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Towards inferring nanopore sequencing ionic
currents from nucleotide chemical structures
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Benedict Paten 1,2✉

The characteristic ionic currents of nucleotide kmers are commonly used in analyzing

nanopore sequencing readouts. We present a graph convolutional network-based deep

learning framework for predicting kmer characteristic ionic currents from corresponding

chemical structures. We show such a framework can generalize the chemical information of

the 5-methyl group from thymine to cytosine by correctly predicting 5-methylcytosine-

containing DNA 6mers, thus shedding light on the de novo detection of nucleotide

modifications.
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During nanopore sequencing, consecutive nucleotide
sequence kmers block the pores sequentially, producing
ionic currents1. Chemical modifications on nucleotides

additionally alter the ionic currents measured during nanopore
sequencing2–22. The characteristic ionic currents of kmers, which
are represented in kmer models, are used in interpreting
nucleotide modifications2,3,7,23. Up to now, 292–11 and 3012–22

modifications have been successfully characterized in DNA and
RNA, respectively.

To date, most modification analysis algorithms are based on
kmer models2,3,7,23. However, such learning strategies struggle to
generalize knowledge between related kmers. For example, our
previous hierarchical Dirichlet process approach could be struc-
tured to learn associations between kmers with specific shared
properties, e.g., by numbers of pyrimidine bases, but could not
generally learn relationships between arbitrary chemical
similarities2. Moreover, such approaches necessarily represent
base modifications as distinct, unrelated characters. The upshot is
that such kmer character-based models require extensive training
data and are unable to de novo predict the impact of a chemical
modification. Given that the number of possible kmers increases
polynomially with the number of modifications being modeled, it
is extremely challenging to generate sufficient control data for
such models, especially considering that more than 50 and 160
nucleotide modifications have been verified in DNA and
RNA,respectively24,25.

To start to tackle this problem, we propose a graph convolu-
tional network (GCN)-based deep learning framework26,27 for
predicting kmer characteristic ionic currents from corresponding
kmer chemical structures. We confirm that the proposed frame-
work is able to represent individual kmer chemical modules, such
as the phosphate group and the sugar backbone, as well as the
nucleobase methyl and amine groups. We further demonstrate
that this framework can infer full kmer models even when the
training data does not include all possible kmers. This opens up
the possibility of modeling kmers that are under-represented in
control datasets. We also show that the framework can generalize
the 5-methyl group in thymine to cytosine, thereby accurately
predicting the characteristic ionic currents of 5-methylcytosine
(5mC)-containing DNA 6mers. Such generalization of chemical
information is a reason for optimism about the potential for de
novo detection of nucleotide modifications.

Results
Architecture of the deep learning framework. Our deep learning
framework consists of three groups of layers, including GCN
layers, convolutional neural network (CNN) layers, and one fully
connected neural network (NN) layer. As shown in Fig. 1A, the
kmer chemical structures are first represented as graphs, with
atoms as nodes and covalent bonds as edges. The atom chemical
properties are then assigned as node attributes. Based on such
graphs, GCN layers extract one chemical feature vector for every
atom, by visiting its immediate graph neighbors. By this means,
after several GCN layers, atom feature vectors will contain che-
mical information for all atoms within a certain graph distance.
Specifically, this distance equals the number of GCN layers
applied. Considering the small encoding distance of each layer of
a GCN, to improve the encoding efficiency of the framework,
CNN layers are then applied to summarize relatively long-range
chemical information above the GCN layers. The output matrices
of the final CNN layer are then “flattened” as feature vectors.
Such feature vectors are then passed to the final fully connected
NN layer to summarize kmer-level information and finally pre-
dict the kmer characteristic ionic currents (see “Methods”). For
DNA and RNA, the corresponding best-performing architecture

in hyperparameter tuning was selected for downstream analysis
(see “Methods”).

Kmer-level generalization. We first confirmed that the proposed
framework can accurately predict characteristic ionic currents of
kmers from their chemical structures. To do so, we performed a
downsample analysis on the canonical DNA 6mer model pro-
vided by Oxford Nanopore Technologies (ONT, see “Methods”),
by randomly partitioning canonical DNA 6mers with various
train-test splits. For each train-test split group, we performed 50-
fold cross-validation and used root mean square error (RMSE)
and Pearson’s correlation (r) to quantify the goodness of fit (see
“Methods”). As shown in Fig. 1B, Supplementary Fig. 1, and
Supplementary Table 1, the performance stabilized as more than
40% of DNA 6mers were included in the training. Specifically, for
DNA 6mers only used in the test, average RMSE and Pearson’s
correlation reached 1 and 0.995, respectively. Such a result indi-
cated on average 40% of randomly selected DNA 6mers contain
sufficient information to recapitulate the full DNA 6mer model.

We next explored how specific kmer training subsets influence
the ionic current predictions. Specifically, we trained the frame-
work using either the DNA 6mers that (a) do not contain a given
nucleotide (base dropout), (b) do not specify a nucleotide at a
given position (position dropout), or (c) that are combined from
different base dropouts (for instance, using the union of
A-dropout and T-dropout kmers, such that kmers containing
both A and T would be excluded, but not kmers containing either
A or T, noted as A–T model combination, see “Methods” and
Supplementary Note 1 for details). This latter combination
analysis simulates the situation in which we have knowledge
about two modifications independently, but must guess at the
effect of their combination. For each group in (a–c), 50
independent repeats were performed, and goodness of fit was
used to evaluate the performance. As shown in Fig. 1B and
Supplementary Fig. 1, base and position dropouts significantly
decreased the prediction power. Moreover, dropouts in third and
fourth positions contributed the most to the decrease in
prediction power, followed by the second and fifth positions,
consistent with prior observations28. Model combinations, on the
other hand, in general, had a minor influence on the
prediction power.

The above-mentioned analyses together suggest, once properly
trained with sufficient and diverse 6mers, the kmer-level
generalizability of the framework. To further validate and extend
our framework, we performed all the above-mentioned analyses
using RNA, switching to using 5mers instead of 6mers to match
the available training data. Considering the significantly smaller
amount of training data (1/4th the number of distinct RNA
5mers vs DNA 6mers), the prediction power of the RNA
architecture is compromised. However, once trained with a
similar number of kmers, the RNA architecture yielded
comparable prediction power. For instance, the RNA 0.95–0.05
(972 training kmers) and DNA 0.25–0.75 (1024 training kmers)
train-test splits yielded comparable performance on test data.
Such a result suggests the validity of our proposed architecture
(see “Methods,” Supplementary Fig. 2, and Supplementary Note 2
for details).

Such kmer-level generalizability could facilitate nucleotide
modification detection by greatly reducing the required control
data to generate reliable full modification-containing kmer
models. As a proof of concept, we trained the DNA deep
learning architecture with all canonical 6mers plus {1%, 5%, 10%,
30%, 50%, 70%, 90%} of randomly selected 5mC-containing
6mers (“modification imputation” analysis). The characteristic
ionic current signals of such 5mC-containing DNA 6mers were
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obtained from the nanopolish model as reported in refs. 3,23. For
each training group, 50 independent repeats were performed (see
“Methods”). As shown in Fig. 1C and Supplementary Fig. 3,
decent goodness of fit could be obtained when as few as 5% of
5mC-containing DNA 6mers were used as training data.

Specifically, for test DNA 6mers, the average RMSE and
Pearson’s correlation reached 1.2 and 0.995, respectively.
Furthermore, models trained with the knowledge of 50% 5mC-
containing DNA 6mers performed about as well as models
trained with 90%.

Fig. 1 Predicting kmer characteristic ionic currents from chemical structures. A Graphic overview of the proposed deep learning framework for DNA
analysis. B Goodness of fit of DNA canonical random downsample, base-dropout, position-dropout, and model combination analyses. Specifically,
“downsample” denotes the random dropout experiment, where we create random train-test splits. “Base” denotes base-dropout experiment, where we
drop DNA 6mers that contain a specific base in any given position during training. “Position” denotes positional base-dropout experiment, where we drop
DNA 6mers that contain a specific base in a given position during training. As for “combine,” we drop DNA 6mers that contain both of the specified bases
during training. C Goodness of fit of 5mC-containing DNA 6mer imputation analysis. D Goodness of fit of de novo 5mC-containing DNA 6mer prediction. C
and 5mC refer to the goodness of fit of canonical DNA 6mers and 5mC-containing DNA 6mers, respectively. In B–D, Train (red) and Test (blue) refer to
the goodness of fit of the training and test DNA 6mers, respectively. E Predictive accuracy of C/5mC status quantified by balanced accuracy. Nanopolish,
predictive analysis with the nanopolish model as baseline control. De Novo, predictive analysis with 5mC-containing DNA 6mer models described in (D),
which were predicted from canonical training. 0.01–0.9, predictive analysis with different imputation 5mC-containing DNA 6mer models as described in
(C). FAB39088 (cyan) and FAF01164 (purple) refer to two independent NA12878 cell line native genomic DNA nanopore sequencing datasets.
Throughout (B–E), the median, minimum/maximum (excluding outliers), and first/third quartile values were shown by the boxplots.
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Chemical group-level generalization in DNA 5mC de novo
prediction. We noted that performance of the model on held out
5mC kmers trained with just 1% of 5mC kmers was better than
chance. This raised the question of if chemical group-level
information was being usefully generalized among nucleotides by
our framework, potentially allowing the 5mC to be predicted de
novo, without ever having been seen by the model. As a chemical
derivative of cytosine, 5mC contains an additional methyl group
at the fifth position (5-methyl) of the pyrimidine ring. This
5-methyl group is shared between 5mC and thymine. We thus
hypothesized that 5mC can be generalized by combining the
pyrimidine ring from cytosine and 5-methyl group from thymine.
As a proof of concept, we trained the framework with all canonical
DNA 6mers to make de novo predictions on 5mC-containing
DNA 6mers. Similar to previous analyses, 50 independent repeats
were performed, and the prediction power was first quantified by
goodness of fit against the above-mentioned nanopolish model. As
shown in Fig. 1D and Supplementary Fig. 3, although goodness of
fit of 5mC-containing DNA 6mers was significantly worse than
the canonical counterparts, decent performance could still be
obtained (average RMSE and Pearson’s correlation reached 1.8
and 0.993, respectively). We also compared the goodness of fit
between canonical and 5mC-containing DNA 6mers, and as
shown in Supplementary Fig. 4, a positive correlation trend could
be observed. Such a result confirmed that no overfitting was
introduced during architecture training with canonical DNA
6mers, and further suggested 5-methyl generalization.

Human genome C/5mC-status predictive analysis. We next
performed “predictive analysis” to test whether the DNA 6mer
models inferred by our deep learning framework could be used to
correctly predict DNA C/5mC status at a per-read, per-site
resolution from ionic currents (“predictive accuracy,” see
“Methods”). C/5mC sites to be predicted were confirmed by
bisulfite sequencing (see “Methods”). We also quantified the
predictive accuracy with the above-mentioned nanopolish model
as a baseline control (see “Methods”). As shown in Fig. 1E,
average predictive accuracy, quantified by balanced accuracy
(BA), became comparable with baseline control with 50% of
imputed 5mC-containing 6mers. Taken together, these results
confirmed the kmer-level generalizability of our framework, as
well as suggesting that reliable modification-containing kmer
models can be built with significantly less control data once
facilitated by our methodology. Such a result confirmed the
successful 5-methyl generalization. More confusion matrix-based
prediction evaluations can be found in Supplementary Fig. 5.

The encoding of chemical structures. To better understand how
chemical structures were encoded, we visualized DNA 6mer atom
similarity matrices. Specifically, we trained the proposed frame-
work with all canonical DNA 6mers. We then calculated and
visualized the Pearson’s correlations of the feature vectors derived
by the final GCN layer as atom-level similarities. As shown in
Supplementary Fig. 6, we visualized ten randomly chosen cano-
nical DNA 6mers. Taking CGACGT as an example, as shown in
Fig. 2A, C, atoms were in general aggregated by chemical con-
texts. For instance, as shown in (A), for the first cytidine
monophosphate in CGACGT, atoms #0–4 were tightly clustered
with average r > 0.9, recapitulating the phosphate group. Atoms
#5–8 and #17–18 are also clustered with average r > 0.9, denoting
the deoxyribose backbone. Among cytosine atoms #9–16, #9
nitrogen atom connected the nucleobase to the deoxyribose
backbone, atoms #10–11 denoted the C=O group, and atoms
#12–16 composed the C=C-C=N conjugation system and the
covalently bonded amine group. Similarly, atoms in other

nucleotides can also be clustered into phosphate groups, deox-
yribose backbones and nucleobases. Within the nucleobases,
chemical modules including chemical groups and conjugation
systems can further be dissected. Such a phosphate-deoxyribose-
nucleobase pattern repeated and constituted DNA 6mers.

We also examined the inter-nucleotide similarities of different
components. As shown in Fig. 2A, C, in general high similarities
(average r > 0.9) were observed among phosphates, as well as
deoxyriboses from different nucleotides. Meanwhile, chemical
modules sharing similar structures, e.g., the conjugation systems of
adenines, cytosines, and guanines were more similar to each other.
On the other hand, low similarities (average r < 0.5) were observed
between chemical modules with distinct structures, e.g., the
cytosine C=O group and the thymine methyl group. Taken
together, these results suggest that the GCN layers in the proposed
framework can effectively capture features interpretable as
individual chemical modules.

We further visualized the atom-level similarity matrices of
5mC-containing DNA 6mers, aiming to understand the general-
ization of methyl group among thymine and 5mC. We thus
trained our deep learning framework with all canonical DNA
6mers, calculated the Pearson’s correlations of the feature vectors
derived by the final GCN layer, and further visualized such atom-
level similarity matrices of ten randomly selected 5mC-containing
DNA 6mers (Supplementary Fig. 7). Taking GT(5mC)AGA as an
example (Fig. 2D, F), the phosphate-deoxyribose-nucleobase
repetitive pattern was recapitulated. Within nucleobases, high
similarities (average r > 0.9) were again observed among chemical
modules with similar structures. Specifically, strong similarities
(average r > 0.9) were observed between thymine (#38) and 5mC
(#58) methyl groups (Me). In addition, such methyl groups were
uniquely encoded as they were less correlated with any other
DNA 6mer chemical modules (average r < 0.5). We also
quantified the atom-level similarity between GT(5mC)AGA and
corresponding canonical counterpart GTCAGA. As shown in
Supplementary Fig. 8, strong similarities (average r > 0.9) were
observed between GT(5mC)AGA and GTCAGA thymine methyl
groups, as well as the 5mC-methyl groups from GT(5mC)AGA
and thymine methyl groups from GTCAGA. These observations
together suggested the successful chemical information general-
ization. Noticeably, the methyl groups were encoded with the
pyrimidine backbone C=C modules. Such a result suggests that
the GCN encoding is driven by chemical context, which further
implies when generalizing one specific chemical group among
different nucleotides, the corresponding chemical contexts in
which such chemical group resides should be the same.

Finally, we projected kmer atom feature vectors into the tSNE
space, in order to summarize the atom-level similarity matrices
further providing a global visualization of kmer atoms. As shown
in Fig. 2B, E, atoms under the same chemical context clustered
together, e.g., phosphate group phosphate atoms (#1, #20, #42,
#63, #82, and #104 in B and #1, #23, #43, #63, #84, and #106 in F)
and deoxyribose ring oxygen atoms (#7, #26, #48, #69, #88, and
#110 in B and #7, #29, #49, #69, #90, and #112 in E), as well as
NH3 group nitrogen atoms (#14, #35, #55, #76, and #97 in B and
#16, #56, #76, #99, and #119 in E). Specifically, as shown in E, in
5mC-containing DNA 6mer GT(5mC)AGA, T-methyl group
carbon atom #38 and 5mC-methyl group carbon atom #58
clustered together, along with pyrimidine backbone C=C module
atoms #37 and #39 in T, as well as #57 and #59 in 5mC. Taken
together, these results confirm that GCN could properly encode
chemical structures based on the corresponding chemical contexts.

Analyzing the 2mG site in Escherichia coli 16S ribosomal RNA
(rRNA). Our deep learning framework could potentially shed
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light on previously understudied, less prevalent nucleotide mod-
ifications. As a proof of concept, we analyzed 2mG, which can be
represented as the purine ring in guanine with the N2-methyl
group in 6mA. Specifically, we generated an RNA 5mer model
using canonical and 6mA-containing kmers (see “Methods”). We
then predicted the characteristic ionic current signals of 2mG-
containing RNA 5mers (see “Methods”). To test our predictions,
we analyzed nanopore sequencing reads of E. coli 16S rRNA
transcript J01859.1, which contains an annotated 2mG at position
1206 (see “Methods”). As shown in Supplementary Fig. 9, our
predictions recapitulated the characteristic ionic current signals of
2mG-containing and pairing canonical RNA 5mers (see “Meth-
ods”). Moreover, we confirmed that such predicted characteristic
ionic current signals could be used to correctly determine the G/
2mG modification status (see “Methods”).

Discussion
We propose a GCN-based deep learning framework for asso-
ciating kmer chemical structures with corresponding character-
istic ionic currents. We show that such a framework can
recapitulate full kmer models from partial training data, thus
greatly facilitating modification analysis by reducing the amount
of required control data. Specifically, for cases where a small
proportion of random kmers are under-represented in control
data, we can apply the same principle as the downsample analysis
to learn around these training deficiencies. For cases where
comprehensive control datasets are available only for single

modifications, we could apply model combination (as we showed
for individual nucleotides) to model kmers containing multiple
modifications simultaneously.

We further demonstrated that our framework can represent
novel modifications by generalizing encoded chemical groups
between nucleotides, thus shedding light on de novo modification
detection. However, the current model is not without its limita-
tions. For example, the proposed framework encodes chemical
groups, e.g., the methyl groups in thymine and 5mC, as well as
the amine groups in cytosine, guanine, and adenine, with cova-
lently bonded “backbone atoms,” showing a strong chemical
context-specificity (Fig. 2 and Supplementary Figs. 6 and 7).
Thus, the current framework cannot properly handle “stacked”
chemical groups. For instance, the methylamine group in N6-
methyladenine (6mA) cannot be correctly encoded by simply
stacking methyl with an amine. As shown in Supplementary
Fig. 10, substituting A with 6mA was predicted to decrease
characteristic ionic currents, which is the opposite of a previous
study6. Therefore, the extensibility of the framework is currently
limited. To overcome such a limitation, controlled nanopore
sequencing profiles of diverse nucleotide modifications are nee-
ded, in addition to the modeling of other chemical interactions.

Deep learning-based approaches have emerged as powerful
tools for detecting nucleotide modifications from nanopore
sequencing readouts. Compared to kmer model-based counter-
parts, deep learning-based approaches are reported to have better
accuracy and less computational resource consumption5,8.

Fig. 2 Visualizing the encoding of chemical structures. A–C Atom similarity matrix, tSNE visualization, and chemical structure of the example canonical
DNA 6mer CGACGT. In A, B, atoms were numbered and colored based on the chemical structure in (C). Carbon, nitrogen, oxygen, and phosphorus were
colored as black, blue, red, and orange, respectively. Specifically, in A, nucleobases were highlighted by dashed boxes. D–F Atom similarity matrix, tSNE
visualization, and chemical structure of the example 5mC-containing DNA 6mer GT(5mC)AGA. In D, E, atoms were numbered and colored based on the
chemical structure in (F). Carbon, nitrogen, oxygen, and phosphorus were colored as black, blue, red, and orange, respectively. Specifically, in D, E, methyl
group carbon atoms (#38 in T and #58 in 5mC) were highlighted.
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Recently, ONT released the megalodon algorithm (https://
github.com/nanoporetech/megalodon), which can drastically
increase the accuracy for 5mC identification (Supplementary
Fig. 5, see “Methods”). Thus, one potential future extension of the
paper would be using the learned models as components of a
larger, recurrent deep NN.

Another potential future direction would be generalizing the
proposed framework to handle both DNA and RNA kmers. Due
to different translocation speeds, the nanopore sequencing ionic
currents of DNA and RNA are not directly comparable29.
Therefore, advanced deep learning frameworks, which can take
both kmer chemical structures and nanopore sequencing
experimental setups, are needed. Considering DNA and RNA
share several noncanonical nucleobases, e.g., inosine (I)30, we
might combine the ribose in RNA and I in DNA to reconstruct
I-containing RNA 5mers, and vice versa for I-containing DNA
6mers. By this means, required RNA control nanopore sequen-
cing reads, which are usually challenging to obtain, can be largely
compensated. Meanwhile, such generalization would largely
diversify the chemical contexts that can be represented, further
facilitating the de novo modification analysis.

Methods
Graph representation of kmer chemical structures. Following the workflow
described in ref. 26, kmer chemical structures were first described by SMILES
(Simplified Molecular Input Line Entry System) strings, which were assembled by
concatenating SMILES strings of individual nucleotides, as summarized in Table 1.
Each nucleotide base can be described by several SMILES strings. The SMILES
strings presented in Table 1 were selected due to the ease of combining them into
complete kmers. Based on the information provided by ONT, as well as a previous
study28, DNA and RNA are represented by 6mer and 5mer, respectively. An “O”
was then added to the end of each concatenation to represent the residual
unbonded hydroxyl group on the sugar backbone.

We then represent the SMILES string of each kmer as a graph noted as G(A, X).
Specifically, the topology (atom order is determined by SMILES string) of each
kmer chemical structure was represented by an adjacency matrix A, with Ai,j equals
1 iff the ith and jth atoms were covalently bonded. Meanwhile, for every atom in A,
the corresponding chemical properties were represented by feature matrix X, with
Xi recording the chemical property vector for the ith atom. Atom chemical
properties included in the study were summarized in Table 2.

Therefore, the GCN has encoded as input a chemical feature matrix X with the
guide of chemical topology matrix A, representing kmer chemical structures.
Notably, for convenient GCN implementation, the size of A and X is kept constant.
Due to the variable number of atoms across kmers, A and X were thereby padded
with zeros based on the largest kmers. Specifically, the A matrix was padded at the
end of its rows and columns, with dim(A) is {133, 133} and {116, 116} for DNA
and RNA, respectively. While the X matrix was padded at the end of its rows, with
dim(X) is {133, 8} and {116, 8} for DNA and RNA, respectively. Note that the kmer
representation is guided by the nonzero elements (covalent bonds) in A, thus such
padding will not affect the GCN encoding.

Architecture of the deep learning framework. The GCN layers of our framework
were built based on the procedure described by ref. 26. Fast approximate con-
volutions on G were used to create a graph-based NN f(X, A), following the

propagation rule:

Hðlþ1Þ ¼ σð~U
1
2 ~A~U

1
2HðlÞWðlÞÞ

σ(•) is the activation function applied to each layer. Here, the activation function
used was the exponential linear unit (ELU). ~U i;j ¼ ∑j Ai;j is the degree matrix for

each atom in the graph. ~A ¼ Aþ I adds self edges to each of the atoms. The
~U

1
2 ~A~U

1
2 transformation prevents changes in the scale of the feature vectors26 and

constructs filters for the averaging of neighboring node features. H and W denote
the output (activation vectors) and weights of each GCN layer, respectively. The
corresponding superscript represents the layer index. H0=X; however, subsequent
H represents the GCN-derived features.

The intuition of the graph convolution process is described as follows. For every
kmer, chemical properties of atoms, together with their covalently bonded
neighbors, will be convoluted with the guidance of G. Such graph convolution
yields an activation matrix H, following the aforementioned propagation rule. H is
an atom-by-feature matrix, with dimensions {133, N} and {116, N} for each of the
DNA and RNA kmers, respectively. Here, N equals the number of nodes of the
GCN layer, which determines the number of features to be derived. The selection
rule for N is described in the following section. As more GCN layers are stacked,
the graph convolution process is repeated. The Hmatrix will thus contain chemical
information of all atoms within a certain graph distance, which equals the number
of GCN layers applied. By this means, “chemical modules” composed of several
atoms linked by covalent bonds are encoded.

Considering the small encoding distance of a GCN, for a better encoding
efficiency we wanted additional layers that can quickly summarize atom
information. We thus applied standard 1-D CNN layers with rectified linear unit
activation right after the GCN layers. Average Pooling31 was applied on the output
of each 1-D CNN layer. Average Pooling takes the average of each 2 × 2 patch of
the CNN output matrix. Specifically, the output dimension of the first CNN layer
equals {133− K+ 1, N′} and {116− K+ 1, N′} for DNA and RNA kmers,
respectively. Here, K is the CNN kernel size and N′ is the node number of the final
GCN layer. Output dimensions of subsequent CNN layers equals
{m− K+ 1− 2+ 1, n− 2+ 1}, where {m, n} denotes the output dimension of the
previous layer and 2 denotes the Average Pooling patch size. The output from the
final 1-D CNN layer, after Average Pooling, was passed to a Flatten layer, which
converts the final 1-D CNN output matrix to a 1-D feature vector in a row-wise
fashion. The NN layer then takes the flattened vector as input, thereby
summarizing information about the entire kmer and producing a highly
informative representation. Elements of the NN layer output vector are linearly
combined as the final pA value.

Training procedure. Our framework was trained with the Keras32 framework
(2.3.1) with TensorFlow backend using the Adam33 optimizer for gradient descent
optimization. The framework was allowed to train for a maximum of 500 epochs.
To control for overfitting, EarlyStopping34 was used by monitoring the increase in
validation loss. Early termination of training was reached if the validation loss was
increasing for ten consecutive epochs, indicating that the framework had reached
maximum convergence. A mean-squared error was used as the loss function during
the training process. Meanwhile, a 10% random dropout was applied after each
layer, to further prevent overfitting35. In the following experiments, the exact same
training routine was used.

Hyperparameter tuning. In order to determine the optimal architecture, we
performed a hyperparameter grid search. The search involved the hyperparameters
shown in Table 3.

We used the following scaling factor to determine the number of nodes in each
GCN/CNN layer of our framework:

n ¼ 16 ´ 2ðl�1Þ;

Table 1 SMILES strings of individual nucleotides.

Nucleotide SMILES string

A (DNA) OP(=O)(O)OCC1OC(N3C=NC2=C(N)N=CN=C23)CC1
T (DNA) OP(=O)(O)OCC1OC(N2C(=O)NC(=O)C(C)=C2)CC1
C (DNA) OP(=O)(O)OCC1OC(N2C(=O)N=C(N)C=C2)CC1
G (DNA) OP(=O)(O)OCC1OC(N2C=NC3=C2N=C(N)NC3=O)CC1
5mC (DNA) OP(=O)(O)OCC1OC(N2C(=O)N=C(N)C(C)=C2)CC1
6mA (DNA) OP(=O)(O)OCC1OC(N3C=NC2=C(NC)N=CN=C23)CC1
A (RNA) OP(=O)(O)OCC1OC(N3C=NC2=C(N)N=CN=C23)C(O)C1
U (RNA) OP(=O)(O)OCC1OC(N2C(=O)NC(=O)C=C2)C(O)C1
C (RNA) OP(=O)(O)OCC1OC(N2C(=O)N=C(N)C=C2)C(O)C1
G (RNA) OP(=O)(O)OCC1OC(N2C=NC3=C2N=C(N)NC3=O)C(O)C1
6mA (RNA) OP(=O)(O)OCC1OC(N3C=NC2=C(NC)N=CN=C23)C(O)C1
2mG (RNA) OP(=O)(O)OCC1OC(N2C=NC3=C2N=C(NC)NC3=O)C(O)C1
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where l is the layer index of the GCN, CNN, and NN layer groups. For instance, the
number of GCN layers determined to yield the best performance for DNA was 4.
The number of nodes for each GCN layer was therefore 128, 64, 32, and 16. The
same logic was applied to all other layer groups.

We performed 10-fold cross-validation for each hyperparameter combination.
The combination that produced the lowest average RMSE across all folds was
adopted as the optimal architecture. The optimal framework for DNA analysis
(ATGC DNA) has four GCN layers and three CNN layers with a kernel size of 10
and 8192 nodes in the NN layer. The optimal framework for canonical RNA
analysis (AUGC RNA) has four GCN layers and five CNN layers with a kernel size
of 10 and 8192 in the NN layer. The optimal framework for modified RNA analysis
(A(6mA)UGC RNA) has six GCN layers and six CNN layers with a kernel size of
10 and 8192 in the NN layer.

Downsample, base-dropout, position-dropout, and combination analysis. For
downsample analysis, we performed random train-test splits in 5% intervals, noted
as 0.95–0.05, etc. For base-dropout analysis, we created training sets by removing
certain bases. Such train-test split creates 729/4096 (18%) training kmers and 3367/
4096 (82%) test kmers for DNA and 243/1024 (24%) training kmers and 781/1024
(76%) test kmers for RNA. It is important to note that everytime a base is dropped
from the training set, it is retained in the test set. Similar to base dropout, the
position dropout adds one more dimension, which is the position of the nucleotide
base. For a given position dropout, the testing kmers are all kmers with the dropout
nucleotide covering the target position, and the training kmers are the remaining
kmers. Such position dropout creates 3072/4096 (75%) training kmers and 1024/
4096 (25%) test kmers for DNA and 768/1024 (24%) training kmers and 256/1024
(25%) test kmers for RNA. It is important to note that bases dropped in a specific
position in the training appear in the same position in testing. For combination
analysis, we trained the framework by combining any of the two base-dropout
kmer sets. For instance, all G- and C-dropout DNA 6mers were noted as G–C.
Such analysis creates 1394/4096 (34%) training kmers and 2702/4096 (66%) test
kmers for DNA and 454/1024 (44%) training kmers and 570/1024 (56%) test kmers
for RNA. For each above-mentioned train-test split, in order to perform statistical
analyses, we produced 50 independently trained frameworks for each experiment.
Specifically, we performed 50-fold cross-validation in the downsample analysis,
considering for each fold the train kmers were randomly selected. As for other
analyses, we performed 50 independent repeats using the same training kmer sets.
The variability among repeats came from the stochasticity of the training process.
To confirm the robustness of our architecture, we further performed two inde-
pendent replicates (Run-1 and Run-2) of 50.

Predicting modification-containing kmers. For the 5mC imputation experiment,
the framework was trained on all 4096 {A, T, C, G} DNA 6mers plus {1%, 5%, 10%,
30%, 50%, 70%, 90%} of randomly selected 5mC-containing DNA 6mers, following
the training process as described above. In order to perform statistical analyses, we
produced 50 independently trained frameworks (50 independent repeats) for each
category, with a total of two independent replicates (Run-1 and Run-2) of 50. Such
frameworks were then applied on all 15,625 possible {A, T, C, G, 5mC}
DNA 6mers.

For the chemical group-level generalization experiment, the framework was
trained on all 4096 {A, T, C, G} DNA 6mers following the training process as
described above. In order to perform statistical analyses, we produced 50
independently trained frameworks (50 independent repeats), with a total of two

independent replicates (Run-1 and Run-2) of 50. Such frameworks were then applied
on all 15,625 possible DNA 6mers, including those composed of {A, T, C, G, 5mC}
and {A, T, C, G, 6mA}.

For the 2mG prediction experiment, the framework was trained by the union of
{A, U, C, G} and {6mA, U, G, C} RNA 5mers (GSE124309 model, in total 1805
RNA 5mers), which were reported in ref. 13, following the training process as
described above. In order to perform statistical analyses, we produced 50
independently trained frameworks (50 independent repeats). Such frameworks
were then applied on all 7776 possible {A, 6mA, U, G, 2mG, C} RNA 5mers.

Human genome C/5mC-status predictive analysis
Overview. To test whether the predicted {A, T, G, C, 5mC} DNA 6mer models can
be used to correctly interpret C/5mC status from nanopore readouts, we performed
predictive analysis by using signalAlign to make per-read per-base predictions2.
For a given reference position, signalAlign can produce posterior probabilities for
all possible bases based on a provided kmer model. Thus, for DNA 6mer models
generated as described in “predicting modification-containing kmers,” the
empirical nanopolish3,23 model obtained as described in “kmer models,” we
allowed signalAlign to predict between C and 5mC. Considering no significant
goodness-of-fit differences were observed between Run-1 and 2, only models
generated in Run-1 were used here. All predictive analyses performed in this paper
were within the human NA12878 cell line.

Selecting prediction sites. The prediction sites were selected among the entire
human genome. To avoid artifacts caused by ambiguous genomic DNA mod-
ification status, we only focused on confident 5mC sites and canonical genomic
regions in our analysis. Besides 5mC, other modifications exist in genomic DNA.
Considering extremely low fractions of other modifications, e.g., only ~0.05% are
modified as 6mAs in the human genome36, we define “non-5mC” sites as “cano-
nical regions” during predictive analysis. Among these canonical regions, we used
the Poisson process with lambda equals 50 to randomly select genomic sites for
signalAlign to predict. Such selected sites were at least 12 nucleotides apart,
avoiding potential interference by the neighbors. We thus obtained confident 5mC
and C sites for signalAlign prediction.

The genomic DNA C/5mC status was determined by analyzing two
independent NA12878 cell line bisulfite sequencing datasets37. A C site was
determined as confidently methylated if, for both bisulfite sequencing datasets, 95%
of reads were methylated with at least 10× coverage. On the other hand, a C site
was considered confidently unmodified if, for both bisulfite sequencing datasets, at
most 1% of reads were methylated with at least 10× coverage. Such analysis covered
3367/3367 canonical C-containing DNA 6mers and 3950/6144 single-5mC-
containing DNA 6mers.

Selecting nanopore sequencing reads. We then ran signalAlign with reads reported
in the nanopore consortium NA12878 cell line native genomic DNA datasets38

covering the above-mentioned prediction sites. Considering the computational
complexity of signalAlign, we performed the following filtering steps to use the
fewest reads to cover the most kmers. First, we calculated read-level kmer coverage.
For example, the center 5mC site of DNA read CAGAT(5mC)ACAGA was
selected for signalAlign prediction. 6mers CAGAT(5mC), AGAT(5mC)A,
GAT(5mC)AC, AT(5mC)ACA, T(5mC)ACAG, and (5mC)ACAGA span such
5mC site and therefore are considered as being covered. Based on such read-level
kmer coverage, we iteratively selected reads that covered the least frequently

Table 2 Atom chemical properties included in the study.

Feature Description

Carbon 1 if the atom is carbon, 0 otherwise (boolean)
Nitrogen 1 if the atom is nitrogen, 0 otherwise (boolean)
Oxygen 1 if the atom is oxygen, 0 otherwise (boolean)
Phosphorus 1 if the atom is phosphorus, 0 otherwise (boolean)
Atom degree Total number of covalent bonds around an atom (integer)
Implicit valence It equals the valence of the atom minus the valence calculated from the bond connections (integer)
Number of hydrogens Total count of hydrogens (integer)
Aromaticity 1 if atom in an aromatic ring, 0 otherwise (boolean)

Table 3 Hyperparameters searched in the study.

Parameters Space searched ATGC DNA AUGC RNA A(6mA)UGC RNA

The number of GCN layers {2, 3, 4, 5, 6} 4 4 6
The number of CNN layers {2, 3, 4, 5, 6} 3 5 6
The kernel size for the CNN layers {2, 4, 10, 20} 10 10 10
The number of nodes in the dense (NN) layer {32, 128, 512, 2048, 8192} 8192 8192 8192
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covered kmers. Thus, building a read set that covers as many kmers as possible as
often as possible with the fewest number of reads. We included two biological
replicates of NA12878 cell line native genomic DNA-sequencing experiments
(FAB39088 and FAF01169) in the C/5mC predictive analysis. For such analysis,
our final FAB39088 set contained 1706 reads, which covered 2625/3367 C-only
DNA 6mers with an average 61.52× coverage as negative control and 3105/3950
possible single-5mC DNA 6mers with an average 5.01× coverage. The final
FAF01169 set contained 1396 reads, which covered 2610/3367 C-only DNA 6mers
with an average 63.26× coverage as negative control and 3140/3950 single-5mC
DNA 6mers with an average 4.76× coverage. Combining the two sets, in total 2792/
3367 C-only DNA 6mers were covered with an average 58.49× coverage and 3481/
3950 single-5mC DNA 6mers were covered with an average 4.38× coverage.

Performing signalAlign prediction. Based on the selected prediction sites and
nanopore sequencing reads as described above, per-read per-site predictive analysis
was performed by signalAlign. The signalAlign analysis was performed with default
parameters, except for internal read-level quality filtering. Such quality filtering
removes reads with poor kmer-to-ionic current correspondence. During signalA-
lign analysis, kmer-to-ionic current correspondence probability matrices (event
tables) are first generated. Based on such event tables, signalAlign will remove reads
with low average probabilities (<10−5). In addition, reads with >50 consecutive
ionic current signals that cannot be corresponded to kmers (probability equals 0)
will be discarded. Considering that the event table generation is based on the
provided kmer model, after the above-mentioned default quality filtering, the
number of remaining reads varies when different kmer models are supplied during
predictive analysis. To ensure the statistical soundness, we deactivate the default
quality filtering, such that reads to be analyzed by different supplied kmer models
will be the same.

Performing megalodon prediction. We also performed predictive analysis using the
deep learning-based modification calling algorithm megalodon (https://
github.com/nanoporetech/megalodon) as an additional baseline control. The
megalodon (version 2.3.1) analysis was performed with tags “<fast5>–outputs
mod_mappings mods --reference <reference>--processes 1 --overwrite --guppy-
server-path guppy_basecall_server --output-directory <output dir>--guppy-time-
out 1000 --guppy-concurrent-reads 1 --guppy-params’--num_callers
7–cpu_threads_per_caller 10–chunks_per_runner 100’.”

Considering the extraordinary performance of megalodon (Supplementary
Fig. 5), we further used megalodon predictions as additional ground truth for the
C/5mC status for every nanopore sequencing read at every prediction site. Please
see Supplementary Note 3 for more information.

Quantifying predictive accuracy. signalAlign quantifies the probability of being C or
5mC for every prediction. We used probability threshold 0.7 to ensure only con-
fident predictions were included in predictive accuracy quantification. Together
with the megalodon 5mC calling results, we further created confusion matrices
(2 × 2 for 5mC predictive analysis with 5mC as “positive” class and C as “negative”
class) to quantify predictive accuracy. Specifically, we calculated the true-positive
rate, true-negative rate, positive predictive value, negative predictive value, F1 score
(F1), and BA as predictive accuracy quantifications. BA was presented in Fig. 1E as
representative quantification and the full predictive performance can be found in
Supplementary Fig. 5.

Escherichia coli 16S rRNA 2mG-site analysis
Ionic current signal distributions. We first downloaded the nanopore sequencing
fast5 reads of E. coli 16S rRNA nanopore sequencing reads reported in ref. 14. We
then performed nanopolish extract analysis3,23 to retrieve the fastq records, with
tags “-v -r -q -t template.” The fastq records were then aligned using minimap2
(2.16-r922)39 with flags “-ax map-ont,” further sorted and indexed by samtools
(1.12)40. Per-read event tables were generated using nanopolish eventalign with flag
“–scale-events,” by taking fast5 reads, alignment files, and retrieved fastq records as
described above. The yielded event tables contain RNA 5mer sequences and cor-
responding ionic current signals. We then quantified the distributions of RNA
5mer ionic current signals.

Predictive analysis. We also performed predictive analysis for the {A, 6mA, T, G,
2mG, C} RNA 5mer model described in “predicting modification-containing
kmers.” Specifically, we tested whether the predicted RNA 5mer model could be
used to correctly identify the position of 1206 2mG site, as well as three nearby G
sites (positions 851, 1221, and 1386) in E. coli 16S rRNA (see https://
www.ncbi.nlm.nih.gov/nuccore/J01859 for details). We thus ran signalAlign with
nanopore sequencing reads reported in ref. 14, following the same steps as
described in “human genome C/5mC-status predictive analysis.” We also used
probability threshold 0.7 to select confident predictions.

Kmer models. Canonical DNA 6mer and RNA 5mer models are available at:
https://github.com/nanoporetech/kmer_models. The nanopolish 5mC-containing
DNA 6mer model is available at: https://github.com/nanoporetech/nanopolish/
tree/master/etc/r9-models. The GSE124309 model, which contains the union of

{A, U, C, G} and {6mA, U, G, C} RNA 5mers, was constructed by the following
steps. We first downloaded the nanopore sequencing fast5 reads of modified
and non-modified “curlcake constructs” replicate 1 with GEO accession code
GSE12430913. We then performed nanopolish extract analysis3,23 to retrieve the
fastq records, with tags “-v -r -q -t template.” The fastq records were then aligned
using minimap2 (2.16-r922)39 with flags “-ax map-ont,” further sorted and indexed
by samtools (1.12)40. Per-read event tables were generated using nanopolish
(0.11.1) eventalign with flag “–scale-events,” by taking fast5 reads, alignment files,
and retrieved fastq records as described above. The yielded event tables contain
RNA 5mer sequences and corresponding ionic current signals. For every RNA
5mer, we averaged ionic current signals of all instances recorded in the event tables
to build the GSE124309 model. Please note that for more recent nanopore
sequencing chemistries, e.g., R10 where ONT kmer models are no longer available,
empirical kmer models could be trained instead as above-mentioned. Please see
Supplementary Note 4 for details.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The FAB39088 and FAF01169 NA12878 cell line native genomic DNA nanopore
sequencing datasets were downloaded from https://github.com/nanopore-wgs-
consortium/NA12878/blob/master/Genome.md. The two independent NA12878 bisulfite
datasets were downloaded from https://www.encodeproject.org/experiments/
ENCSR890UQO/. The E. coli 16S rRNA nanopore sequencing dataset was reported by
Smith et al.14. The nanopore sequencing dataset used to construct the GSE124309 model
is available at GEO under the accession code GSE12430913.

Code availability
Codes for constructing, training, and running the deep learning framework are available
at https://github.com/ioannisa92/Nanopore_modification_inference41. Codes for
nanopore sequencing data analysis are available at https://github.com/adbailey4/
functional_model_analysis42. Specifically, we adapted the original nanopolish (0.11.1) for
our analysis. The adapted nanopolish is available at https://github.com/adbailey4/
nanopolish43. Codes for reproducing all figures are available upon request to the
corresponding authors.

Received: 15 July 2021; Accepted: 19 October 2021;

References
1. Deamer, D., Akeson, M. & Branton, D. Three decades of nanopore

sequencing. Nat. Biotechnol. 34, 518 (2016).
2. Rand, A. C. et al. Mapping DNA methylation with high-throughput nanopore

sequencing. Nat. Methods 14, 411 (2017).
3. Simpson, J. T. et al. Detecting DNA cytosine methylation using nanopore

sequencing. Nat. Methods 14, 407 (2017).
4. Liu, Q., Georgieva, D. C., Egli, D. & Wang, K. NanoMod: a computational tool

to detect DNA modifications using Nanopore long-read sequencing data.
BMC Genomics 20, 31–42 (2019).

5. Liu, Q. et al. Detection of DNA base modifications by deep recurrent neural
network on Oxford Nanopore sequencing data. Nat. Commun. 10, 2449
(2019).

6. McIntyre, A. B. et al. Single-molecule sequencing detection of N
6-methyladenine in microbial reference materials. Nat. Commun. 10, 1–11
(2019).

7. Mueller, C. A. et al. Capturing the dynamics of genome replication on
individual ultra-long nanopore sequence reads. Nat. Methods 16, 429
(2019).

8. Ni, P. et al. DeepSignal: detecting DNA methylation state from Nanopore
sequencing reads using deep-learning. Bioinformatics 35, 4586–4595 (2019).

9. Georgieva, D., Liu, Q., Wang, K. & Egli, D. Detection of base analogs
incorporated during DNA replication by nanopore sequencing. Nucleic Acids
Res. 48, e88–e88 (2020).

10. Kot, W. et al. Detection of preQ0 deazaguanine modifications in
bacteriophage CAjan DNA using Nanopore sequencing reveals same
hypermodification at two distinct DNA motifs. Nucleic Acids Res. 48,
10383–10396 (2020).

11. Nookaew, I. et al. Detection and discrimination of DNA adducts differing in
size, regiochemistry, and functional group by Nanopore sequencing. Chem.
Res. Toxicol. 33, 2944–2952 (2020).

12. Leger, A. et al. RNA modifications detection by comparative Nanopore
direct RNA sequencing. Preprint at bioRxiv https://doi.org/10.1101/843136
(2019).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26929-x

8 NATURE COMMUNICATIONS |         (2021) 12:6545 | https://doi.org/10.1038/s41467-021-26929-x | www.nature.com/naturecommunications

https://github.com/nanoporetech/megalodon
https://github.com/nanoporetech/megalodon
https://www.ncbi.nlm.nih.gov/nuccore/J01859
https://www.ncbi.nlm.nih.gov/nuccore/J01859
https://github.com/nanoporetech/kmer_models
https://github.com/nanoporetech/nanopolish/tree/master/etc/r9-models
https://github.com/nanoporetech/nanopolish/tree/master/etc/r9-models
https://github.com/nanopore-wgs-consortium/NA12878/blob/master/Genome.md
https://github.com/nanopore-wgs-consortium/NA12878/blob/master/Genome.md
https://www.encodeproject.org/experiments/ENCSR890UQO/
https://www.encodeproject.org/experiments/ENCSR890UQO/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE124309
https://github.com/ioannisa92/Nanopore_modification_inference
https://github.com/adbailey4/functional_model_analysis
https://github.com/adbailey4/functional_model_analysis
https://github.com/adbailey4/nanopolish
https://github.com/adbailey4/nanopolish
https://doi.org/10.1101/843136
www.nature.com/naturecommunications


13. Liu, H. et al. Accurate detection of m 6 A RNA modifications in native RNA
sequences. Nat. Commun. 10, 1–9 (2019).

14. Smith, A. M., Jain, M., Mulroney, L., Garalde, D. R. & Akeson, M. Reading
canonical and modified nucleobases in 16S ribosomal RNA using nanopore
native RNA sequencing. PLoS ONE 14, e0216709 (2019).

15. Viehweger, A. et al. Direct RNA nanopore sequencing of full-length
coronavirus genomes provides novel insights into structural variants and
enables modification analysis. Genome Res. 29, 1545–1554 (2019).

16. Workman, R. E. et al. Nanopore native RNA sequencing of a human poly (A)
transcriptome. Nat. Methods 16, 1297–1305 (2019).

17. Lorenz, D. A., Sathe, S., Einstein, J. M. & Yeo, G. W. Direct RNA sequencing
enables m6A detection in endogenous transcript isoforms at base-specific
resolution. RNA 26, 19–28 (2020).

18. Maier, K. C., Gressel, S., Cramer, P. & Schwalb, B. Native molecule sequencing
by nano-ID reveals synthesis and stability of RNA isoforms. Genome Res. 30,
1332–1344 (2020).

19. Parker, M. T. et al. Nanopore direct RNA sequencing maps the complexity of
Arabidopsis mRNA processing and m6A modification. Elife 9, e49658 (2020).

20. Stephenson, W. et al. Direct detection of RNA modifications and structure
using single molecule nanopore sequencing. Preprint at bioRxiv https://
doi.org/10.1101/2020.05.31.126763 (2020).

21. Aw, J. G. A. et al. Determination of isoform-specific RNA structure with
nanopore long reads. Nat. Biotechnol. 39, 336–346 (2021).

22. Gao, Y. et al. Quantitative profiling of N 6-methyladenosine at single-base
resolution in stem-differentiating xylem of Populus trichocarpa using
Nanopore direct RNA sequencing. Genome Biol. 22, 1–17 (2021).

23. Loman, N. J., Quick, J. & Simpson, J. T. A complete bacterial genome
assembled de novo using only nanopore sequencing data. Nat. Methods 12,
733 (2015).

24. Sood, A. J., Viner, C. & Hoffman, M. M. DNAmod: the DNA modification
database. J. Cheminform. 11, 1–10 (2019).

25. Boccaletto, P. et al. MODOMICS: a database of RNA modification pathways.
2017 update. Nucleic Acids Res. 46, D303–D307 (2018).

26. Duvenaud, D. K. et al. in Advances in Neural Information Processing Systems
2224–2232 (2015).

27. Kipf, T. N. &Welling, M. Semi-supervised classification with graph convolutional
networks. Preprint at arXiv https://arxiv.org/abs/1609.02907 (2016).

28. Ding, H., Bailey, A. D., Jain, M., Olsen, H. & Paten, B. Gaussian mixture
model-based unsupervised nucleotide modification number detection using
Nanopore sequencing readouts. Bioinformatics 36, 4928–4934 (2020).

29. Derrington, I. M. et al. Nanopore DNA sequencing with MspA. Proc. Natl
Acad. Sci. USA 107, 16060–16065 (2010).

30. Alseth, I., Dalhus, B. & Bjørås, M. Inosine in DNA and RNA. Curr. Opin.
Genet. Dev. 26, 116–123 (2014).

31. LeCun, Y. et al. Backpropagation applied to handwritten zip code recognition.
Neural Comput. 1, 541–551 (1989).

32. Chollet, F. et al. Keras. GitHub. Retrieved from https://github.com/fchollet/
keras (2015).

33. Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint
at arXiv https://arxiv.org/abs/1412.6980 (2014).

34. Yao, Y., Rosasco, L. & Caponnetto, A. On early stopping in gradient descent
learning. Constr. Approx. 26, 289–315 (2007).

35. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R.
Dropout: a simple way to prevent neural networks from overfitting. J. Mach.
Learn. Res. 15, 1929–1958 (2014).

36. Xiao, C. L. et al. N6-methyladenine DNA modification in the human genome.
Mol. Cell 71, 306–318 (2018).

37. ENCODE Project Consortium. An integrated encyclopedia of DNA elements
in the human genome. Nature 489, 57–74 (2012).

38. Jain, M. et al. Nanopore sequencing and assembly of a human genome with
ultra-long reads. Nat. Biotechnol. 36, 338 (2018).

39. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics
34, 3094–3100 (2018).

40. Li, H. et al. The sequence alignment/map format and SAMtools.
Bioinformatics 25, 2078–2079 (2009).

41. Ding, H., Anastopoulos, I., Bailey, A. D., Stuart, J. & Paten, B. Towards
inferring nanopore sequencing ionic currents from nucleotide chemical
structures. Zenodo https://doi.org/10.5281/zenodo.5574151 (2021).

42. Ding, H., Anastopoulos, I., Bailey, A. D., Stuart, J. & Paten, B. Towards
inferring nanopore sequencing ionic currents from nucleotide chemical
structures. Zenodo https://doi.org/10.5281/zenodo.5571020 (2021).

43. Ding, H., Anastopoulos, I., Bailey, A. D., Stuart, J. & Paten, B. Towards
inferring nanopore sequencing ionic currents from nucleotide chemical
structures. Zenodo https://doi.org/10.5281/zenodo.5571031 (2021).

Acknowledgements
Research reported in this publication was supported by the National Institutes of Health
under Award Numbers R01-HG010053-02, U01HG010961, U41HG010972,
R01HG010485, 2U41HG007234, 5U54HG007990, 5T32HG008345-04, and
U01HL137183. The content is solely the responsibility of the authors and does not
necessarily represent the official views of the National Institutes of Health. The authors
would thank Jordan Eizenga, Dr. Jonas Sibbesen, Dr. Mark Akeson, and Dr. Miten Jain
for critical insight and help with drafting the manuscript.

Author contributions
H.D. conceived the idea. I.A. performed deep learning framework modeling, optimiza-
tion, and analysis. A.D.B. and H.D. performed the nanopore sequencing data analysis.
H.D., J.S., and B.P. supervised the project. All authors prepared the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-26929-x.

Correspondence and requests for materials should be addressed to Hongxu Ding, Joshua
Stuart or Benedict Paten.

Peer review information Nature Communications thanks the anonymous reviewers for
their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26929-x ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:6545 | https://doi.org/10.1038/s41467-021-26929-x |www.nature.com/naturecommunications 9

https://doi.org/10.1101/2020.05.31.126763
https://doi.org/10.1101/2020.05.31.126763
https://arxiv.org/abs/1609.02907
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://arxiv.org/abs/1412.6980
https://doi.org/10.5281/zenodo.5574151
https://doi.org/10.5281/zenodo.5571020
https://doi.org/10.5281/zenodo.5571031
https://doi.org/10.1038/s41467-021-26929-x
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Towards inferring nanopore sequencing ionic currents from nucleotide chemical structures
	Results
	Architecture of the deep learning framework
	Kmer-level generalization
	Chemical group-level generalization in DNA 5mC de novo prediction
	Human genome C/5mC-status predictive analysis
	The encoding of chemical structures
	Analyzing the 2mG site in Escherichia coli 16S ribosomal RNA (rRNA)

	Discussion
	Methods
	Graph representation of kmer chemical structures
	Architecture of the deep learning framework
	Training procedure
	Hyperparameter tuning
	Downsample, base-dropout, position-dropout, and combination analysis
	Predicting modification-containing kmers
	Human genome C/5mC-status predictive analysis
	Overview
	Selecting prediction sites
	Selecting nanopore sequencing reads
	Performing signalAlign prediction
	Performing megalodon prediction
	Quantifying predictive accuracy
	Escherichia coli 16S rRNA 2mG-site analysis
	Ionic current signal distributions
	Predictive analysis
	Kmer models

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




