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Evolution of core archetypal phenotypes in
progressive high grade serous ovarian cancer
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The evolution of resistance in high-grade serous ovarian cancer (HGSOC) cells following
chemotherapy is only partially understood. To understand the selection of factors driving
heterogeneity before and through adaptation to treatment, we profile single-cell RNA-
sequencing (scRNA-seq) transcriptomes of HGSOC tumors collected longitudinally during
therapy. We analyze scRNA-seq data from two independent patient cohorts to reveal that
HGSOC is driven by three archetypal phenotypes, defined as oncogenic states that describe
the majority of the transcriptome variation. Using a multi-task learning approach to identify
the biological tasks of each archetype, we identify metabolism and proliferation, cellular
defense response, and DNA repair signaling as consistent cell states found across patients.
Our analysis demonstrates a shift in favor of the metabolism and proliferation archetype
versus cellular defense response archetype in cancer cells that received multiple lines of
treatment. While archetypes are not consistently associated with specific whole-genome
driver mutations, they are closely associated with subclonal populations at the single-cell
level, indicating that subclones within a tumor often specialize in unique biological tasks. Our
study reveals the core archetypes found in progressive HGSOC and shows consistent
enrichment of subclones with the metabolism and proliferation archetype as resistance is
acquired to multiple lines of therapy.
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ranscriptional dysregulation is a hallmark feature and a

driver of evolution in human cancers!. As one of the

deadliest forms of gynecological malignancy, the survival
rates for high-grade serous ovarian cancer (HGSOC) have
remained poor over the past few decades?. Despite initial
responsiveness to platinum-based chemotherapy and the intro-
duction of novel combination therapeutic interventions?, the
development of resistance over the course of treatment remains a
major challenge in the clinical management of HGSOC*?. Thus,
characterizing the key transcriptional changes in HGSOC tumor
evolution is critical for understanding tumor progression and
resistance to cancer therapy®’.

A majority of HGSOC:s arise from the epithelium of fallopian
tubes$, often resulting in the detection of malignant cells that
escape into the fluids accumulating in the peritoneal cavity
(ascites) or the lung pleural effusions following late-stage extra-
abdominal metastases’. The genome of HGSOCs is characterized
by somatic alterations leading to the loss of function of the tumor
suppressor gene TP531%11 and regulator components of homo-
logous recombination (HR) DNA-damage repair pathway,
including BRCAI and BRCA2'2. Whole-genome sequencing
(WGS) analyses have revealed several key genomic mechanisms
of acquired resistance, such as somatic alterations in the multi-
drug resistance gene ABCBI, secondary somatic mutation
alterations in HR genes, and the protection of stalled replication
forks!3-1>, However, known mechanisms explain only a fraction
of resistance drivers!'3. Therefore, focusing on transcriptional
changes could help improve our understanding of chemoresis-
tance, especially in cases where obvious single-gene alterations are
not detectable. Further, the number of critical signaling pathways
important for HGSOC cell growth and survival is unknown;
therefore, therapeutic regimens may miss important oncogenic
traits and enable progression.

Rapid developments in single-cell RNA-sequencing (scRNA-
seq) technologies have enabled the investigation of intratumor
heterogeneity and evolution at the cellular levell®-18, Long-
itudinal analysis of tumors in response to drug treatment using
scRNA-seq combined with DNA sequencing has been utilized to
understand the ecology and evolution of tumors along with
phenotypic mechanisms that could be harnessed as potential drug
targets in resistant tumors!®. Key questions in heterogeneous
HGSOC that remain to be addressed include: (1) the number of
key phenotypic features in progressive tumors, (2) the biological
processes underlying progression, (3) how changes in the number
of cells specializing in specific phenotypes contribute to pro-
gression, and (4) how genetically distinct subclonal populations
impact phenotypic diversity. Until recently, a computation fra-
mework to identify these factors was insufficient.

Recent developments in cancer evolutionary theory suggest
that tumor cells can evolve to exhibit a range of phenotypes under
selective pressure such as chemotherapy2%-21. However, each cell
in the tumor may exist in a limited range of transcriptional states
optimal at performing phenotypic tasks critical to survival owing
to metabolic and spatial constraints?!. Thus, elucidating the
biological tasks associated with transcriptional cell specialists in
chemoresistant HGSOC could help in developing new therapeutic
strategies targeting these emergent phenotypes. To identify the
number and biological function of tasks associated with HGSOC
cancer cell progression, we employed a method that uses the
Pareto optimization concept, which states that, when a combi-
nation of tasks dominates an organism’s fitness, but the organism
cannot be optimal at all tasks at once due to trade-offs, optimal
phenotypes should fall on low-dimensional shapes called poly-
hedra. The number of vertices reflects the number of tasks
essential to the fitness of the organism?!. The approach defines a
polytope where the number of vertices reflects the number of

tasks describing the data. The cells at the edges of the polytope
(termed archetype) specialize in a specific biological task?2. Based
on these principles, we project the scRNA-seq profiles from the
HGSOC samples on to archetypes to determine the number of
driver phenotypes in the data, the biological features of those
archetypical phenotypes, and to study if cells specialize in specific
archetypical tasks during progression. Finally, these archetypes
are evaluated together with genetic alterations to identify the
potential link between somatic alterations and phenotypic state.

In this study, we use malignant ascites and pleural effusion
samples from nine HGSOC patients, collected over months to
years of treatment, to perform scRNA-seq and WGS analysis. We
also perform scRNA-seq analysis of an independent cohort of
unmatched eight pre-treatment and six post-treatment samples to
study longitudinal patterns of transcriptomic heterogeneity in
treatment naive compared to heavily treated tumors. Our results
show enrichment of an archetype associated with elevated
metabolic activity, driven by oxidative phosphorylation or gly-
colysis, and proliferation in post-treatment patients compared to
treatment-naive patients of the validation cohort. Further, cellular
defense response (CDR) and DNA repair describe two additional
key archetypical phenotypes in HGSOC. While consistent geno-
mic alterations do not define the archetypes, subclonal clusters
inferred from scRNA-seq profiles are associated with the
enrichment of the metabolic archetype as cancer cells progress on
therapy. Finally, we validate the metabolic archetype activity in
progressive HGSOC patient tumor samples using in vitro meta-
bolic assays.

Results

Temporal transcriptomic diversity of HGSOC cells. To study
the landscape of genetic and transcriptomic heterogeneity of
ovarian cancer cells in response to chemotherapy, we obtained 25
malignant ascites or pleural effusion samples from nine HGSOC
patients (Fig. la and Supplementary Data 1-3). Samples were
collected over the course of treatment, with initial samples
obtained at the time of surgery or before the commencement of
therapy in five of the nine patients, and early in treatment for the
remainder. Following initial debulking surgery, patients received
adjuvant platinum- and taxane-based chemotherapy as a first-line
treatment followed by three to seven lines of chemotherapy over
the course of their disease progression (Fig. 1a and Supplemen-
tary Data 1-3). The samples were processed to isolate nuclei or
whole cells to perform scRNA-seq, WGS, and establish in vitro
cell lines for metabolic assays (Fig. 1b and “Methods”). In addi-
tion, we obtained eight pre-treatment and six post-treatment
malignant ascites or pleural samples as a validation cohort for the
scRNA-seq analyses (Supplementary Data 4).

We analyzed the transcriptomes of ~36K high-quality cells or
nuclei using scRNA-seq. Preliminary clustering of the scRNA-seq
data resulted in the separation of cells by patients (Supplementary
Figure 1). Following batch correction with canonical correlation
analysis (CCA)?3, unsupervised clustering resulted in eight
clusters representing individual cell types instead of patient
identity (Fig. 1c). Reference-based prediction of cell types*
revealed large clusters of predominantly malignant epithelial
cells (clusters 0-2 and 7), confirmed by the expression of the
epithelial marker (EPCAM) and the tumor biomarker MUCI6
(CA-125) (Supplementary Figure 2). Despite prior immune
depletion, we also detected smaller but distinct clusters of
immune cells, including monocytes and macrophages (cluster 3),
CD41/CD81 T cells (cluster 4), fibroblasts (cluster 5) and natural
killer (NK) cells (cluster 6). In total, ~27K cells were identified as
malignant epithelial cells that were distributed across multiple
clusters reflecting the heterogeneity within the population
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Fig. 1 Longitudinal cohort sample collection and scRNA-seq analysis. a Timeline of patients included in the study. Gray timeline shows days x100, with O
referring to the day primary surgery was performed. The red lines indicate CA-125 levels, while the triangles along the timelines indicate the time points at
which malignant fluid samples were obtained. Colored bars below the patient timeline indicates drug treatment received. b The malignant fluid samples
were processed to remove immune and apoptotic cells, and processed for whole-genome sequencing, in vitro metabolic assays, and scRNA-seq. A portion
of this figure panel was created using BioRender.com. ¢ Uniform Manifold Approximation and Projection (UMAP) and clustering of the integrated high-
quality cells profiled using iCell8 (patients 1-3) or 10X (patients 4-9) scRNA-seq platforms following CCA normalization. The numbers indicate clusters
obtained following unsupervised clustering. Stacked bar plots on the right show the distribution of various predicted cell types across clusters and the
diversity of samples distributed within each cluster. The colors on the UMAP indicate the cell-type classification of the single cells.

(Fig. 1c). We analyzed patterns of expression changes over time
and found that few differentially expressed genes were commonly
shared across patients (Supplementary Figure 3). This pattern
could also reflect the sparsity of scRNA-seq data that contributed
to the observed lack of consistent changes across patients in the
high-dimensional gene expression space. Therefore, we next
adopted an approach to project the scRNA-seq data in a low-
dimensional space and investigated the evolution of key
phenotypes.

Transcriptional evolution of ovarian cancer cells is associated
with core biological tasks. To interrogate transcriptional het-
erogeneity in progressive HGSOC, we applied an approach that
accounts for tumor evolution and the use of tasks to enhance
fitness2!. Our goal was to determine how many archetypal phe-
notypes are found in HGSOC and how these tasks evolve as
patients receive therapy and become resistant. We utilized a
Pareto task inference method that relies on the principle convex
hull algorithm to identify core archetypes?. Briefly, the method
attempts to identify a polytope that can best enclose the principal
component projection of the gene expression data. The vertices of
this polytope are inferred as the core archetypes. Analyses were
limited to scRNA-seq profiles obtained using the 10X platform
(patients 4-9) with sufficient numbers of malignant epithelial
cells available for projection on to the archetypes. To determine
the shape of a polytope that can best enclose the data, we fitted
polytopes with a varying number of vertices ranging from 3 to 8
(Supplementary Figure 4). There was a minimal gain in the
variance explained by the models with >3 archetypes, showing
that a triangle was enough to enclose the data. Moreover, any gain
in variance explained by the models with >3 archetypes was at the

cost of increased uncertainty in the position of vertices, and a
decrease in the ratio of the volume of the polytope to the convex
hull (t-ratio) confirmed that the three-vertex triangle reliably
enclosed the data (Fig. 2a).

To determine the distinct biological tasks associated with each
archetype, we implemented a multitask learning approach based on
group-lasso (see “Methods” for details) that applied the hallmark
pathways and genes to cells located on each archetypal vertex.
Hierarchical clustering analyses with pathway coefficients show
three distinct clusters linked to the archetypes (Fig. 2b and
Supplementary Figures 4 and 5). Three broad tasks were associated
with these archetypes, including metabolism and proliferation
(MAP), cellular defense response (CDR), and DNA-damage repair
(DDR) (Fig. 2c). The MAP archetype was defined based on the
enrichment of multiple key metabolism phenotypes, including
glycolysis, oxidative phosphorylation, and proliferation pathways
associated with cell cycle and E2F genes, G2M checkpoint genes,
epithelial-to-mesenchymal transition (EMT), and MYC targets
(Supplementary Figures 5 and 6). Association of key genes
indicative of proliferation (MKI67) and glycolysis (GAPDH)%®
supported the classification of this archetype. The CDR archetype
was defined based on enrichment of the interferon-y response
pathway?’ and the enrichment of multiple downstream pathways
and genes related to the activation of CDR, including canonical
IL-6/JAK/STAT3?8 and interferon-y signaling pathways, as well
as cell cytokine and immunogenic signaling genes. Finally, the
DDR archetype was derived based on enrichment of apoptosis,
P53, and TNF-alpha related?® signaling pathways along with key
genes such as ATM30 and CHEKI3!. The classification of the
archetypes using the lasso approach shrinks coefficients of several
pathways to zero; therefore, we also evaluated the contribution of
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Fig. 2 Archetype analysis to investigate shifts in biological tasks over time. a Cells from the integrated longitudinal cohort are projected on the first two
principal components of scRNA-seq data. Each vertex identified using the Pareto task inference algorithm represents an archetype specializing in a specific
biological task. Single cells are colored by maximum archetype score (standardized and inversed Euclidean distance to the vertex), revealing proximity to
the nearest archetype. b Heatmap showing the hierarchical clustering of group-lasso coefficients for various hallmark pathways associated with each
archetype. The three colored boxes display three hierarchical clusters of related phenotypes that reveal the identity of the biological task associated with
each archetype. The principal pathways that define the archetypes are indicated on the heatmap in blue, with the green box indicating DNA-damage repair
(DDR), the red box indicating cellular defense response (CDR), and the blue box indicating metabolism and proliferation (MAP) archetypes. The inset bar
plots show the group-lasso coefficient (Y-axis) of key genes corresponding to the three archetypes (X-axis) from the scRNA-seq data of the longitudinal
cohort patients. Source data for single gene coefficients are provided as Source Data file. ¢ Three major biologicals tasks were predicted using the multitask
learning approach. Specialist cells are colored according to the closest archetype (cells in the 95th percentile), whereas non-specialists distal from all three
archetypes are shown in gray. d Dimensionality reduction (UMAP) projections and clustering of the integrated 28K high-quality cells, including 21K
malignant epithelial cells, from the early/late (pre-/post-treatment) cohort profiled using 10x platforms. Patients 10-17 were treatment-naive, while
patients 18-24 received multiple lines of treatment. Major predicted cell types are annotated to show separate clusters with malignant epithelial cells,
immune cells, and fibroblasts. e Archetypes are annotated on the principal component projections of the early and late cohorts. The samples from each
cohort are shown separately to clearly display the population shifts in the archetypes. f Hierarchical clustering of group-lasso coefficients for archetypes
determined for early and late cohort patients, with principal pathways defining the archetypes indicated in blue. The inset bar plots on the right show
group-lasso coefficients (Y-axis) of key pathways that were used to define the phenotypes associated with each of the three archetypes (X-axis).

individual signaling pathways to each archetype using regression
analysis. We analyzed the association between KEGG pathway
enrichment scores in single cells against the archetype scores
of all three archetypes across all cells are listed in Supplementary
Data 5. This second orthoganol approach to analyze the pathways
uncovered consistent results. The classification of the MAP
archetype was supported by the positive associations (positive
coefficients and false discovery rate (FDR) < 0.05) with enrich-
ment of key signaling pathways, including cell cycle, DNA
replication, glycolysis, and oxidative phoshporylation. The CDR
archetype was supported by positive associations with key
im mune response pathways, including NK cell-mediated

cytotoxicity, TLR receptor signaling, RIG-I (retinoic acid-
inducible gene I) like receptor signaling, NOD-I (nucleotide-
binding oligomerization I)-like receptor signaling, and T/B cell
receptor signaling. Interestingly, the CDR archetype scores were
also positive correlated with metabolism pathways of glycolysis
and oxidative phosphorylation, but not with proliferation as
indicated by cell cycle and DNA replication, indicating a
decoupling of these two phenotypes in the CDR cells and also
supporting the separate classification of this cell state from MAP.
Furthermore, similar to the classification of the PI3K/MTOR and
WNT pathways in the CDR archetype in the group-lasso analysis,
the CDR cells were again associated with the KEGG MAPK and
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WNT signaling pathways, suggesting that activation of these
pathways contributed to the CDR archetype over MAP.

Across the single cells, the key pathways contributing to the
MAP archetype (Supplementary Figure 7A) were positively
intercorrelated (Pearson’s correlation coefficient > 0, FDR < 0.05)
(Supplementary Figure 7B), with subtle differences observed
between subpopulations of cells classified based on cell cycle
states (Supplementary Figure 7C) and between patients across
time (Supplementary Figure 7D, E). For example, the MAP cells
were more metabolically active in S and G1 cells compared to
G2M cells, as expected. The MAP phenotypes on average were
largely consistent over time, with some significant shifts observed
within specific patients, like decreased glycolysis in patient 5, and
increased glycolysis and oxidative phosphorylation in patient 8.
The key pathways contributing to the CDR pathways were also
highly intercorrelated (Pearson’s correlation coefficient > 0, FDR
<0.05) (Supplementary Figure 8A), with some differences
observed in specific patients over time (Supplementary Figure 8B).
In particular, patients 5 and 9 showed reduced enrichment of
multiple immune response pathways over time.

We also performed archetype analysis on an independent
validation cohort of eight unmatched pre-treatment and six post-
treatment malignant ascites or pleural effusion samples. All pre-
treatment samples were from treatment-naive patients. Post-
treatment patients received an average of five lines of treatment,
including chemotherapies and targeted therapies (Supplemental
Table 4). Dimensionality reduction and clustering of the cells
from the early (pre-treatment)/late (post-treatment) cohort
resulted in a large malignant cell cluster of epithelial origin and
smaller immune cell and fibroblast clusters (Fig. 2d), confirmed
by expression of individual markers (Supplementary Figure 9). As
with the initial longitudinal cohort, we performed the Pareto task
inference analysis on the validation cohort samples revealing
three major archetypes in both the early and late cohorts (Fig. 2e
and Supplementary Figure 10). Based on the key phenotypes
specifically enriched in each archetype, we confirmed that the
archetypes in the validation cohort also corresponded to MAP,
DDR, and CDR (Fig. 2f and Supplementary Figure 11).

Next, we confirmed the presence of the three archetypes
detected in the integrated scRNA-seq data in individual patients
by resolving the scRNA-seq profiles of each patient from the
longitudinal cohort. Comparing polytopes with a range of vertices
confirmed a three-vertex polytope was once again sufficient to
enclose the complete data for each patient (Supplementary
Figure 12). The biological phenotypes associated with these three
clusters were consistent with the phenotypes associated with the
archetypes identified in the integrated dataset when performed
separately for each patient (Fig. 3a, b and Supplementary
Figure 13). Importantly, these analyses show that the three
archetypes are a common feature of all HGSOC tumors, albeit
with varying proportions over time.

We then evaluated the patterns of shifts in the populations of
specialist cells, defined as cells close to a vertex representing one
of the key archetypes (MAP, CDR, or DDR) during treatment of
our initial patient cohort (Fig. 3c and Supplementary Data 6). At
most time points, cancer cells were present that specialized in
each of the three key archetypes, with three of five patients having
an enrichment in either the MAP or CDR specialists. In the case
of patient 4, all three archetypes were present at the three time
points. MAP was the principal archetype at the first time point
(42%), and with most cells specializing in the CDR (35%) or MAP
(24%) archetypes at the last time point. The proportions of MAP
archetype were higher at time 1 and 3 compared to time 2, which
coincides with the lower CA-125 levels of the patient while on
treatment during time 2 (Fig. 1a). The relative proportion of the
specialists in patient 5 did not change over time, with MAP

remaining the critical archetype at the last time point (46%).
Patient 6 also showed a pattern of MAP archetype enrichment
that shows similar trends as CA-125 burden, with the highest
levels at time 1 (30%) and time 3 (32%) compared to time 2
(11%). In the case of patient 7, CDR emerged as the core
archetype at the second time point (81%). Although the two
samples for patient 7 were collected across a gap of >3 years, the
CA-125 levels were relatively low compared to the late time
points of other patients (Supplementary Data 3), thus explaining
the exceptional pattern of MAP specialists observed in this
patient. The archetypes of patient 8 were mostly dominated by
non-specialist cells (78%) at the last time point. However, this
patient also showed an increase in the proportion of MAP
specialists from 2 to 5% between the first and last time point, with
the highest proportion of MAP specialists (16%) coinciding with
the highest CA-125 levels for this patient at time 2 (Fig. la and
Supplementary Data 3). In the case of patient 9, the proportion of
MAP specialists increased progressively over time from 9 to 22%,
again following the CA-125 levels for this patient. Thus, the
patterns of the shift in the MAP archetype derived from the
scRNA-seq data agree well with the levels of tumor marker over
time (Supplementary Figure 14).

We also compared the overall distribution of the archetype
specialists across single-cell transcriptional clusters of malignant
cells and their distribution over time (Supplementary Figure 15A,B).
Each specialist population was associated with a distinct
transcriptional cluster, from six total clusters (Supplementary
Figure 15A, lower left UMAP). The CDR specialists were largely
associated with malignant cell cluster 0, while DDR specialists
were associated with cluster 1 and MAP specialists with cluster 2
(Supplementary Figure 15B, left barplot). Clusters 3, 4 and 5 were
small clusters with few cells, which were present transiently at
time 1 or time 2 (Supplementary Figure 15B, right barplot). At
the first time point, cluster 2 and MAP specialists were present at
the lowest proportions compared to other archetypes, indicating
that the cluster 2/MAP specialists were acquired along the course
of progression (Supplementary Figure 15B, right barplot).

The proportion of specialists changed over time in patients.
Specifically, the proportion of the MAP and CDR archetypes
showed a strong negative correlation to each other (Pearson’s
correlation = —0.95, R = 0.9) (Supplementary Figure 15C). This
relative shift between the archetypes was correlated with the
overall survival of the patients (time to death in days since
primary surgery was performed). We found a negative correlation
between the proportion of MAP specialists in a patient at the final
time point and overall survival, with more MAP specialists
associated with worse outcome (Supplementary Figure 15D).
Although this correlation was not statistically significant in this
small sample (P=0.1), the observed effect size (Pearson’s
correlation = —0.69, R2=0.48) calls for validation in a sample
of larger size to assess clinical significance.

The metabolic and proliferative archetype is enriched in late-
stage resistant HGSOC cancer compared to treatment-naive
cancer cells. We next compared the specialist populations in the
unpaired treatment-naive and post-treatment validation cohorts.
CDR specialists were most common in all eight treatment-naive
patients (average 33%), while MAP specialists were least common
in seven out of eight treatment-naive patients (average 9%)
(Fig. 4a and Supplementary Data 6). In contrast, MAP specialists
were the principal archetype in three out of six post-treatment
patients (average 22%). This reflected a significant shift towards
the MAP archetype in post-treatment samples (P = 0.008), while
CDR archetype decreased significantly in the post-treatment
samples (P = 1.5 x 1079) (Fig. 4b). The dramatic decrease in CDR
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specialists and increase in MAP specialists in the post-treatment
validation cohort suggested that multiple lines of chemotherapy
may have also contributed to this shift.

To experimentally validate the observed shift towards the MAP
archetype, we derived multiple primary cancer cells from patients
4 and 8 and tested the metabolic capacity changes over time. We
created early passage primary patient cell lines using ascites
samples from the two patients. In both cases, the late samples
were obtained at an advanced stage after several lines of
treatment. These serial cell lines displayed an increased basal
ATP production capacity over time, with the majority of the
energy production contributed by the glycolytic pathway in
patient 4, and both oxidative phosphorylation and glycolysis in
patient 8 (Fig. 4c). Lastly, to test the relative metabolic potentials
in the cancer cells from our independent validation cohort, we
also created cell lines from two pre-treatment patients (patients
16 and 17) and two post-treatment cohort patients (patients 21
and 23). We compared the ATP production rates for these four
unmatched samples and found an overall increase in ATP
production in the late treatment samples, contributed by both the
glycolytic and oxidative phosphorylation pathways (Fig. 4d). The

total ATP production rates were elevated in the late time points in
each study, while the relative contribution of oxidative phosphor-
ylation and glycolysis also increased over time. We also evaluated
the contribution of fatty acid oxidation by comparing the
contribution to ATP production in the presence of a fatty acid
oxidation inhibitor. We found a significant decrease in ATP
production, but this reduction was consistent over time
(Supplementary Figure 16).

Temporal evolution of genomic variants in progressive
HGSOC. In order to test for association between genetic variants
and archetype during tumor evolution, we next performed WGS
analysis of germline and malignant samples from the longitudinal
cohort patients. We observed an average of 12,000 SNVs and
small indels in our samples along with an average tumor muta-
tion burden of ~2.5/Mb, with six out of nine patients displaying
an increase in mutation burden over time (Fig. 5a and Supple-
mentary Data 7). An average of 800 structural variants (SVs)
including indels (>25bp) and breakpoints were observed in our
samples (Fig. 5b and Supplementary Data 7). In addition, we also
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observed copy number gains or losses in one to eight cancer genes
per sample (Fig. 5c). The non-synonymous SNVs, splice-site
variants, indels, SVs (breakpoints), protein interaction variants,
and copy number variants affecting cancer genes are shown in
Fig. 5d.

To determine the potential pathogenicity of the non-
synonymous SNVs and small indels, we searched for potential
drivers by comparing the mutations in our samples with the
IntoGen list of predicted and validated driver mutations. We also
genotyped and predicted the impact of variants affecting HR
genes in the germline samples. Pathogenic germline mutations in
BRIPI in patient 1 and BRCAI in patient 8 were previously
shown to contribute to the deficiency of the HR pathway!31°.
Additional HR variants in germline samples were predicted to be
either benign or common SNPs of unknown significance
(Supplementary Data 8). Somatic missense and splice-site
mutations in only one gene, TP53, were found to be potential
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drivers. Truncal EPHA3 mutations in patients 5 and 8 and RHOA
in patient 9 were determined to be high impact based on SnpEff
annotations; however, they were predicted as benign or passenger
by IntoGen (Supplementary Data 9). We found frequent copy
number gains of the MYC and IGF2BP2 oncogenes, both
associated with progressive ovarian cancers32-34, Similarly, copy
number gains were observed in the PIK3CA3>, ERBB2%°, and
SOX237 oncogenes, each reported to be potentially associated
with chemotherapeutic resistance in ovarian cancers (Fig. 5d and
Supplementary Data 10). In addition, we also observed a copy
number loss of tumor suppressor genes NFI in patient 1 and RBI
in patient 7 (Fig. 5d and Supplementary Data 10).

We next mapped the major acquired genomic events that
tracked with the progression of the longitudinal cohort patients
(Fig. 6). In patient 1, where the samples were profiled 1474 days
apart, a copy number of loss of NFI along with a gain of IGF2B2
were observed at time 2 (Fig. 6a). In the case of patient 2, we did
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not observe acquired copy number gains or losses in cancer genes.
However, a breakpoint in the ESRI exon was acquired at the
second time point (Fig. 6b). In the case of patient 3, the first
sample was collected after the patient had already received first-
line chemotherapy. We observed acquired copy number gains in
AKT2 oncogenes, along with a pathogenic ABCBI-SLC25A40
fusion at the second time point (Fig. 6¢) that had previously been
reported.

Patient 4 did not show acquired CNVs at the second time
point. Concurrent with an increase in the CDR archetype, we
detected a passenger missense mutation in the LTRI exon and a
breakpoint in the ERBB4 exon of unknown significance (Fig. 6d).
The CNV and SV profiles of patients 5, where the MAP was the
critical archetype at all points, showed no variants that affected
cancer genes. This patient acquired a splice-site COL2AI and
missense TPRI passenger mutations at times 2 and 3, respectively
(Fig. 6e). The SNV, CNV, and SVs in the samples from patient 6
profiled in a short period were truncal (Fig. 6f). Several key
oncogenes were amplified in the second time point for patient 7,
including PIK3CA, KRAS, and SOX2, along with a loss of RBI
copy (Fig. 6g). These acquired driver mutations in patient 7
correspond to the emergence of CDR as the principal archetype at
the second time point. PIK3CA, PIK3CB, and IGF2BP2 were
amplified at the second time point for patient 8, along with
acquired breakpoints in the exons of ARIDIB and FENI. In
contrast with patient 7, the second time point in the patient was
associated with a decrease in CDR and an increase in the MAP
archetypes. Overall, the relatively larger number of acquired
events affecting similar pathways (PI3K/MAPK) in both patients
7 and 8 appeared to coincide with the long gap between the
sample collection times but did not correspond to the evolution of
the same archetypes (Supplementary Figure 17). Patient 9, where

8

the samples were profiled within a short time span and showed
consistent enrichment of the CDR and MAP archetypes, did not
acquire CNVs. However, a passenger missense variant in NUP98
was identified at time 2 along with a breakpoint in an exon of
DMNT at time 3.

To evaluate the association between key genomic variants and
archetypes, we compared the proportion of specialists across
samples grouped by the presence of a key mutation (Fig. 7).
Samples grouped by pathogenic TP53 mutations, present in 21
out of 24 samples, did not show any significant difference in the
proportion of specialists for any archetype (Fig. 7a). Similarly, we
did not observe a significant difference in the proportion of
specialists in samples grouped by MYC gain in 14 samples
(Fig. 7b), IGF2BP2 gain in ten samples (Fig. 7c), PIK3CA gain in
six samples (Fig. 7d), or ERBB2 gain in seven samples (Fig. 7e).
However, we found that SOX2 gain detected in six samples was
associated with a significantly higher proportion of CDR
specialists (P =0.02) (Fig. 7f). Other archetype specialists were
not significantly different.

Single-cell subclones are associated with emergent archetypes.
As shown above, driver genomic alterations that were acquired as
a function of time or in response to chemotherapy could not
completely explain the observed shift of all archetypes or devel-
opment of therapeutic resistance over time. Therefore, we next
investigated whether the subclonal architecture of the single cells
might be associated with the emergence of the archetypes. We
determined the subclonal structure of the longitudinal cohort
scRNA-seq samples using the InferCNV method, assuming that
the transcriptional heterogeneity at the single-cell level was driven
by alterations that resulted in a change in expression levels of
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contiguous genes along the chromosomes®® (Supplementary
Figure 18). Overall, we found that the archetypes were sig-
nificantly associated with specific inferred subclonal clusters in
most patients (Tukey’s honestly significant difference (HSD) P <
0.05) (Supplementary Figure 19).

The CDR archetype was associated with the sub-clone cluster 1
in patient 4, displaying an enrichment at the later time points
compared to the initial time point (Fig. 8a), while the MAP
archetype was associated with sub-clone cluster 2, and DDR with
sub-clone cluster 3 (Supplementary Figure 19). In patient 5, the
DDR archetype was associated with sub-clone cluster 1 and
remained the core archetype throughout the study (Fig. 8b and
Supplementary Figure 19). Patient 6 MAP archetypes enriched at
later time points were associated with sub-clone cluster 3 (Fig. 8¢
and Supplementary Figure 13). The MAP archetype present in
the first time point of patient 7 was enriched in the sub-clone
cluster 3, while CDR that became the core archetype the later
time point was linked to cluster 2 (Fig. 8d and Supplementary
Figure 19). In patient 8, the MAP archetype was enriched at the
later time points and tracked with sub-clone cluster 2 (Fig. 8e and
Supplementary Figure 19). Patient 9 showed a shift towards the
MAP archetype at the later time points and was associated with
sub-clone cluster 3 (Fig. 8f). Thus, we observed that specific
subclonal clusters were associated with the key MAP archetype in
most patients. However, every cluster could not be mapped to an
observed whole-genome amplification or deletion event. There-
fore, further resolution of the genetic, epigenetic, and regulatory
driver events behind the subclonal evolution of the HGSOC

10 NATURE COMMUNICATION

tumors could help elucidate the mechanism of archetype shifts in
these cells.

Discussion

With the emergence of scRNA-seq technologies, it is now possible
to study the patterns of transcriptional evolution at the cellular
level. Understanding the patterns of transcriptional heterogeneity
at the single cell level may help elucidate the mechanisms of
chemoresistance in HGSOCs, especially in cases where driver
single gene genomic alterations could not be detected. HGSOCs
present a unique challenge, where the genetic heterogeneity is
generally driven by SVs and CNVs, rather than single-gene driver
mutations affecting cancer-related genes. This observation was
confirmed in our WGS analysis of the temporal samples from the
longitudinal cohort patients, where only truncal TP53 driver
mutations were detected across most patients.

Our study utilized the theory of multitask evolution to char-
acterize transcriptional heterogeneity over time. This theory
suggests that tumors perform various biological tasks; however,
each cell within the tumor is optimized to perform only a specific
task, which can evolve under selective pressure. By identifying the
transcriptional task specialists in HGSOC cells and defining the
core phenotypes that evolve during the course of treatment, we
may be able to identify therapeutic targets against those critical
phenotypes. A key finding of our study was the identification of
three major archetypes or transcriptional specialists that could
describe the gene expression of HGSOC cells. These included the
MAP, DDR, and CDR archetypes (Fig. 2b, c). We found that the
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MAP archetype evolved later over the course of chemotherapy
compared to early time points or treatment-naive samples and, at
the last time point, this was concomitant with a decrease in the
CDR archetype and correlated with poor overall survival of the
patients (Supplementary Figure 15). Our results support the
clinical observation that exceptional long-term HGSOC survivors
are associated with enrichment of immune response signatures,

while short-term survivors tend to be associated with prolifera-

tion signatures

39,

Interestingly, pathways that are well known to contribute to
cellular survival, metabolism, and proliferation from HGSOC
bulk transcriptomes, such as MAPK#0 and WNT#! signaling,
were preferentially associated with nonproliferating cells in the
CDR archetype, instead of the proliferating cells of the MAP
archetype. The pathways enriched in the CDR archetype-like TLR
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signaling and NK cell-mediated cytotoxicity suggest that these
cells are responsive to immune cells in the microenvironment#2.
Thus, the prevalence of CDR cells could be indicative of active
immune surveillance in the tumor, which has been linked to
better prognosis and outcomes of ovarian cancers*3. Key meta-
bolic pathways (oxidative phosphorylation and glycolysis) were
also associated with the CDR archetype (Supplementary Data 5).
Based on this result, it is reasonable that a chemoresistant tumor
would select metabolically active MAP cells that are actively
proliferating, instead of metabolically active CDR cells that are
subject to immune surveillance. This observation also supports
the idea of multitask evolution, where the progressive tumors
select for cells specializing in proliferation over immune response,
assuming that both cell states have similar fitness costs as indi-
cated by enrichment of metabolic pathways.

In previous reports, ovarian cancer cell lines have been char-
acterized to show metabolic reprogramming of cancer cells that
supported survival, promoted the development of chemoresis-
tance, and disease progression44°>, Thus, our scRNA-seq models
lend support to these in vitro observations by demonstrating a
shift towards a high metabolism archetype in post-treatment
patient-derived samples. Clinical interest to target this metabolic
phenotype has garnered the attention of many investigators
seeking to utilize combination therapies for more effective
treatment options. In our WGS analyses, acquired SVs and CNVs
affecting the MYC oncogene were detected in ~1/3 samples from
the original nine patients of the longitudinal cohort. Increased
MYC expression potentially contributes to the increased meta-
bolic phenotype of ovarian cancers through increased glycolysis
mediated by lactate dehydrogenase as well as glutamine addiction
in MYC-driven cancers#. Thus, drugs such as BRD4 inhibitors
that target the upstream pathways regulating MYC may be
attractive candidates to control the metabolism and growth of
chemoresistant cancer cells. Indeed, a small molecular BRD4
inhibitor, JQ1, has been shown to inhibit cell proliferation and
induce apoptosis, as well as increase sensitivity to cisplatin in
ovarian cancer cells*7:48,

In addition to the metabolic and proliferation pathways, we
also observed a consistent emergence of the EMT pathway as one
of the key hallmark predictors of the MAP archetype (Supple-
mentary Figures 5, 6, 11, and 13). Previous studies have shown
evidence linking EMT with both ovarian cancer progression and
acquired chemotherapeutic resistance®. In addition, the activa-
tion of the EMT program is closely associated with increased
plasticity, reprogramming of metabolism, and metastatic pro-
gression of cancer cells?>>!, Recent studies show that the acti-
vation of the EMT program may be regulated via epigenetic
mechanisms instead of somatic variants>2->4, In addition, aber-
rant ovarian cancer cell metabolism was recently shown to be
regulated by microRNAs using in vivo models®. Thus, the con-
current shift towards the MAP archetype and activation of the
EMT pathway may be driven by concurrent epigenetic mechan-
isms beyond acquired driver mutations and serve as potential
therapeutic targets®.

A key outstanding question emerging from our study is the
mechanisms that could explain the observed shift in archetypes
over time. We found that driver somatic mutations were not
associated with the emergence of archetypes across the patients.
We have evaluated the association between the presence of key
somatic mutations in tumor samples across all time points and
the likelihood that a particular archetype might be enriched in a
tumor carrying the somatic mutation (Fig. 7). While most of the
common mutations are not associated with a particular arche-
type, it is possible that the emergence of the archetypes can be
explained by other somatic mutation changes that are not yet
characterized to be associated with HGSOC progression. As our

study is underpowered to discover new somatic variants, our
results do not completely rule out the potential role of genetic
mechanisms in archetypal evolution, as evidenced by the close
association of archetype shifts with specific subclones. However,
resolving the exact subclonal structure and determining specific
somatic mutations in single-cell subclonal populations is quite
challenging due to the low depth of coverage and sparsity of the
scRNA-seq data. Improvements in scDNA-seq technologies and
the development of analytical methods to resolve somatic muta-
tions in single cells may help bridge this gap in knowledge®”. On
the other hand, transcriptional evolution could also be driven by
nongenetic mechanisms, including epigenetic alterations and
acquired changes in the noncoding transcriptome of single
cells®$>°. Complete characterization of such mechanisms would
require new technologies to simultaneously profile and study such
changes.

Opverall, our study shows the existence of three core archetypes
in HGSOCs. We found that the existence of the three archetypes
and the biological phenotypes associated with each archetype is
remarkably consistent across patients. These results suggest a
common underlying biological theme exists across HGSOCs,
despite the variations in the baseline tumor genomes arising from
the inherent chromosomal instability related to loss of DNA-
damage repair mechanisms®. This inherent commonality or
phenotypic stability of the HGSOCs could perhaps suggest
genetic canalization, which also explains the exceptional robust-
ness of the disease against treatment®!. Thus, with the apparent
ability of tumors to evolve via nongenetic mechanisms>%92, it
may ultimately require the development of novel treatment
strategies that simultaneously target the genomic and phenotypic
vulnerabilities that evolve in the HGSOC tumors. Our study
provides compelling evidence of HGSOC evolution to be asso-
ciated with a shift towards a high-MAP state, with a concomitant
decrease in immune response state, after receiving multiple lines
of chemotherapy in two separate patient cohorts. In vitro assays
confirm the shift towards a high-metabolism state in the post-
treatment samples. Taken together, these results suggest the
potential of new avenues of therapy that specifically target the
metabolic pathways to overcome chemoresistant HGSOCs.

Methods

Sample collection and processing. Ascites or pleural effusions were drained and
collected from nine ovarian cancer patients longitudinally over the course of
patient treatment. Samples were collected with proper written informed consent
and ethical compliance under IRB # 07047 an 17334 (City of Hope), 41030 and
89989 (University of Utah), or HREC # 01/60 and 16/161 by the Australian
Ovarian Cancer Study (AOCS), which were analyzed under HREC # 15/84 (Peter
MacCallum Cancer Centre). Malignant fluids were centrifuged at 500 x g for 5 min
to pellet cells. Red blood cells were removed by lysis in Tris-ammonium chloride
buffer (17 mM Tris, pH 7.4, 135 mM ammonium chloride) and incubated for 5 min
in a 37 °C water bath. Cells were then centrifuged at 500 x g for 5min at room
temperature and repeated until red blood cells were removed. Cells were washed in
1x phosphate-buffered saline (PBS) (Gibco, Cat. # 10010) before frozen viably in
50% RPMI-1640 (Gibco, Cat. # 11875) + 40% fetal bovine serum (FBS, Sigma, Cat.
# 12306C) + 10% dimethyl sulfoxide (DMSO) (Fisher Scientific, Cat. # D2650).
Ascites fluid collected by the AOCS was centrifuged at 450 x g for 10 min at 4 °C.
Red blood cells were removed by incubation in ice-cold lysis buffer (14.4 uM
NH,CI, 1 uM NH4HCOj3) at room temperature for 10 min. Cells were centrifuged
at 450 x g for 10 min at 4 °C, washed in 10% FBS in 1x PBS, and centrifuged again.
Cells were frozen viably in FBS + 10% DMSO. One sample (Patient 22) was
dropped from further analysis upon receiving an updated classification of this
sample as a high-grade solid endometrial tumor.

Cancer cell isolation. Frozen viable ascites or pleural effusion cells were thawed,
centrifuged at 300 x g, and resuspended in 1x PBS to determine the concentration,
viability, and cancer cell purity by trypan blue staining. In some cases, cancer cells
were purified by Miltenyi Biotec QuadroMACS by negative selection of CD45%
(CD45 MicroBeads, Miltenyi Biotec, Cat. # 130-045-801), CD90* (CD90
MicroBeads, Miltenyi Biotec, Cat. # 130-096-253), and podoplanin-expressing cells
(biotinylated anti-podoplanin antibody, BioLegend, Cat. # 337015 and Miltenyi
Biotec Anti-Biotin MicroBeads Cat. # 130-105-637). Cells were first labeled using
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20 pL of anti-podoplanin antibody in 500 uL 1x PBS + 0.5% BSA (bovine serum
albumin, EMD Millipore, Cat. # 12661525) per 107 cells, incubated 10 min at 4 °C,
washed with 2mL 1x PBS 4 0.5% BSA, centrifuged at 300 x g for 5 min, then
resuspended in 60 uL of 1x PBS + 0.5% BSA per 107 cells. Then, 26 uL of each
CD45, CD90, and Anti-Biotin Microbeads were added to cell suspension (per 107
cells) and CD45F-, CD90*-, and anti-podoplanin biotin-labeled cells were depleted
using LD columns (Miltenyi Biotec, Cat. # 130-042-901) according to the manu-
facturer’s instructions. The samples were processed using the StemCell EasyEights
EasySep column-free magnet to remove CD45% (EasySep CD45 Depletion Kit II,
Cat. # 17898), and/or dead cells (EasySep Dead Cell Removal (Annexin V) Kit, Cat.
# 17899) as appropriate. To isolate cancer cells using StemCell EasySep Antibody
Kits, cells were centrifuged and resuspended in 1x PBS + 2% FBS 4+ 1 mM calcium
chloride (G-Biosciences, Cat. # R040) to a concentration of <108 cells per 2 mL
total volume and transferred to a round bottom 5mL FACS tube. Sequentially
Dead Cell Removal Cocktail (50 uL/mL sample) and Biotin Selection Cocktail
(50 uL/mL sample) were added and incubated at room temperature for 3 min,
followed by CD45 Depletion Cocktail (50 uL/mL sample) and incubated at room
temperature for 5 min. StemCell RapidSphere magnet beads were added (75 pL/mL
for CD45 RapidSpheres and 100 uL/mL for Dead Cell RapidSpheres) and incubated
at room temperature for 3 min off the magnet. Cell samples were then incubated on
EasyEight magnet for 5 min, collected supernatant, and repeated additional Easy-
Eight magnet column cleanup. Collected cells were then centrifuged and resus-
pended in 1x PBS and maintained at 4 °C.

Nuclei isolation. After cancer cell isolation, patient samples that did not dissociate
into single-cell suspensions or had a high proportion of cancer cell clusters were
then processed to isolate single-nuclei suspensions. To isolate nuclei, cells were
resuspended in (4:1) Lysis Buffer (10 mM Tris-HCl, pH 7.8 (Teknova, Cat. #
T1078), 146 mM NaCl (Alfa Aesar, Cat. # J60434AK), 1 mM CaCl, (G-Biosciences,
Cat. # R040), 21 mM MgCl, (G-Biosciences, Cat. # R004), 0.05% BSA (EMD
Millipore, Cat. # 12661525), 0.2% Igepal CA-630 (MP Biomedicals, Cat. # 198596),
DNase/RNase-free water (Gibco, Cat. # 10977)):DAPI buffer (106 mM MgCl,,

50 pg/mL 4/, 6-diamidino-2-phenylindole (DAPI, Invitrogen, Cat. # D1306), 5 mM
ethylenediaminetetraacetic acid (EDTA, Quality Biological Inc., Cat. #
E522100ML), DNase/RNase-free water)) supplemented with fresh 0.2 U/uL
SUPERase-In RNase Inhibitor (Invitrogen, Cat. # AM2694). Cells were incubated
for 15 min at 4 °C to release nuclei. The lysate was then filtered through a 40 um
mesh filter (Falcon, Cat. # 352340) collecting nuclei in flow through. All down-
stream nuclei processing utilized Eppendorf LoBind DNA tubes to prevent nuclei
loss. Nuclei were centrifuged 500 x g, at 4 °C, for 5 min and washed two times with
500 pL of 1x PBS 4 1% BSA 4+ 0.2 U/uL SUPERase-In RNase Inhibitor. Nuclei
were resuspended in 1x PBS + 1% BSA + 0.2 U/uL SUPERase-In RNase Inhibitor
at a target of 1000 cell/uL, re-filtered using a 40 um mesh filter, and counted on a
hemocytometer by DAPI fluorescence using an Invitrogen Countess equipped with
DAPI filter cube and maintained at 4 °C.

Single-cell RNA-sequencing. scRNA-seq was performed on single-cell or single-
nuclei suspensions using either the Takara Bio ICELL8 Single-Cell System or the
10X Genomics Chromium to prepare cDNA sequencing libraries. Samples pro-
cessed on the ICELLS Single-Cell System (Takara Bio) were prepared using the
SMARTer ICELL8 3’ DE Reagent Kit V2 (Takara Bio, Cat. # 640167) from isolated
nuclei. DAPI-stained nuclei were diluted to a concentration of 60,000 cell/mL in 1x
PBS + 1% BSA + 1x Second Diluent 4 0.2 U SUPERase-In RNase Inhibitor and
dispensed onto the ICELL8 3’ DE Chip (Takara Bio, Cat. # 640143) using the
ICELL8 MultiSample NanoDispenser. Single-nuclei candidates were selected using
the ICELL8 Imaging System with ICELL8 CellSelect Software (Takara Bio,
V1.1.10.0) selecting for DAPI-positive nuclei and reverse transcription, and
sequencing library preparation was performed according to the manufacturer’s
instructions. ICELL8 cDNA sequencing libraries were sequenced at a depth of
200K reads per cell on Illumina HiSeq 2500, read #1 = 26 nt and read #2 = 100 nt.
Samples processed on the 10X Genomics Chromium were processed using the
Chromium Single Cell 3’ V3 Kit (10X Genomics, Cat. # 1000075) using whole cells
or isolated nuclei. Single cells or nuclei were diluted to a target of 1000 cell/uL in 1x
PBS (whole cells) or 1x PBS + 1.0% BSA + 0.2 U/uL SUPERase-In RNase Inhibitor
to generate GEM’s prepared at a target of 5000 cells per sample. Barcoding, reverse
transcription, and library preparation were performed according to manufacturer
instructions. 10X Genomics generated cDNA libraries were sequenced on Illumina
HiSeq 2500 or NovaSeq 6000 instruments using 150 cycle paired-end sequencing at
a depth of 10K reads per cell. scRNA-seq was performed at the Integrative
Genomics Core at City of Hope, Fulgent Genetics, and the High Throughput
Genomics Core at Huntsman Cancer Institute (HCI) of the University of Utah.

Genomic DNA isolation and WGS. Genomic DNA was isolated using the
QIAamp DNA Micro Kit (Qiagen, Cat. # 56304) according to the manufacturer’s
instructions for isolated cancer cells and nuclei suspensions from scRNA-seq, as
well as patient-matched buffy coat for germline DNA. Germline DNA was also
isolated from patient-matched isolated peripheral lymphocytes using the salting-
out method. Briefly, lymphocytes were resuspended in nuclei lysis buffer (0.1 M
Tris pH 8, 2mM EDTA pH 8, 0.1 M NaCl, proteinase K, and sodium dodecyl

sulfate), and incubated at 56 °C for 1 h followed by 37 °C for 3 h. Saturated salt
solution (~6 M NaCl) was added to lysed cells, which were centrifuged at 18,400 x g
for 15 min at 4 °C after vigorous mixing. The supernatant was transferred to ice-
cold 100% ethanol and the tubes were rocked gently until the DNA precipitated.
After overnight incubation in ethanol at —20 °C, DNA was rinsed twice by placing
in 70% ethanol, centrifugation, and removing the ethanol. DNA was air-dried and
resuspended in sterile water. WGS DNA libraries were prepared using either
NEBNext Ultra II DNA Library Prep Kit (New England Biolabs), KAPA Hyper
Prep PCR Free Library Prep Kit (Roche), or Nextera DNA Flex Library Prep Kit
(Ilumina), and sequencing performed on Illumina NovaSeq 6000 instruments at
150 cycles and paired-end sequencing to read depth of 40-60x coverage.
Sequencing was performed at Admera Health, Fulgent Genetics, and the High
Throughput Genomics Core at HCI of University of Utah.

Cell culture. To create stable patient-derived primary cell lines, frozen patient
ascites were processed and then immediately placed in media as specified below.
All cells were maintained in RPMI-1640 (Gibco; Cat. # 11875085) supplemented
with 10% heat-inactivated FBS (Sigma, Cat. # 12306C) and 1% antibiotic/anti-
mycotic solution (Gibco; Cat. # 15240062) in uncoated filter top polystyrene flasks
and maintained at 37 °C in 5% CO,, patient cells were additionally kept in 5% O,
hypoxic simulated humidified air.

Metabolic assays. ATP production rates were assayed with the XF Real-Time
ATP Rate Assay Kit (Agilent, Cat. # 103592-100) as per the manufacturer’s
instructions. Briefly, cells were plated down in the Seahorse XF96 cell culture
microplates at 10,000 cells/well/80 uL and placed back in 37 °C, 5% CO, incubator.
After 24 h, cells were washed in assay media made up from Seahorse XF RPMI
Media, pH 7.4 (Agilent, Cat. # 103576-100) containing 10 mM glucose (Agilent,
Cat. # 103577-100), 1 mM pyruvate (Agilent, Cat. # 103578-100), and 2 mM L-
glutamine (Agilent, Cat. # 103579-100) and incubated for 1h in a non-CO,
incubator at 37 °C before a final wash in the assay media. The Seahorse XFe96
analyzer was calibrated and the assay was run using a standard XF Real-Time ATP
Rate template created using the WAVE Software (V2.6.1) and assay standard drug
injections were used of 1.5 uM oligomycin in port A and 0.5 uM rotenone/anti-
mycin A in port B.

Results for each well were normalized by cell count using 1 pg/mL Hoechst that
was added to port B with the rotenone/antimycin A cocktail and injected
automatically, then visualized by imaging the wells at x4 on the Cytation5
Multimode Cell Imager (BioTek) and analyzed with the GEN5 Software (BioTek;
V3.0.5) for cell count. If multiple plates were needed for comparison, OAW42 cells
were plated down at 5000 cells per well in triplicate 24 h before the assay for
environmental variable normalization between plates. Analysis for the ATP rate
assay was performed using the Agilent ATP report generator as per the
manufacturer’s recommendations.

Basal oxygen consumption rates were determined with the Seahorse XF
substrate oxidation assay, by using the XF Long-Chain Fatty Acid Oxidation Stress
Test Kit (Agilent, Cat. # 103672-100) as per the manufacturer’s instructions.
Briefly, 3000 cells were plated down in RPMI-1640 + 10% heat-inactivated FBS and
1% antibiotic/antimycotic solution cell culture media, and on the day of the assay,
the cells were washed with defined Seahorse XF RPMI Assay Media, pH 7.4
(Agilent, Cat. # 103576-100) containing 10 mM glucose (Agilent, Cat. # 103577-
100), 1 mM pyruvate (Agilent, Cat. # 103578-100), and 2 mM L-glutamine (Agilent,
Cat. # 103579-100). The fatty acid oxidation inhibitor, Etomoxir, was resuspended
to a final assay concentration of 4 uM, and either Etomoxir or defined media were
injected automatically through port A during the Seahorse substrate oxidation
assay run on the XFe96 analyzer and controlled by the WAVE Software (V2.6.1).
Metabolic rates for each well were normalized to the number of cells in each well
using Hoechst (1 pg/mL). Analysis was performed using the Agilent analytic’s
cloud-based analysis tool (https://seahorseanalytics.agilent.com/) as per the
manufacturer’s recommendations.

Cell growth and viability assays. Cell viability of the matched samples from
patient 4 (two samples) and patient 8 (three samples) was assessed by the CellTiter-
Glo 2.0 cell Viability Assay (Promega; Cat. # G9241) as per the manufacturer’s
instructions. Briefly, 1000 cells per well were plated in triplicate, flat, clear-bottom
96-well plate in RPMI-1640 + 10% heat-inactivated FBS and 1% antibiotic/anti-
mycotic solution cell culture media. After 12 days, the cells were equilibrated to
room temperature for 30 min and then equal volumes of the CellTiter-Glo reagent
was added to each well and placed on an orbital shaker for 2 min, then allowed to
incubate for a further 10 min at room temperature, and luminescence was read on a
plate reader (Tecan Infinite M1000). The growth of the cells in the 96-well plates
was also assessed by imaging each well every 24 h in a Cytation5 Multimode Cell
Imaging System (BioTek). Specifically, a phase-contrast image was taken with a 4 x
4 montage, and then the GEN5 Software (BioTek, V3.0.5) was used to stitch the
image together and cell analysis calculated the cell count of each well. Both cell
growth and viability were plotted with GraphPad (Prism V8.4.3).

scRNA-seq analysis. Raw scRNA-seq data were preprocessed in the Bioinfor-
matics ExperT SYstem (BETSY)®? using the Cell Ranger v2.1.1 pipeline for 10x
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data, aligned to the hgl9 reference genome using the STAR aligner®, followed by
extraction of read counts using featureCounts®”. The resulting count matrix of cells
was used for downstream analysis using the R package Seurat v3%. High-quality
cells were identified based on the following criteria: a minimum of 1000 total
number of expressed genes per cell, a minimum of 2000 UMIs per cell, and a
percentage of mitochondrial genes <25%. Count matrices from individual patient
samples were normalized and integrated using the CCA algorithm for batch
correction®®. This was followed by principal component analysis of the variable
genes in the integrated dataset, clustering using unsupervised graph-based clus-
tering, and dimensionality reduction using uniform manifold approximation
(UMAP) or t-distributed stochastic neighbor embedding.

The cell-type identities of the clusters were determined using a two-step
approach. A first pass prediction was performed using the SingleR reference-based
classification approach?* using references based on the ENCODE®’ and HPMC%®
datasets. Next, the individual markers corresponding to predicted cell types were
mapped on to the clusters to confirm their classification. In addition, we classified
malignant epithelial cells and normal cells by inferring chromosomal copy number
aberrations from the scRNA-seq data using the method by Patel et al.1” (see
Supplementary Methods for details). The copy numbers were inferred using the R
package InferCNV, using predicted fibroblasts as reference. For pathway
enrichment, raw counts were first normalized using the method proposed by Rizzo
et al.%. Then, a single sample gene set enrichment scores were calculated for
hallmark’® and curated molecular signature’! gene sets using the GSVA package
for R72.

WGS analysis. Germline and tumor WGS sequencing raw reads were pre-
processed using the BETSY to add read-groups, mark duplicates, perform indel
realignment, base quality recalibration, sorting and indexing, and alignment to the
hg19 reference genome using BWA MEM to generate BAM files. Allele-specific
CNVs calls, along with ploidy and cellularity estimates, were called from the BAM
files using Sequenza’? or Facets’* CNV callers using the corresponding germline
BAM files of that patient as reference. For each sample, the CNV calls were z-
transformed (allele-specific copy number — mean sample copy number/standard
deviation of sample copy number) and rounded to the nearest integer for com-
parison. Copy number alterations were defined as z-transformed copy numbers of
>2 for gains and <—2 for losses.

Germline variants in homologous repair genes (ATM, ATR, CHEKI, CHEK?2,
BRCA1I, BRCA2, BARDI, BRIP1, FAM175A, MRE11A, NBN, PALB2, RAD5IC,
RADS51D) along with TP53 and RBI were determined by genotyping the germline
BAM files using GATK, platypus, varscan, and freebayes. Variants detected by at
least two callers and with a variant allelic frequency > 0.05 were retained and
annotated using SnpEff’> to determine non-synonymous variants. Somatic SNVs
and small insertions or deletions were determined from the BAM files using
strelka’®, mutect2”7, and muse”® variant callers. Genes with a variant allele
frequency > 0.05 determined by at least two callers were retained for further
analyses after adjusting for cellularity as determined from the CNV callers. Non-
synonymous variants were first determined using SnpEff. Cancer genes were
defined based on the list of cancer census genes from COSMIC®. Potential driver
mutations were defined based on the list of known or predicted drivers in the
IntoGen database®0. SVs, including insertions, deletions, and breakpoints, were
called and annotated using SYABASL. CNV and SVs were visualized as circos plots
using the R package RCircos®2.

Archetype analysis and biological task classification. We analyzed the HGSOC
scRNA-seq transcriptomes intending to identify distinct biological tasks that each
of the cells needs to perform and face evolutionary trade-offs?>. Based on the
theory proposed by Shoval et al.22, we seek to represent the transcriptome datasets
as a Pareto-optimal situation by identifying that encloses the data with the vertex of
the polytope representing task-specific archetypes. For this analysis, we used the
first five principal components of the CCA-normalized scRNA-seq data from the
longitudinal cohort, individual patient samples from the longitudinal and the early
(treatment-naive), or late (multiline treatment) cohorts. We used the ParetoTI
package for R (https://github.com/vitkl/ParetoTI) to determine the minimum
number of vertices required to enclose the transcriptome data based on the prin-
cipal convex hull algorithm®3. Fitting polytopes with an increasing number of
vertices ranging from 3 to 8 revealed three vertices (triangle) were sufficient to
enclose the data in each case, with additional components resulting in no gain in
the proportion of variance explained by the resulting polytope. In addition, we
analyzed the CCA-normalized count data to verify the number of archetypes using
the ParTI package for MATLAB?®. We calculated the variance explained by
increasing the number of archetypes and confirmed that the three archetypes were
ideal using the elbow method. A t-ratio test (P < 0.01) confirmed that the polytope
was a statistically significant fit for the data. Subsequently, the polytope fit and
archetype scores, or standardized Euclidean distance of each cell to the nearest
vertex, were determined using the ParetoTI package. For each archetype, specialist
cells were defined as cells above the 80th percentile of archetype scores, while cells
that did not meet this criterion for any archetype were classified as non-specialists.
The evolution of the archetypes was represented as the percentage of specialists at
each time point using the R package fishplot®4.

To determine the biological tasks that described each archetype, we used a
gaussian multitask or multinomial model with the set of archetype scores as the
outcome variable and the hallmark gene set enrichment scores or CCA-normalized
gene expression of each cell as the set of predictors. The multitask model was fit
using a group-lasso penalty using the R package glmnet3”. Briefly, 10-fold internal
cross-validation was performed with a lasso penalty (¢ =1) to determine the
multitask model error over varying penalty parameter (1) values. The contribution
(coefficients) of each pathway to the model based on the fraction of deviance
explained was also assessed over varying levels of degrees of freedom. Top pathway
phenotypes contributing to the model were used to define the phenotypes
associated with each archetype. Subsequently, the model was fit using a A value
within one standard error of the minimum. The group-lasso coefficients of each
hallmark pathway were then analyzed using hierarchical clustering and correlation
analyses to determine clusters of related pathways that were associated with each
archetype. Further, the identities of the archetypes were validated based on
repeated clustering patterns of the pathway coefficients determined using multitask
learning analysis of the individual patient archetypes, co-clustering of coefficients
from related pathways, and expression levels of key genes that were available in the
normalized scRNA-seq dataset.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Single-cell RNA-seq data generated and analyzed during this study are available from the
GEO database under accession GSE158722.

Whole-genome sequencing and raw scRNA-seq data are available under controlled
access from dbGaP under the accession ID phs002294. Catalog of driver genes from
IntOGen is publicly available (https://www.intogen.org/download?file=IntOGen-
Drivers-20200201.zip). Data associated with the ATP assays and P values from multiple
comparisons analyzed using Tukey’s HSD test are provided with this paper. The
remaining data are available within the Article, Supplementary information, or from the
authors upon request. Source data are provided with this paper.

Code availability

The BETSY software environment®3 used for the bioinformatic analyses is available at
https://github.com/jefftc/changlab. Custom pipelines for the preprocessing of scRNA-
seq, WGS, and gene set enrichment analyses with BETSY, and Seurat, archetype, and
multitask learning analyses with R are available at https://github.com/U54Bioinformatics.
Analyses with R-packages were performed in R-Studio (version 1.2.5033; R version
3.6.3.).
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