47.93) <0.001 0.684
G (g/L) 26.65 (23.80, 30.41) 26.80 (24.24, 29.23) 0.765 28.05 (25.48, 29.80) 25.30 (22.80, 28.25) 0.028 0.953
PLT (10 * 9/L) 156.50 (126.00, 203.65) 165.00 (125.70, 199.30) 0.947 153.00 (114.50, 179.75) 155.00 (112.50, 195.50) 0.794 0.124
PT (s) 11.80 (11.20, 12.38) 11.60 (11.20, 12.40) 0.815 11.50 (10.85, 12.27) 11.20 (10.77, 12.06) 0.599 0.047
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Nomogram Construction and Validation
The combined model-based nomogram is presented in Figure 4.
The Hosmer–Lemeshow test yielded no significant difference in
both the training and validation sets (all p > 0.05). The
Frontiers in Oncology | www.frontiersin.org 6
calibration curves (Figure 5) revealed that the predictive
probability of the nomogram was consistent with the actual ER
probability in both sets. The decision curve (Figure 6) showed
that the combined model had the highest net benefit as compared
TABLE 1b | Comparisons of radiological features in the training and validation sets.

Characteristic Training set (N = 133) Validation set (N = 57) Pinter

ER (N = 56) non-ER (N = 77) Pintra ER (N = 24) non-ER (N = 33) Pintra

Tumor size (cm),
mean (range)

3.15 (2.70, 4.10) 3.00 (2.27, 4.00) 0.219 3.60 (2.95, 4.50) 3.10 (2.30, 4.05) 0.089 0.288

Cirrhosis, no. (%) 0.011 0.001 0.922
Present 42 (75.00%) 41 (53.25%) 21 (87.50%) 15 (45.45%)
Absent 14 (25.00%) 36 (46.75%) 3 (12.50%) 18 (54.55%)
Intratumoral fat, no. (%) 0.234 0.838 0.664
Present 6 (10.71%) 14 (18.18%) 5 (20.83%) 5 (15.15%)
Absent 50 (89.29%) 63 (81.82%) 19 (79.17%) 28 (84.85%)
Lesion location, no. (%) 0.337 0.085 0.181
Left lobe 8 (14.29%) 20 (25.97%) 2 (8.33%) 7 (21.21%)
Right lobe 44 (78.57%) 53 (68.83%) 22 (91.67%) 22 (66.67%)
Left and right lobes 1 (1.79%) 2 (2.60%) 0 (0.00%) 4 (12.12%)
Caudate lobe 3 (5.36%) 2 (2.60%) 0 (0.00%) 0 (0.00%)
Shape, no. (%) 0.753 0.426 0.727
Regular 29 (51.79%) 42 (54.55%) 12 (50.00%) 20 (60.61%)
Irregular 27 (48.21%) 35 (45.45%) 12 (50.00%) 13 (39.39%)
Radiological capsule 0.753 0.93 0.498
Complete 32 (57.14%) 45 (58.44%) 15 (62.50%) 21 (63.64%)
Absence or incomplete 24 (42.86%) 32 (41.56%) 9 (37.50%) 12 (36.36%)
Lesion margin, no. (%) 0.007 0.929 0.352
Smooth 35 (62.50%) 64 (83.12%) 20 (83.33%) 26 (78.79%)
Non-smooth 21 (37.50%) 13 (16.88%) 4 (16.67%) 7 (21.21%)
DWI intensity, no. (%) 0.494 0.919 0.79
Hyperintense 47 (83.93%) 65 (84.42%) 21 (87.50%) 28 (84.85%)
Slightly hyperintense 9 (16.07%) 12 (15.58%) 3 (12.50%) 5 (15.15%)
Enhancement pattern, no. (%) 0.046 0.181 0.432
Wash in and wash out 42 (75.00%) 57 (74.03%) 22 (91.67%) 24 (72.73%)
Gradual enhancement 4 (7.14%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
Persistent enhancement 3 (5.36%) 11 (14.29%) 1 (4.17%) 2 (6.06%)
No or minimal enhancement 7 (12.50%) 9 (11.69%) 1 (4.17%) 7 (21.21%)
Arterial peritumoral enhancement, no. (%) 0.037 0.204 0.606
Present 9 (16.07%) 4 (5.19%) 5 (20.83%) 2 (6.06%)
Absent 47 (83.93%) 73 (94.81%) 19 (79.17%) 31 (93.94%)
June 2022 | Volume 12
 | Article 8
PIntra indicates whether significant differences exist between the two groups. PInter represents whether significant differences exist between the two sets.
AFP, alpha-fetoprotein; ALT, alanine transaminase; AST, aspartate aminotransferase; LDH, lactate dehydrogenase; GGT, gamma-glutamyl transpeptidase; TBIL, total bilirubin; DBIL, direct
bilirubin; IBIL, indirect bilirubin; TP, total protein; ALB, albumin; G, globulin; PLT, platelets; PT, prothrombin time; MVI, microvascular invasion; ER, early recurrence; IQR, interquartile range.
TABLE 2 | Univariate and multivariate analyses for early recurrence in the training set.

Variables Univariate analysis Multivariate analysis

Odds ratio (95% CI) p-Value Odds ratio (95% CI) p-Value

Age 1.043 [1.002–1.086] 0.035 – 0.243
Cirrhosis 2.634 [1.241–5.590] 0.011 2.977 [1.200–7.388] 0.019
Enhancement pattern 0.847 [0.605–1.186] 0.046 0.582
Non-smooth tumor margin 0.339 [0.151–0.757] 0.007 0.416 [0.164–1.054] 0.064
Arterial peritumoral enhancement 3.495 [1.018–11.998] 0.037 5.029 [1.180–21.434] 0.029
T stage 2.571 [1.268–5.211] 0.018 – 0.760
Microvascular invasion 2.647 [1.244–5.632] 0.01 – 0.296
Satellite nodules 6.717 [1.799–25.125] 0.002 6.209 [1.448–26.621] 0.014
Serosal invasion 2.404 [1.173–4.928] 0.016 2.076 [0.912–4.726] 0.082
Gamma-glutamyl transpeptidase (U/L) 1.003 [0.998–1.008] 0.041 – 0.275
Albumin (g/L) 0.898 [0.819–0.985] 0.02 0.889 [0.789–0.990] 0.032
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FIGURE 3 | The receiver operating characteristic curves of the three models in the training (left) and validation (right) sets.
FIGURE 4 | The radiomics nomogram for predicting early recurrence.
TABLE 3 | Predictive performance of the three models.

Model Training set (N = 133) Validation set (N = 57)

Accuracy Sensitivity Specificity PPV NPV AUC (95% CI) Accuracy Sensitivity Specificity PPV NPV AUC (95% CI)

Radiomics
model

75.18 80.36 71.43 67.16 83.33 0.85 (0.79–0.91) 71.93 87.50 60.61 61.76 86.96 0.84 (0.73–0.95)

Clinical–
radiological
model

75.19 81.08 72.92 53.57 90.91 0.77 (0.69–0.85) 66.67 63.16 68.42 50.00 78.79 0.76 (0.64–0.88)

Combined
model

81.20 71.83 91.94 91.07 74.03 0.90 (0.85–0.95) 84.21 85.71 83.33 75.00 90.91 0.88 (0.80–0.97)
Frontiers in On
cology | www.frontiersin.org 7
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to the clinical–radiological model and the radiomics model
within all reasonable threshold probabilities.
DISCUSSION

In this study, we developed and validated a radiomics-based
model to predict ER of HCC patients with solitary tumor ≤5 cm
by incorporating clinical–radiological variables and radiomics
features extracted from multi-sequence MR images. The
Frontiers in Oncology | www.frontiersin.org 8
combined model achieved satisfactory predictive performance
and further improved the prediction performance compared
with the clinical–radiological model. The combined nomogram
can help the clinical doctors to identify patients at high risk of ER
after R0 resection and may provide HCC patients with adequate
treatment opportunities and improve their overall survival.

As an emerging quantitative analysis method, radiomics plays
an important role in predicting ER of HCC after hepatectomy.
However, as far as we know, there were few studies to investigate
the relationship between radiomics characteristics based on
FIGURE 5 | Calibration curves of the nomogram for the training (left) and validation (right) sets. The y-axis and the x-axis show the actual rate of early recurrence
(ER) and the predicted ER possibility, respectively. The solid diagonal line represents a perfect prediction. The closer the pink dashed line fits the solid line, the better
the predictive ability of the model is.
FIGURE 6 | Decision curve analysis of the three models. The y-axis and the x-axis show the standardized net benefit and the threshold probability, respectively.
Among the three models, the combined model (red line) has a higher net benefit than the clinical–radiological model (yellow line) and the radiomics model (blue line)
within a wide range of threshold probabilities.
June 2022 | Volume 12 | Article 899404
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multi-sequence MR images and ER of single HCC ≤ 5 cm. Zhao
et al. (25) found that the radiomics model based on multi-
sequence MR images presents the best predictive ability
compared with single sequence and other different sequence
combinations. Additionally, Zhang et al. (16) developed and
validated a radiomics nomogram for predicting ER using whole-
lesion radiomics features extracted from multi-sequence MR
images. Their results indicated that the radiomics nomogram
had a fairly good discriminative performance. Also, our result
was consistent with the previous studies. Among all the features
of the radiomics model, there were 2 features from T2WI and 10
features from DCE images that indicated that DCE images have
more influence on the differential diagnosis of ER. The present
study confirmed that the radiomics model based on the
preoperative multi-sequence MR images (including T2WI/FS
and DCE-MR images) had a higher predictive ability for ER
than the clinical–radiological model with AUC values of 0.85 and
0.84 in the training and validation sets, respectively. This result
indicated that radiomics features extracted from multi-sequence
MR images might contain more biological and heterogeneity
information than the clinical–radiological characteristics, which
could further improve the predictive performance.

APHE is an auxiliary diagnostic feature of malignant tumors
in the liver imaging reporting and data system. Previous studies
have shown that APHE was more frequently observed in the ER
group than in the non-ER group and was identified as an
independent predictor of ER (11, 13). The results of our study
were consistent with previous studies. The possible reason may
be that APHE was a feature associated with hypervascular
progressed HCC and referred to as enhancement of the venous
drainage area in the peritumoral liver parenchyma during
multistep hepatocarcinogenesis (26). The non-smooth tumor
margin has been proven to be closely related to tumor invasion
and poor prognosis (16, 27, 28). Ariizumi et al. (29) reported that
the incidence of portal vein invasion and intrahepatic metastasis
in HCC patients with non-smooth margins was significantly
higher than in patients with smooth margins. Additionally, their
findings confirmed that the non-smooth margin was an
important predictor of ER. In our study, the non-smooth
tumor margin was also strongly correlated with ER. As an
imaging biomarker with important clinical application value,
the non-smooth tumor margin is closely related to tumor
heterogeneity and invasive behavior, which leads to a higher
probability of ER.

HCC is rare among patients without liver disease, and
hepatitis B virus (HBV)-induced cirrhosis is the main risk
factor for HCC (30). Yao et al. (31) found that cirrhosis was
an independent risk factor associated with postoperative
recurrence (p < 0.001). The incidence of cirrhosis in HCC
patients with ER was higher than that in patients with late
recurrence, but there was no significant statistical difference
(p > 0.05). Portolani et al. (32) reported that cirrhosis was
significantly associated with ER. Our results also showed that
cirrhosis was an independent risk factor for ER. In this study,
satellite nodules were defined as nodules that were invisible in
images but presented around the primary tumors reported by
Frontiers in Oncology | www.frontiersin.org 9
postoperative pathology, and the presence of satellite nodules
significantly predicted ER. In addition, the liver serosal invasion
was an independent risk factor for postoperative ER in our study.
Few studies have explored the relationship between serosal
invasion and ER. Yamamoto et al. (33) reported that serosal
invasion was associated with ER (p = 0.031). More studies are
needed to confirm this conclusion in the future. Interestingly, in
our study, MVI had no significant correlation with ER in the
multivariate analysis, though it was a significant factor in the
univariate analysis. Numerous studies reported that MVI was a
significant risk factor associated with ER of HCC (25, 34–36).
The discrepancy existed possibly because MVI was related to the
aggressive behavior of the primary tumors. The frequency of
MVI in HCC with a diameter less than 5 cm is significantly lower
than in large or multifocal HCC as reported in previous studies
(37–39). Another possible reason is that the HCC patients with a
tumor diameter ≤5 cm generally undergo radical surgical
resection, which may have a certain impact on reducing the
risk of postoperative ER.

This study has several limitations. Firstly, selection bias was
inevitable due to the retrospective nature. In order to increase the
reliability, we applied the model obtained from the training set to
the validation set. Secondly, our study was a single-center study
from areas with a high incidence of HBV or hepatitis C virus
infection, so this conclusion may not be applicable to other
people with different liver diseases. Thirdly, we developed a
prediction model only for ER and did not include late
recurrence or long-term survival analyses because of the short
postoperative follow-up time, which needs further investigation.
Lastly, only patients with a single lesion ≤5 cm were recruited;
therefore, this conclusion may not be extended to nodules with a
maximum diameter >5 cm or multiple nodules. Thus, the results
of this study need to be verified by more extensive and
prospective studies in the future.

CONCLUSIONS

In conclusion, our findings showed that the combined model
integrated clinical–radiological risk factors with the radiomics
signature demonstrated good discriminative ability for
predicting ER in HCC patients with a single nodule ≤5 cm,
which may serve as a non-invasive and visualized tool in clinical
decision-making. More multicenter, prospective studies will be
needed to investigate the role of radiomics analysis in clinical
practice in the future.
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