
The tear film covers and protects the ocular surface, 
and it is essential in maintaining ocular homeostasis [1]. It 
contains several molecules that include a wide variety of 
proteases and protease inhibitors [2,3], where the concentra-
tions can change in various local and systemic diseases, such 
as dry eye syndrome (DES) [4-8], keratoconus (KC) [9-15], 
primary open-angle glaucoma, and proliferative diabetic reti-
nopathy, among others [16]. This specific molecular signature 
can help in understanding the etiology of the disease and to 

help in the diagnosis or prognosis of some ocular surface 
conditions.

KC is a progressive ectasia of the cornea of unknown 
origin. It is characterized by the thinning and protrusion of 
the cornea, leading to irregular astigmatism and myopia, 
thereby affecting the visual performance [17]. The thinning 
of the cornea in KC may be due to tissue degradation that 
involves the remodeling of the extracellular matrix as a 
result of collagen deficiency [18] and increases in the levels 
of proinflammatory cytokines, cell adhesion molecules, and 
matrix metalloproteinases (MMPs) [9,19-21].

MMPs, a group of zinc-dependent endopeptidases that 
includes gelatinases (MMP-2, 9), collagenases (MMP-1, 8, 
13), stromelysins (MMP-3, 10), and matrilysins (MMP-7, 26) 
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Purpose: The purpose of this work was to analyze the expressions of matrix metalloproteinase 9 (MMP-9), calcyclin 
(S100A6), and cystatin S (CST4) in the tears of keratoconus (KC) patients. The correlations between the expressions of 
these proteins and the values of various ocular surface parameters were examined after accelerated corneal crosslinking 
(A-CXL) with pulsed ultraviolet light.
Methods: This prospective, observational study enrolled patients with different grades of KC, scheduled to undergo the 
A-CXL procedure, as well as healthy subjects. Tear samples were analyzed by employing customized antibody microar-
ray assays for MMP-9, S100A6, and CST4 proteins. The keratometry readings at the maximum keratometry (Kmax) and 
the simulated keratometry (SimK) values were obtained for examining the postoperative evolution of corneal topography. 
The state of the ocular surface was evaluated using the results of the Ocular Surface Disease Index (OSDI) questionnaire, 
tear osmolarity (OSM) test, Schirmer test (SCH), Tear Break Up Time (TBUT), tear clearance (CLR), and fluorescein 
(FLUO) and lissamine green (LG) corneal staining.
Results: A total of 18 patients (22 eyes) and 10 healthy subjects were studied. The concentrations of MMP-9 and S100A6 
decreased in tears, from 104.5 ± 78.98 ng/ml and 350.20 ± 478.08 ng/ml before the surgery to 48.7 ± 24.20 ng/ml and 
55.70 ± 103.62 ng/ml, respectively, after 12 months of follow up. There were no changes in the CST4 concentration after 
12 months of follow up (2202.75 ± 2863.70 versus 2139.68 ±2719.89 ng/ml). When the patients were divided into three 
groups according to the evolutive stage of KC, the trends for the three biomarkers in each group were the same as in the 
general group. Basal concentrations of MMP-9 and S100A6 from healthy subjects and KC patients were compared. The 
levels of MMP-9 and S100A6 in tears were (9.8 ± 5.11 and 104.55 ± 78.98 ng/ml, p<0.01; and 11.35 ± 3.18 and 350.26 ± 
478.06 ng/ml, respectively, p<0.01). This was not the case for CST4, which did not exhibit statistically significant differ-
ences between the two groups (2261.94 ± 510.65 and 2176.73 ± 2916.27 ng/ml respectively, p=0.07).
Conclusions: A-CXL promoted a decrease in the concentrations of MMP-9 and S100A6 in the tear film. This effect 
may be related to the restoration of corneal homeostasis and the consequent repair of the tissue damage caused by KC. 
Moreover, the A-CXL treatment did not produce lasting alterations in the ocular surface, and the values of the evaluated 
clinical parameters did not change significantly.
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synthesized by corneal epithelial cells and stromal cells, have 
long been suspected of having a significant role in KC [11]. 
MMP-9 is a gelatinase produced in the corneal epithelium 
and activated in tear film. Its concentration is significantly 
higher in patients with KC disease, as shown by Lema 
et al. [9], who reported that the tear film of those patients 
showed increased levels of the proinflammatory cytokines 
interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α), as 
well as higher levels of MMP-9; thus, this enzyme could be 
implicated in the remodeling process of the cornea in KC. It 
is known that the levels of epithelial and stromal structural 
proteins of KC corneas are altered, suggesting that they are 
affected due to structural remodeling during the development 
and progression of KC.

There are some structural proteins implicated in corneal 
epithelium integrity that appear upregulated in the tears 
from some ocular surface diseases [8,22]. One of these is the 
calcyclin (S100A6) protein. This is an S100 calcium-binding 
protein that exhibits upregulated expression in proliferating 
and differentiating cells. S100A6 was found to be expressed 
at high levels in fibroblasts and epithelial cells with high 
proliferating activity, as well as those undergoing differen-
tiation [23]. Moreover, it has been shown to interact in vitro 
in a calcium dependent manner with Annexin A2 (ANXA2) 
and Annexin A5 (ANXA5) [24,25]. In contrast, ANXA2 has 
been found to be downregulated in stroma of KC corneas, 
suggesting a possible role in progression of KC disease. In 
addition, S100A6 has been used for monitoring patients’ 
response to changing glaucoma treatment, suggesting the 
potential application of this protein as a prognostic biomarker 
[26].

Cystatins are natural inhibitors of cysteine proteinases. 
These proteinases are one of the most abundant protein-
degrading enzymes in mammalian cells [27]. They are 
involved in the initial phases of degradation of intracellular 
proteins and can provoke tissue degradation after being 
released into the extracellular medium. The activity of 
cysteine proteinases is controlled by their physiologic inhibi-
tors, the cystatins, which are known to be generally present 
in tears [28]. Extracellular cystatins have a protective role 
against the damaging effects of lysosomal proteinases, which 
can be secreted under physiological conditions for the degra-
dation and regeneration of tissues, as well as under patho-
logical conditions associated with infection by bacteria or 
viruses [29]. Our group has previously described a decrease 
in cystatins levels in KC patients that is potentially related to 
the degradation of tear proteins [10].

Corneal crosslinking (CXL) with ultraviolet radiation 
(UVA) and riboflavin is a technique used to strengthen the 

softened and deformed cornea [30,31]. This procedure results 
in tightening of the interlocking mesh of the corneal collagen 
fibers and formation of a dense weblike structure. In most 
cases, the procedure stops the progression of diseases like 
KC, pellucid marginal degeneration of the cornea, and iatro-
genic ectasias. The aim of this research was to determine 
the concentration of biomarkers related to the remodeling 
process of the ocular surface in the tears of KC patients before 
A-CXL treatment and examine the potential changes in the 
concentration of these markers 12 months after the surgery.

METHODS

This prospective observational study was performed at 
the Cornea Unit of the Instituto Clínico-Quirúrgico de 
Oftalmología (ICQO) of Bilbao, Spain. The research was 
conducted by medically qualified personnel after receiving 
the approval of the Cruces Hospital Ethics Committee. The 
study was conducted in strict accordance with the tenets of 
the Declaration of Helsinki on Biomedical Research Involving 
Human Subjects. Before tear collection, a signed informed 
consent was obtained from all patients once the nature and 
possible consequences of the study had been explained.

Subjects: Twenty-eight subjects (32 eyes) over 18 years of 
age were enrolled in the study. Ten healthy subjects and 18 
patients with clinically evident and progressive KC, with an 
increase of at least one diopter in maximum keratometry 
(Kmax) during the previous year and scheduled for the 
A-CXL surgery were considered for the study. The exclusion 
criteria were ocular surgery performed in the preceding 3 
months, a systemic condition (active allergy), or medication 
(anti-inflammatories) that could interfere with the interpreta-
tion of the results, as well as the concomitant administration 
of topical medications (except artificial tears).

The diagnosis of KC was performed by topographic 
evaluation using a Pentacam HR (Oculus Optikgeräte GmbH, 
Wetzlar, Germany), following the classical criteria established 
by Rabinowitz [32]. The criteria were an inferior/superior 
index greater than 1.5, maximum keratometry at the corneal 
apex (Kmax) greater than 47 D, and a difference between the 
Kmax of the two eyes of more than 1 D.

As there is no consensus on the most appropriate 
classification of the various progression degrees of KC, it 
was decided to modify the classification proposed in 2013 
slightly, which is based mainly on the Kmax [33]. The grades 
1 and 2 in this classification (suspected and subclinical 
KC, respectively) are not suitable for the CXL treatment, 
which is reserved for grades 3, 4, and 5 (initial, moderate, 
and advanced KC). For our study, the division between the 
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moderate and advanced grades was assumed at a maximum 
keratometry of 55 D (not 57 D as suggested by Rabinowitz).

Surgical intervention: The surgical technique employed in the 
A-CXL treatment was the method with corneal de-epithelial-
ization (Epi-Off technique). After de-epithelializing 6.5 mm 
of the central cornea using an Amoils epithelial scrubber 
(Innovative Excimer Solutions Inc., Toronto, Canada), an 
iso-osmotic riboflavin solution (Vibex Rapid, Avedro Inc., 
Waltham, MA) was instilled every 2 min for 10 min.

The KXL system (Avedro Inc.) was used to produce the 
UVA radiation. We employed pulsed light (UVA exposure, 1 
s on, 1 s off) at 30 mW/cm2 for 8 min. This corresponds to a 
yield of 7.2 J/cm2 of total administered energy.

Finally, a hydrophilic contact lens was placed on the 
cornea as a bandage. It was removed within 5–7 days, when 
re-epithelization of the cornea was completed. Antibiotic 
and steroidal eye drops (TobraDex®, Alcon-Cusi, El Masnou, 
Spain) were instilled, in a descending pattern, for a month. 
During this period, the eye was moistened with artificial tears 
on demand.

Calendar of visits: Before the surgery, all the patients under-
went a complete ophthalmic examination, including refrac-
tion, topography, corneal biomicroscopy, and the examination 
of the fundus of the eye. Control examinations were sched-
uled at 3, 6, and 12 months after the operation. All visits took 
place between 10 and 12 AM.

Clinical examinations during each visit: For examining the 
clinical evolution of KC and the changes in the ocular surface 
after A-CXL, the following clinical and biochemical param-
eters were studied: keratometry (Kmax and simulated kera-
tometry [SimK]), lacrimal osmolarity (OSM) measurements 
[34], the Ocular Surface Disease Index (OSDI) questionnaire 
[35], the Tear Break Up Time (TBUT) test, lacrimal clearance 
(CLR) [36], fluorescein staining (FLUO) using the Oxford 
scheme [37], Schirmer test with anesthesia (SCH), and 
lissamine green (LG) staining following the van Bijsterveld 
scheme [38].

The concentrations of the MMP-9, S100A6, and CST4 
biochemical biomarkers in the tear film were also analyzed 
in the study. The manner of sample collection and order of 
tests were always the same. First, the OSDI questionnaire 
was used to assess the symptoms of ocular irritation and their 
effect on the vision-related functions. Second, the OSM was 
tested, after which a drop of topical anesthetic was applied 
to the ocular surface and SCH, TBUT, FLUO, CRL, and LG 
tests were performed. The tear samples were collected one 
day later to avoid any interference between the clinical tests 
and biochemical studies.

All tear samples were collected without anesthesia, using 
calibrated 10-μl glass microcapillary tubes (BLAUBRAND 
intraMark, Wertheim, Germany), from the inferior temporal 
tear meniscus, taking care to minimize the irritation of the 
ocular surface. The samples were placed in Eppendorf tubes 
and stored at −80 °C until analysis. Each sample was labeled 
with a code identifying the patient and visit number.

Immunoassay protocol: Customized arrays for quantitative 
determination of the three selected biomarkers S100A6, 
MMP-9, and CST4 were developed (Figure 1). The process 
of customized microarray preparation for quantitative tear 
biomarker analysis included several steps, as previously 
described [39]. The final integration of the antibodies into 
the microarray system used in the study was performed as 
follows: A set of customized microarrays was generated. 
Briefly, antibodies and markers were diluted in the printing 
solution. A format of 24 arrays, consisting of eight replicas 
of each antibody surrounded by three replicas of the marker, 
was spotted onto functionalized glass slides (IMG Pharma, 
Bizkaia, Spain) using a Nano-Plotter NP 2.1 (GeSiM, 
Grosserkmannsdorf, Germany). The slides were printed at 
room temperature, and the microarrays were stored at −20 °C 
until required. The reaction volume was 70 µl/well for all the 
steps in the immunoassay. Tear samples were diluted (1/30) 
in 10 mM phosphate-buffered saline (PBS, Sigma Aldrich, 
St. Louis, MO) for microarray analysis. Subsequently, the 
samples from healthy subjects and KC patients were incu-
bated for 1 h with rabbit detection antibodies. Finally, after 
washing the slides with 1X Tris -buffered saline supplemented 
with 0.05% of Tween-20 (TBS-T), the secondary Alexa Fluor 
647-labeled anti-rabbit antibodies were added and incubated 
for 1 h. The fluorescence of the spots was measured using an 
Agilent High-Resolution Microarray Scanner (Agilent Tech-
nologies, Santa Clara, CA) at 633 nm, and protein concentra-
tion was determined based on the standard curve intensity 
values.

Statistics: A mixed-model design (split-plot analysis of vari-
ance [ANOVA]) was used in this study, in which two factors 
were studied simultaneously: One factor (a fixed-effect factor) 
was the between-subjects variable, and the other (a random-
effect factor) was the within-subjects variable (repeated 
measurements). Therefore, significant differences between 
the groups were determined using the Games-Howell post 
hoc test nonparametric approach. Means between healthy 
subjects and patients were compared via the Mann–Whitney 
U test. Finally, Spearman correlation analysis was performed 
to assess the correlations between clinical parameters and 
protein levels. The level of statistical significance was set at 
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p<0.05. Statistical analysis was performed using the SPSS 
24.0 program (SPSS Inc., Chicago, IL).

RESULTS

Twenty-two eyes of 18 patients were followed up successfully 
for 12 months. Six patients were women (33.3%) and 12 were 
men (66.6%). The mean age was 28.2 ± 10.7 years. Seven 
eyes (31.8%) presented grade 1 KC (incipient), 8 eyes (36.3%) 
presented grade 2 (moderate), and 7 eyes (31.8%) presented 
grade 3 (advanced).

Fourteen patients underwent operation on one eye. Four 
patients underwent operation on both eyes and were included 
for analysis; since each eye had a different KC grade, they 
were analyzed independently. In the latter group, two eyes 
were grade 1 (incipient), two eyes were grade 2 (moderate), 
and four eyes were grade 3 (advanced).

A control group was included to know the control values 
of the biomarkers in healthy subjects. The control group 
included 10 eyes of 10 subjects. Five were women (50%) and 
five were men (50%). The mean age was 25.7 ± 6.5 years. 
The variables related to the ocular surface condition were 
measured and served as inclusion criteria to include a subject 
in the control group. The means of the control group values 
were as follows: 299.5 ± 11.24 mOsm/l (OSM), OSDI 8.65 
± 12.47, TBUT 13.5 ± 2.83 s, and Schirmer test 18.3 ± 6.66 
mm. They did not show corneal or conjunctival staining, 
and the variables related to KC were not evaluated. Twelve 

months after the treatment, only a slight increase in Kmax 
and a slight decrease in SimK were observed, although none 
of the variables showed statistically significant differences in 
comparison with the baseline. None of the studied parameters 
of lacrimal function exhibited statistically significant changes 
after the 12-month follow up (Table 1).

Twelve months after the surgery, the concentration of 
MMP-9 in the tears of patients with KC decreased signifi-
cantly, from 104.5 ± 78.98 ng/ml to 48.7 ± 24.20 ng/ml. The 
concentration of S100A6 was also reduced significantly, from 
350.26 ± 478.08 ng/ml to 55.79 ± 103.62 ng/ml. However, 
there was no significant change in the CST4 levels (2202.75 
± 2863.70 ng/ml versus 2139.6 ± 2719.89 ng/ml; Table 2, 
Figure 2). A similar trend was observed when the samples 
were grouped according to the severity of KC (Table 3). 
However, they did not show statistically significant differ-
ences when comparing the basal levels of the biomarkers 
analyzed according to the degree of KC, indicating that there 
was no relationship between the severity and concentration 
of the biomarkers present in the tears.

When the basal concentrations of the healthy subjects 
and KC patients were compared, the levels of MMP-9 and 
S100A6 in tears showed statistically significant differences 
(9.8 ± 5.11 and 104.55 ± 78.98 ng/ml, p<0.01, and 11.35 ± 
3.18 and 350.26 ± 478.08 ng/ml, respectively, p<0.01). This 
was not the case for CST4, which did not show statistically 
significant differences between the two groups (2261.94 ± 
510.65 and 2202.75 ± 2863.70 ng/ml, respectively, p = 0.07). 

Figure 1. Antibody microarrays 
customized. A: Specific device for 
analyzing four microarrays simul-
taneously. B,C: Spotting pattern 
for the 24-subarray format. D: 
Representative image of the arrays 
showing the distribution of the stan-
dard calibration curve and samples. 
Only one microarray slide contains 
a standard calibration curve (left 
column) and the fluorescence acqui-
sition for 16 tear samples (Micro-
array 1). Other slices (Microarrays 
2–4) show the fluorescence for 24 
tear samples. Fluorescence scans 
of the microarray multiplex assays 
were acquired at 633 nm.
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At 12 months after surgery, the levels of MMP-9 and S100A6 
tended to show decreased concentrations approaching control 
values.

At 6 and 12 months after the procedure, a statistically 
significant positive correlation was observed between S100A6 

levels and the damage to the ocular surface, reflected by the 
FLUO and LG variables. As S100A6 is directly related to 
cellular apoptosis, a decrease in its tear concentration reduces 
the corneal staining, indicating diminished tissue damage. 
Furthermore, a positive correlation was observed between 
the OSDI questionnaire results and the MMP-9 concentration 

Table 1. Summary of clinical outcomes of KC patients.

Variables Basal 12 month P value
Kmax 52.07 ± 6.12 52.54 ± 11.02 0.203
SimK 45.85 ± 3.34  45.87 ± 3.04 0.078
OSM 302.46 ± 9.40 300.9 ± 13.5 0.676
OSDI 28.29 ± 22.77 17.07 ± 21.35 0.513
BUT 12.50 ± 4.16 14.45 ± 3.85 0.139
SCH 16.58 ± 8.51 17.05 ± 7.42 0.863
CLR 4.46 ± 1.72 3.63 ± 1.21 0.13
FLUO 0.33 ± 0.56 0.52 ± 0.81 0.166
VL 1.22 ± 1.45 1.5 ± 1.6 0.131

K max: maximum keratometry  (diopters); SimK: simulated keratometry (diopters);OSM: Osmolarity 
(mOsm/L); OSDI: Ocular Surface Disease Index; TBUT: Tear Break Up Time (seconds); SCH: Schirmer´s 
test (mm); CRL: Tear clearance; FLUO: Fluorescein staining (Oxford staining score); LG: Lissamine green 
(van Bijsterveld schema); Values are expresed as mean ± SD *p<0.05.

Table 2. Biomarkers concentration in tears along de study.

Variables Basal 3 month 6 month 12 month
MMP9 (ng/ml) 104.55 ±  78.98 65.25  ±  24.20* P=0.014 56.57 ±  15.76* P=0.006 48.76 ±  24.20* P=0.001

S100A6 (ng/ml) 350.26 ±  478.08 112.39 ±  103.62*  
P=0.012 64.07 ±  45.52* P=0.008 55.79 ±  103.62* P=0.007

CST4 (ng/ml) 2202.75 ±  2863.70 2714.94  ±  2719.89  
P=0.533

1792.47 ±  2719.89 
P=0.635

2139.68 ±  2719.89 
P=0.941

Values are expressed as mean ± SD *p<0.05 show statistically significant differences.

Figure 2. Concentrations in ng/ml of the matrix metalloproteinase (MMP-9), calcyclin (S100A6), and cystatin S (CST4) during the study 
(presurgery and 3, 6, and 12 months).
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ś c
o

n
c

e
n

t
r

a
t

io
n

s i
n

 t
e

a
r

s a
tt


e

n
d

in
g

 se
v

e
r

it
y

 o
f 

k
e

r
a

t
o

c
o

n
u

s.

K
C

 g
ra

de
In

ci
pi

en
t

M
od

er
at

e
A

dv
an

ce
d

Va
ri

ab
le

s
B

as
al

12
 m

on
th

P
B

as
al

12
 m

on
th

P
B

as
al

12
 m

on
th

P
M

M
P-

9 
(n

g/
m

l)
11

5.
03

 ±
 7

8.
98

46
.0

8 
± 

8.
52

0.
01

8*
91

.5
9 

± 
51

.9
3

46
.4

7 
± 

5.
39

0.
01

2*
10

8.
87

 ±
 1

00
.7

2
54

.0
4 

± 
18

.6
7

0.
02

8*
S1

00
A

6 
(n

g/
m

l)
29

6.
36

 ±
 4

78
.0

8
64

.0
7 

± 
45

.5
2

0.
02

8*
39

5.
39

 ±
 5

84
.7

3
61

.0
4 

± 
65

.8
4

0.
03

6*
35

2.
63

 ±
 5

01
.9

7
44

.0
6 

± 
29

.74
0.

02
8*

C
ST

4 
(n

g/
m

l)
14

07
.3

7 
± 

24
69

.11
11

47
.18

 ±
 2

48
9.

34
0.

61
2

27
49

.1
2 

± 
32

03
.5

4
28

66
.1

5 
± 

32
59

.6
2

0.
48

4
23

73
.7

2 
± 

30
76

.16
23

02
.0

9 
± 

31
44

.6
3

0.
46

3

Va
lu

es
 a

re
 e

xp
re

ss
ed

 a
s m

ea
n 

± 
SD

 *
p<

0.
05

 sh
ow

 st
at

is
tic

al
ly

 si
gn

ifi
ca

nt
 d

iff
er

en
ce

s.

http://www.molvis.org/molvis/v25/12


Molecular Vision 2019; 25:12-21 <http://www.molvis.org/molvis/v25/12> © 2019 Molecular Vision 

18

values. Otherwise, a statistically significant negative correla-
tion was found between S100A6 levels and CLR values after 
12 months. Finally, CST4 levels showed a negative correlation 
with CLR at 3 months and FLUO staining at 3 and 6 months 
(Table 4).

DISCUSSION

KC is a multifactorial disease involving complex interactions 
between genetic and environmental factors. Traditionally, it 
has been defined as a noninflammatory disease of the cornea, 
but increasing studies show overexpression of several cyto-
kines in KC [9,11].

In our study, during the first year after the A-CXL treat-
ment, the behaviors of three biomarkers (S100A6, CST4, and 
MMP-9) in the tears of patients with KC were studied. The 
high preoperative concentration of MMP-9 observed in our 
study is consistent with the positive regulation of MMP-9 
gene expression reported previously in KC [9,11,19]. This 
finding agrees with the results obtained by Kolozsvári et al. 
[15], who showed reduced levels of cytokines, chemokines, 
enzymes, and growth factors in the tears of CXL-treated KC 
patients in response to the corneal tissue redistribution. Our 
results clearly show a downward trend in the concentration of 
MMP-9 protein in tears after the treatment. The diminished 
levels of MMP-9 and increased corneal stiffness induced by 
A-CXL (making the extracellular matrix more resistant to 
degradation by MMP-9) reduced the tendency of the cornea 
to deform. Although it could be suggested that the regulariza-
tion of MMP-9 expression may be linked to postoperative 
changes in the ocular surface, this does not seem to be the 
case. None of the lacrimal function parameters was signifi-
cantly altered after the A-CXL treatment in our study.

Shetty et al. [40] reported that the topical application 
of 0.05% cyclosporin A (CsA) inhibits the appearance of 
MMP-9 in tears; their paper described a combined in vivo 
and in vitro study. The researchers demonstrated in vitro 
that CsA inhibits the expression of MMP-9 and cytokines 
in cultured epithelial cells from patients with KC. They also 
found that the disease progression was halted for 6 months in 
a group of KC patients treated with a topical preparation of 
CsA (Restasis, Allergan, Inc., Irvine, CA). The anti-inflam-
matory effect of the application of CsA or A-CXL treatment 
(decrease in the concentration of MMP-9) seems to play a 
key role in the stabilization of KC. This may open a way for 
new methods of KC management . Even if A-CXL cannot be 
performed, immunomodulatory drugs can be used to stabilize 
the KC, at least temporarily.

Our study also showed a reduction in S100A6 levels in 
tears from the patients after A-CXL. The S100A proteins are 

involved in inflammatory processes of the ocular surface [41] 
and neovascularization of the cornea [42]. Moreover, their 
levels in tears increase under various pathological conditions, 
such as pterygium [43], ocular surface tumors [44], and dry 
eye [8]. Apart from their role in inflammation, these proteins 
are involved in apoptosis induced by reactive oxygen species 
(ROS), which are abundant in oxidative stress processes. The 
oxidative damage by cytotoxic products ROS and reactive 
nitrogen species (RNS) generated by lipid peroxidation and 
the nitric oxide pathway has been reported in KC [45]. We 
postulate that the increased concentration of S100A6 in KC 
tears may be related to apoptosis and oxidation stress in the 
cornea. The reduction in the level of this protein after A-CXL 
may be associated with a positive response to this treatment.

In contrast with MMP-9 and S100A6, the CST4 concen-
tration did not change significantly during the study in any 
of the studied groups. This may indicate that the levels of 
CST4 were not modified by A-CXL treatment. In previous 
studies conducted by our group [10], we saw that the tear 
concentration of this protein was lower in KC patients than 
it was in healthy subjects; however, the difference was 
low, and it was not statistically significant. In addition, the 
analysis was performed with a semiquantitative technique, 
in contrast with this study. Due to the high variability in 
the concentration of this protein in tears, we cannot say that 
there is a lower concentration in patients with KC compared 
with control subjects. This hypothesis should be supported in 
future investigations with a greater number of KC patients.

The positive correlation between the OSDI results and 
MMP-9 levels deserves some attention, although it was not 
significant throughout the study. The correlation observed 
between the preoperative levels of MMP-9 and the OSDI 
results at different times after the operation indicates that 
the baseline MMP-9 may be a predictive factor for the post-
operative symptoms. That is, the greater the preoperative 
concentration of MMP-9, the more subjective symptoms will 
be reported by the patients in the postoperative period. There 
was a positive correlation between the S100A6 levels and 
ocular surface staining and a negative correlation between 
S100A6 levels and Schirmer test values. These results showed 
a relationship between corneal damage, tear volume, and 
biomarker concentration. As the CST4 protein is produced in 
the lachrymal gland, its concentration depends on tear clear-
ance; this explains the negative correlation of CST4 levels 
with CLR and FLUO results (after 3 months). Finally, our 
data showed no important differences between the correla-
tions of clinical and biochemical variables in the different KC 
evolutive stage groups.

http://www.molvis.org/molvis/v25/12


Molecular Vision 2019; 25:12-21 <http://www.molvis.org/molvis/v25/12> © 2019 Molecular Vision 

19

Ta
b

l
e
 4

. C
o

r
r

e
l

a
t

io
n

s b
et

w
e

e
n

 c
l

in
ic

a
l
 pa

r
a

m
et

e
r

s a
n

d
 b

io
m

a
r

k
e

r
s c

o
n

c
e

n
t

r
a

t
io

n
s i

n
 K

C
 pa

t
ie

n
ts

.

Va
ri

ab
le

s
S1

00
A

6 
0

S1
00

A
6 

3
S1

00
A

6 
6

S1
00

A
6 

12
M

M
P9

 0
M

M
P9

 3
M

M
P9

 6
M

M
P9

 1
2

C
ST

4 
0

C
ST

4 
3

C
ST

4 
6

C
ST

4 
12

O
SM

 0
0.

39
0.

08
0.

45
0.

58
*

-0
.2

1
0.

16
0.

12
-0

.4
5

-0
.2

4
-0

.0
6

-0
.0

8 
-0

.14
O

SM
 3

0.
26

-0
.3

0
0.

20
0.

40
-0

.4
4 

-0
.11

 
-0

.16
-0

.7
1*

-0
.1

9
-0

.3
5

-0
.2

3 
-0

.4
2 

O
SM

 6
0.

24
-0

.0
3

-0
.0

5 
0.

03
-0

.2
0

0.
07

-0
.3

3 
-0

.3
7

0.
01

0.
02

-0
.3

0
-0

.3
2 

O
SM

 1
2

0.
46

0.
09

0.
31

0.
34

0.
03

0.
39

0.
43

0.
19

0.
16

-0
.2

9
-0

.2
8

-0
.0

3 
O

SD
I 0

0.
24

0.
23

0.
34

0.
2

0.
59

*
0.

00
0.

31
0.

56
0.

43
0.

48
-0

.1
5

0.
61

O
SD

I 3
0.

17
0.

62
*

0.
28

-0
.4

7 
0.

87
*

0.
58

0.
62

*
0.

86
*

0.
72

*
0.

50
0.

19
0.

45
O

SD
I 6

0.
06

0.
42

0.
20

-0
.3

1 
0.

71
*

0.
16

0.
23

0.
80

*
0.

62
*

0.
51

-0
.0

9
0.

07
O

SD
I 1

2
0.

38
0.

54
0.

42
0.

02
0.

79
*

0.
55

0.
47

0.
80

*
0.

43
0.

40
0.

07
0.

49
TB

U
T 

0
0.

12
0.

07
4

-0
.16

9
-0

.16
 

-0
.16

7
-0

.3
8

-0
.16

7 
-0

.0
04

 
0.

22
6

0.
23

8
0.

45
4

0.
19

TB
U

T 
3

-0
.0

28
 

0.
25

-0
.0

7 
-0

.5
7*

0.
44

8
0.

25
8

-0
.0

36
 

0.
31

6
0.

14
3

0.
39

2
0.

19
7

0.
25

1
TB

U
T 

6
-0

.1
90

 
-0

.1
5 

-0
.2

54
-0

.2
38

 
-0

.17
5 

-0
.1

34
 

-0
.3

92
 

-0
.2

67
 

0.
08

2
-0

.14
0

-0
.5

1 
-0

.0
64

 
TB

U
T 

12
0.

23
-0

.0
4 

0.
09

8
-0

.1
2 

-0
.14

5 
-0

.3
95

 
-0

.1
94

 
-0

.10
7 

0.
15

9
0.

01
0.

18
4

0.
43

2
SC

H
 0

-0
.1

58
 

-0
.3

56
 

-0
.10

1 
-0

.2
08

 
0.

16
0.

36
4

0.
21

1
0.

07
1

-0
.1

96
 

-0
.4

69
 

0.
05

4
0.

21
2

SC
H

 3
-0

.3
01

 
-0

.4
20

 
-0

.3
14

 
-0

.2
12

 
0.

01
3

-0
.2

30
 

-0
.1

33
 

0.
19

1
-0

.0
78

 
-0

.3
16

 
-0

.1
05

-0
.18

1 
SC

H
 6

-0
.4

10
 

-0
.4

71
 

-0
.2

96
 

-0
.3

02
 

0.
09

6
0.

18
2

0.
01

3
0.

23
3

-0
.14

8 
-0

.3
52

 
-0

.2
88

 
0.

05
7

SC
H

 1
2

-0
.6

12
*

-0
.4

51
 

-0
.4

08
 

-0
.6

72
*

0
0.

08
5

-0
.3

06
 

-0
.0

68
 

-0
.2

38
 

-0
.3

16
 

-0
.2

39
0.

01
7

C
LR

 0
-0

.0
33

 
-0

.0
60

 
0.

12
4

-0
.0

32
 

0.
39

4
0.

22
6

0.
32

5
0.

55
0*

0.
19

5
-0

.0
70

 
-0

.0
11

0.
39

2
C

LR
 3

-0
.1

57
-0

.3
52

 
-0

.0
80

 
-0

.0
49

 
-0

.2
07

 
0.

11
7

-0
.2

56
 

-0
.2

26
 

-0
.4

15
 

-0
.5

08
*

-0
.1

33
0.

01
4

C
LR

 6
0.

10
5

0.
10

6
0.

15
4

-0
.3

10
 

0.
14

7
0.

19
3

0.
42

7
0.

15
8

0.
33

7
-0

.2
48

 
0.

41
6

0.
62

7*
C

LR
 1

2
-0

.8
70

*
-0

.4
85

 
-0

.6
41

*
-0

.5
93

*
0.

1
0.

00
3

-0
.5

90
*

0.
20

2
-0

.6
*

-0
.2

24
 

-0
.4

44
 

-0
.5

50
FL

U
O

 0
-0

.3
27

-0
.2

46
 

-0
.4

10
 

-0
.2

05
 

0.
12

3
-0

.1
23

 
0.

04
1

0.
24

6
0.

16
4

0.
08

2
-0

.0
41

0.
20

7
FL

U
O

 3
-0

.3
09

-0
.2

47
 

-0
.0

62
 

-0
.2

47
 

0.
06

-0
.0

62
 

-0
.1

24
 

0.
12

4
-0

.18
6 

-0
.5

31
*

-0
.3

72
 

-0
.1

24
 

FL
U

O
 6

-0
.3

17
 

-0
.2

72
 

0.
50

2*
-0

.18
2 

0.
09

1
-0

.1
36

 
0.

04
5

0.
22

7
0.

13
6

0.
04

6
-0

.0
46

0.
22

9
FL

U
O

 1
2

-0
.4

62
-0

.4
63

 
-0

.3
09

 
0.

01
-0

.2
31

-0
.3

86
 

-0
.3

86
 

-0
.1

54
-0

.0
77

 
0

-0
.5

72
*

-0
.1

55
 

LG
 0

0.
29

3
-0

.10
7 

0.
47

3
0.

58
3*

-0
.1

55
-0

.11
0 

-0
.2

39
 

-0
.18

7 
-0

.3
25

-0
.2

03
-0

.3
28

 
-0

.3
15

LG
 3

0.
35

6
-0

.0
92

 
0.

37
7

0.
38

1
-0

.17
7 

0.
13

6
-0

.0
61

-0
.3

44
 

-0
.2

16
-0

.11
8

-0
.16

6
-0

.0
22

 
LG

 6
0.

27
9

0.
21

0.
68

2*
0.

45
6

0.
36

3
0.

27
1

0.
46

5
0.

31
2

0.
03

7
0.

00
2

-0
.18

3
0.

15
1

LG
 1

2
0.

14
8

-0
.2

79
 

0.
22

4
0.

75
3*

-0
.0

93
 

0.
23

6
0.

27
9

0.
09

3
-0

.1
52

 
-0

.3
42

-0
.3

92
-0

.2
05

*R
ho

 si
gn

ifi
ca

nt
 d

iff
er

en
ce

s:
 p

<0
.0

5;
 0

=p
re

-s
ur

ge
ry

; 3
,6

 a
nd

 1
2=

 m
on

th
s a

fte
r s

ur
ge

ry
.

http://www.molvis.org/molvis/v25/12


Molecular Vision 2019; 25:12-21 <http://www.molvis.org/molvis/v25/12> © 2019 Molecular Vision 

20

In conclusion, our study shows that A-CXL could 
produce a certain anti-inflammatory effect favoring corneal 
homeostasis. This anti-inflammatory effect may be an addi-
tional benefit, apart from the increase in corneal rigidity, 
produced by A-CXL. Thus, the crosslinking of corneal 
collagen may not be the only factor responsible for the stabi-
lization of KC after the A-CXL, as it is currently assumed.
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