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Acetaldehyde is content in cigarette smoke and an ethanol

metabolite. However the clear evidence for reactive oxygen

species (ROS) generation by acetaldehyde in gastric cells in vitro

is none. In this study, we elucidated acetaldehyde is an oxidative

stress inducer on rat gastric epithelial cells by electron para�

magnetic resonance measurement in living cells. We also con�

firmed whether acetaldehyde�induced cellular ROS was derived

from mitochondria or not. The results of cellular ROS determina�

tion showed that an increment of cellular ROS was shown for

15 min in living cells from exposing 0.1% (v/v) acetaldehyde. Lipid

peroxidation in cellular membrane also induced by 0.1% ethanol

and the tendency is same in the results of cellular ROS determi�

nation. JC�1 stained showed the decrement of mitochondrial

membrane potential. These results indicated that acetaldehyde is

not merely a necrotizing factor for gastric epithelial cells, but also

an oxidative stress inducer via injured mitochondria.

Key Words: acetaldehyde, reactive oxygen species, mitochondria, 

stomach cells, electron paramagnetic resonance

IntroductionAlcohol drinking and smoking contains the risk of a carcino-
genesis. Cigarette smoke and an ethanol metabolite contain

acetaldehyde, which is known as the abundant carcinogen.(1)

Acetaldehyde is contained in cigarette smoke, and this is indirectly
generated in drinking via an ethanol metabolism such as micro-
somal ethanol oxidizing system (MEOS).(2) Acetaldehyde is also
known as an inducible factor for a bout of heartburn and nausea
when we are drinking alcohol or smoking. Reactive oxygen
species (ROS) relate with these symptoms directly or indirectly.(3,4)

Therefore, ROS should become a key for understanding of
harmful effects with an intake of acetaldehyde.
The oxidative stress, exposure of ROS, is a prospective disease

risk for gastrointestinal system. For example, toxic effects of
alcohol have been studying because excessive consumption of
alcohol relates with alcohol hepatitis.(5,6) Of note, oxidative stress
is important factor for the liver injury through MEOS with
CYP2E1 (cytochrome P450 family).(6,7) In stomach, acidic envi-
ronment by gastric juice induced oxidative stress with DNA and
mitochondrial damage.(8) Acid is not only a necrotizing factor but
also an oxidative stressor through an inhibition of mitochondrial
electron transport, which generates superoxide anion in cells.(9)

Bile acids and/or gastric acids induce oxidative stress and alter
signaling pathways, such as mitogen-activated protein kinase
(MAPK), nuclear factor-κB (NF-κB) and signal tranducer and
activator of transcription 3 (STAT3).(10–13) While acid induced
an oxidative stress in stomach, alcohol also induced the stress
independently of acid.(14) We reported that exposure of ethanol
generated ROS with mitochondrial damage in gastric cells
directly.(15) In addition, Holownia et al.(16) reported that 2% of
ethanol metabolizes to acetaldehyde in vitro. Several reports
describe that acetaldehyde is a major toxic content, meanwhile,

there is not enough evidences for toxic mechanisms of acetalde-
hyde.
ROS also relates with a carcinogenesis and malignancy such

as cancer growth and invasion and metastasis.(17–19) We also
suggested that mitochondrial ROS (mitROS) enhanced an inva-
sion in gastric cancer cells.(20) Mitochondria in cancer cells are of
mutations in mitochondrial electron transfer system of Complex I
and III, which facilitates to generate excess ROS.(21,22) The
identification of oxidative stressors should be important for an
indication of cancer prevention, however, acetaldehyde is not
enough understandings as an oxidative stressor in vitro.
Electron paramagnetic resonance (EPR) is unique beyond

comparison to analyze ROS directly. Ikeda et al.(23) developed the
compounds for evaluation of nuclear oxidative stress in living
cells by EPR. In addition, Kamibayashi et al.(24) synthesized a spin
trap agent 2-[5,5-dimethyl-2-oxo-2λ5-(1,3,2)dioxaphosphinan-2-
yl]-2-methyl-3,4-dihydro-2H-pyrrole 1-oxide (CYPMPO) which
can consummate the analysis of superoxide. In previous reports,
we tried blending EPR measurement in living cells with
CYPMPO. As a consequence of the combination, mitROS such
as superoxide anion can be directly detected in living cells by
EPR with CYPMPO.(20,25)

Herein, we have confirmed that acetaldehyde is an oxidative
stressor through mitochondrial damage in a rat gastric mucosal
cell line, RGM-1.(26) For this aim, we used EPR for a determination
of ROS from living cells. EPR spectra clarified that acetaldehyde
is an oxidative stressor. For clarifying the acetaldehyde-induced
ROS is derived from mitochondria, we also performed the
microscopic observation with fluorescent probes both indicators
of mitochondrial electron potential and ROS.

Materials and Methods

Materials. Aminophenyl fluorescein (APF) (SEKISUI
MEDICAL CO., LTD., Tokyo, Japan), CYPMPO (Radical
Research Inc., Tokyo, Japan), β-nicotinamide adenine dinucleotide
(NADH) (Life Technologies Co., Carlsbad, CA), D-glutamic
acid (Life Technologies), malic acid (Wako Pure Chem. Ind., Ltd.,
Osaka, Japan), succinic acid (Life Technologies), diphenyl-
1pyrenylphosphine (DPPP) (DOJINDO, Kumamoto, Japan), cell
counting kit-8 (DOJINDO), MitoRed (DOJINDO) and ethanol
(Wako Pure Chem. Ind.) were purchased. Alcohol-contained
culture medium was prepared by mixing alcohol, and the culture
medium was used after filter-sterilized (Millex 0.22 μm, Millipore
Co., Billerica, MA).

Cell culture. RGM-1 was cultured in DMEM/F12 (Life
Technologies). This culture medium contained 10% inactivated
FBS and 1% penicillin/streptomycin. Cells were cultured in 5%
CO2 cell culture incubator at 37°C.
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Cell viability test by WST assay. Cell viability test was
examined with cell counting kit-8 according to the manufacturer’s
instructions. RGM-1 was dispersed in the 96-well dish at 10,000
cells/well and it was incubated for overnight. The medium was
replaced to the acetaldehyde-contained culture medium which
contained acetaldehyde of 0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2,
5% (v/v) and it was incubated for 30 min. After incubation,
medium was replaced to the medium contained 10%-cell counting
kit-8 of 100 μl and cells were incubated for 1 h. The absorbance
of 450 nm was measured by Varioskan plate reader (Thermo
Fisher Scientific K. K., Kanagawa, Japan).

Lipid peroxide determination by DPPP. The lipid peroxi-
dation was measured by DPPP as follows; upon cells were
dispersed at the concentration of 31,250 cells/cm2, cells were
incubated for 24 h, and then acetaldehyde exposed to cells for
30 min. The culture medium was thereafter replaced to the culture
medium contained 10 μM DPPP. After incubated for 15 min, cells
were washed twice with cold phosphate buffer saline (PBS). The
fluorescence intensities at Ex. 352 nm and Em. 380 nm of DPPP
were measured by the plate reader.

Mitochondrial damage determination by JC�1. Mitochon-
drial damage was estimated by JC-1 stain, which indicated the
mitochondrial membrane potential. Cells were prepared and
stimulated same as a method of DPPP. The culture medium was
thereafter replaced to the culture medium contained 10 μM JC-1.
After incubated for 15 min, cells were washed twice with cold
PBS. The fluorescence intensities at green fluorescence (Ex.
485 nm and Em. 535 nm) and red fluorescence (Ex. 560 nm and
Em. 595 nm) of JC-1 were measured by the plate reader.

Intracellular ROS determination by APF. Free radicals
(hydroxyl radical and peroxynitrite) were detected by APF. APF
was diluted with PBS and it exposed to the cells at the concentra-
tion of 1 μM for 30 min following exposure of acetaldehyde for
30 min. After incubation, cells were washed using a cold PBS
twice. The intensities of APF-fluorescent were measured by
Varioskan at Ex.490 nm and Em. 515 nm.

Electron paramagnetic resonance (EPR) measurement.
The methods of EPR measurement were consulted previous
reports and so on.(27) Cells were cultured on the slide glass until
confluent. The slide glass was immersed into different acetalde-
hyde-contained medium (0, 0.1 and 0.5% acetaldehyde) for 0, 15,
30 and 60 min in the 5% CO2 incubator at 37°C. After the
incubation, the slide glass was put on the tissue glass (Radical
Research Inc., Tokyo, Japan). 100 μl of the solution for EPR
measurement, which was prepared that the respiratory substrates
(5 mM succinic acid, 5 mM malic acid, 5 mM D-glutamic acid,
5 mM NADH) and 10 mM CYPMPO was dissolved in PBS, was
poured in the tissue glass. And then the EPR spectra were recorded
by using a JEOL-TE X-band spectrometer (JEOL, Tokyo, Japan).
All EPR spectra were obtained under the following conditions:
10 mW incident microwave power, 0.1 mT modulation width,
8 min sweep time, 7.5 mT sweep width, 0.1 s time contrast,
333.5 mT center field, and 15 mT scan range. Spectral computer
simulation was performed using a Win-Rad Radical Analyzer
System (Radical Research).

Static analysis. Significant static value (p value) was calcu-
lated using ANOVA followed by Turkey HSD.

Results

Acetaldehyde induced the cell death. Cell death by acet-
aldehyde was determined by cell viability test in comparison with
the normal rat gastric mucosa cells (RGM-1). Fig. 1 showed 0.01%
acetaldehyde had cytotoxicity for 30 min exposure. RGM-1 died
completely in the medium contained one hour exposure of more
0.5% (v/v) acetaldehyde, and we suggested that necrosis was
involved on these cells. On the other hand, the cells survived
environments under less than 0.2% acetaldehyde suggested that

another kind of death was derived on these cells such as an apop-
tosis.

Acetaldehyde induced lipid peroxidation. For deter-
mining the oxidative stress by acetaldehyde, Fig. 2 showed the
amounts of lipid peroxidation in cellular membrane after half hour
exposure with acetaldehyde. The graph shows the intensity of
DPPP fluorescence. This result indicated that acetaldehyde
between 0.05% and 0.5% induced lipid peroxidation as a result
of oxidative stress.

Acetaldehyde induced cellular ROS. The ROS concentra-
tion from the cells was determined by both the AFP study and the
EPR measurement using spin-trapping agents (CYPMPO). Fig. 3
showed the results of cellular ROS determination by APF. Cellular
ROS was increased with acetaldehyde concentration. The amounts
of cellular ROS in 0.02–0.5% ethanol exposing cells was signifi-
cantly higher than that in the control cells. This result coincided
with the study about lipid peroxidation (Fig. 2). Fig. 4 showed
EPR signals intensities in RGM-1 exposed different concentra-
tions of ethanol. These results showed the 15 min exposure of
0.1% acetaldehyde induced ROS from the RGM-1. While expo-
sure of 0.1% acetaldehyde enhanced a cellular ROS production
with time, 0.5% acetaldehyde attenuated the production after
15 min. Cells cannot be survive in 0.5% acetaldehyde, resulting
in ROS production is attenuated after 30 min exposure.

Acetaldehyde injured mitochondrion. We confirmed that
acetaldehyde injured mitochondria. Fluorescence characteristics
of JC-1 were changed in accordance with mitochondrial mem-
brane potential dependence. Green and red fluorescence of JC-1
means injured mitochondria (decreasing membrane potential) and
healthy mitochondria (normal membrane potential), respectively.
Fig. 5 shows the results of JC-1 stained. Injured mitochondria
were showed in 0.05% ethanol exposed cells. These results
indicated that acetaldehyde injured mitochondrion.

Fig. 1. Cell viability after acetaldehyde exposure. Cell viability was
evaluated by WST assay. The different acetaldehyde concentration
medium was made by adding acetaldehyde to culture medium. The
absorbance at 450 nm was measured by plate reader. Cell; RGM�1,
n = 6, Error bar; SD. *p<0.05, **p<0.01.
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Discussion

In this study, we demonstrated that acetaldehyde treatments
involved on reactive ROS production, in particular superoxide
anion, in gastric epithelial cells.
This study was performed under the condition from 0 to 5%

acetaldehyde because ethanol used to be metabolized to 2%
acetaldehyde.(16) The condition assumes an intake of from 0 to
20% ethanol which is popular alcohol’s ethanol concentration. If
a main toxicity of ethanol is acetaldehyde, the cytotoxicity of
acetaldehyde should be coincided with that of five to ten times
greater concentration of ethanol. In fact, the cytotoxicity of

acetaldehyde showed as expected (Fig. 1). In our previous study,
more than 15% ethanol exposure caused immediate cell death
within 1 h, while cells enhanced a ROS production from mito-
chondria under less than 10% ethanol condition, especially from 1
to 5%.(28) Fig. 2 and 3 showed moderate concentration of acetalde-
hyde, from 0.02 to 0.5%, was an oxidative stress. These results
suggested that acetaldehyde is a main toxic metabolite from
ethanol, and it should act as an oxidative stressor when ethanol
exposed to cells. Gastrointestinal tracts including the stomach are
called the first-pass metabolism of alcohol. Administration of a
low dose ethanol have been reported to protect the gastric mucosa
from gastric lesions.(29–31) In the metabolism, MEOS requires

Fig. 2. The evaluation of oxidative stress based on lipid peroxide. Lipid peroxidation was significantly increased under the condition of 0–5% (v/v)
acetaldehyde after incubation for 30 min. 0.5–5% acetaldehyde�exposed cells were completely death. n = 6, Error bar; SD. *p<0.05.

Fig. 3. The determination of intracellular ROS by APF. Intracellular ROS was significantly increased under the condition of 0.02–0.5% (v/v) acetal�
dehyde after incubation for 30 min. 0.5–5% acetaldehyde�exposed cells were completely death. n = 6, Error bar; SD. **p<0.01.
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CYP2E1 for generating oxidized NADPH,(2,32) which used to
localize in cytoplasm. CYP2E1 accelerates the expression of
cyclooxygenase-2 (COX-2) in liver.(33) COX-2 produces prosta-
glandins, and it should protect gastric lesions in vivo. Ethanol is an
inducer of CYP2E1, which metabolized ethanol to acetaldehyde.(6)

We hypothesized that acetaldehyde causes negative or positive
feedback for an expression of CYP2E1, however, exposure of
acetaldehyde did not changed the expression (data not shown). In

smoking, acetaldehyde is well known as a major toxic content.(34)

Biogenic amines such as catecholamine and indoleamine were
implicated by an intake of acetaldehyde, these are synthesized
through a direct reaction with amines and acetaldehyde.(35) One of
the differences between drinking and smoking are an indirectly
and directly exposure, respectively. The results of CYP2E1 after
an acetaldehyde exposure may indicate that a reduction of harmful
effects by smoking is more difficult than by drinking.

Fig. 4. The EPR spectra from RGM�1 after acetaldehyde exposure. The intensity of EPR signals was strong after exposed�acetaldehyde. This
phenomena was begun after incubated for 15 min. Spin�trapping agent; CYPMPO.

Fig. 5. Mitochondrial injury by exposing acetaldehyde. Mitochondrial injury was measured by JC�1 after exposed�ethanol for 1 h. Green
fluorescence (Ex. 485 nm, Em. 535 nm) and red fluorescence (Ex. 560 nm, Em. 595 nm) show mitochondrial injury and healthy mitochondria,
respectively. The fluorescence intensity was measured by plate reader. 0.5–5% acetaldehyde�exposed cells were completely death. n = 6, Error bar;
SD. *p<0.05, **p<0.01.
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Previous reports described that NSAIDs and bisphosphonate
involved superoxide anion production by EPR measurement using
separated mitochondria.(9,36) Additionally, ethanol induced a ROS
production through mitochondrial damage in living cells. MitROS
were likely to play a role to derive the cellular injury. MitROS
such as oxygen-derived free radicals have been reported to be
related with many diseases.(37) As one example, several reports
indicates that mitROS production enhances tumor specific proper-
ties.(38) MitROS also indicates the relation with the expression of
oncogene expression.(39) In present study, acetaldehyde is also an
oxidative stressor through mitochondrial damage in living cells
(Fig. 4 and 5). Gastric cancer is coincided with an infection of
Helicobacter pylori, class I carcinogen, and daily foods of oxida-
tive stressor such as salt promotes carcinogenesis under the infec-
tion.(40,41) Taking these suggestions into account, antioxidants
probably become chemopreventive agents.
Recent studies report that microbially produced acetaldehyde

from ethanol may become the risk of cancer, especially esopha-
geal carcinogenesis.(42) Oral bacterial flora including Nesseria and
Streptococcus and Candida metabolize ethanol to acetaldehyde
through an activity of alcohol dehydrogenase (ADH).(43–45) Acetal-
dehyde in saliva is considered carcinogenic substance.(43) Drinking
and smoking are also known to shift the balance of bacterial flora,
resulting in an increment of acetaldehyde in the oral cavity.(43)

Interestingly, isolates of Candida albicans from smoker produced

acetaldehyde greater than that from non-smoker. Class IV ADH
activity is an ADH isozyme for maintaining normal cellular
proliferation and differentiation in various organs.(46) Although
Helicobacter pylori infection and aging reduced Class IV ADH
activities,(47) smoking might involve in the activities. The micro-
bially produced acetaldehyde should also cause harmful effects in
stomach. The clarification of the relations between daily foods and
oral bacterial flora should provide a method of cancer prevention,
including an involvement in oxidative stress.
In conclusion, acetaldehyde is not merely a necrotizing factor

for gastric epithelial cells, but also an oxidative stress inducer.
ROS after acetaldehyde treatment were involved from mitochon-
dria. Now we are undergoing the study to prevent carcinogenesis
and malignancy in gastric epithelial cells.
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