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Long noncoding RNAs (lncRNAs) have been substantially reported to have critical roles in regulating tumorigenesis in recent
years. However, the expression pattern and biological function of SNHG17 in hepatocellular carcinoma (HCC) remain unclear.
Bioinformatics analysis and qRT-PCR were performed to detect the expression pattern of SNHG17 in HCC tissues, adjacent
nontumorous tissues, and cell lines. -e effect of SNHG17 on proliferation, migration, and apoptosis of HCC was investigated by
knockdown and overexpressing SNHG17 in HCC cell lines. RNA sequencing was utilized to explore the underlying mechanism.
Utilizing publicly available TCGA-LIHC, GSE102079 HCC datasets, and qRT-PCR, we found SNHG17 was significantly
upregulated in HCC tissues and cell lines and was notably associated with larger tumor size, poorly differentiation, presence of
vascular invasion, and advanced TNM stage. Furthermore, gain- and loss-of-function studies demonstrated that SNHG17
promoted cell proliferation andmigration and inhibited apoptosis of HCC. By employing RNA sequencing, we found knockdown
of SNHG17 caused 1037 differentially expressed genes, highly enriched in several pathways, including metabolic, PI3K-Akt, cell
adhesion, regulation of cell proliferation, and apoptotic pathway; among them, 92 were overlapped with SNHG17-related genes in
the TCGA-LIHC dataset. Furthermore, ERH, TBCA, TDO2, and PDK4 were successfully validated and found significantly
dysregulated in HCC tissues. Moreover, HCC patients with higher SNHG17 expression had a relatively poor overall survival and
disease-free survival, and ERH and PDK4 also played a marked role in the prognosis of HCC. Broadly, our findings illustrate that
SNHG17 acts as a noncoding oncogene in HCC progression, suggesting its potential value as a novel target for HCC therapy.

1. Introduction

Hepatocellular carcinoma (HCC) is one of the major causes
of cancer-related death worldwide [1]. It is particularly
prevalent in China, sub-Saharan Africa, and southeast and
eastern parts of Asia, over 50% of which were found in China
[2]. Despite the diagnostic and therapeutic strategies of HCC
that have been greatly improved in the last decade, the
prognosis of HCC patients remains very poor. Investigating
the molecular mechanism underlying the development of
HCC and identifying effective biomarkers and therapeutic
targets for HCC are extremely urgent [3].

Recently, with the development of high-throughput
transcriptome analysis, long noncoding RNAs (lncRNAs),

which are a subclass of functional ncRNAs without protein
encoding abilities and consist of over 200 nucleotides, have
been confirmed in a number of studies to be a vital player in
human diseases including cancer [4–7]. Aberrant expression
of lncRNAs exerts a suppressive or oncogenic role in nu-
merous cancers including lung cancer, breast cancer, gastric
cancer, and HCC [8–10]. Growing evidence reveals that
lncRNAs plays an extensive function in the occurrence and
progression of HCC. For example, HOTAIR, MEG3, and
Lnc-SchLAH were found to be involved in HCC prolifer-
ation, autophagy, and metastasis [11–13].

Small nucleolar RNA host gene 17 (SNHG17), as a 1186-
nt lncRNA and located on human chromosome 20, has been
reported as an oncogenic gene in colorectal cancer, gastric
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cancer, non-small-cell lung cancer, breast cancer, mela-
noma, and glioma through regulating cellular proliferation,
apoptosis, and metastasis [14–19]. However, the expression
pattern, biological function, and underlying molecular
mechanism of SNHG17 in HCC remain unclear.

Here, we uncovered SNHG17 was significantly upre-
gulated in HCC tissues and cell lines and was significantly
correlated with poor clinical characteristics and prognosis
of HCC patients. Moreover, SNHG17 promoted cell pro-
liferation and migration and inhibited apoptosis of HCC in
vitro by gain- and loss-of-function of SNHG17 study. By
RNA sequencing, 599 upregulated and 438 downregulated
genes caused by knockdown of SNHG17 in HCC were
found and were highly enriched in various pathways, such
as metabolic pathways, PI3K-Akt, cell adhesion, regulation
of cell proliferation, and positive regulation of the apo-
ptotic signaling pathway; among them, 92 were overlapped
with SNHG17-related genes in the TCGA-LIHC dataset.
Also, ERH, TDO2, TBCA, and PDK4 were further suc-
cessfully validated and found significantly dysregulated in
HCC tissues. Moreover, ERH and PDK4 also play an
important role in the prognosis of HCC. Overall, our data
showed the vital roles of SNHG17 in HCC progression,
indicating its potential value as a therapeutic target for
HCC.

2. Methods

2.1. TCGA and GEO Dataset Analyses. -e gene expression
profile and clinical characteristics for HCC patients were
downloaded from the TCGA database (https://www.cancer.
gov/about-nci/organization/ccg/research/structural-genomi
cs/tcga, TCGA-LIHC). -e dataset includes 374 tumors and
50 adjacent samples. -e GSE102079 dataset containing 152
tumorous and 91 adjacent liver tissues from HCC patients
was downloaded from GEO (https://www.ncbi.nlm.nih.gov/
geo). R software and its packages were used to process all
these data. -e Kaplan–Meier plot was determined online
for survival analysis to show the correlation between gene
expression and overall survival (OS) or disease-free survival
(DFS) of HCC patients (https://gepia.cancer-pku.cn/index.
html). Univariate and multivariate Cox regression analyses
were employed to explore the association between gene
expression and overall survival.

2.2. Tissue Samples and Ethics Statement. cDNA of 28 paired
HCC tissues and matched adjacent nontumorous tissues
were purchased from Outdo (Shanghai, China). Tumor
tissue was the experimental group, and adjacent tissues were
the control group. -e study was approved by the Ethical
Review Board for Research of TCM-Integrated Cancer
Center of Southern Medical University.

2.3. Cell Lines and Cell Culture. -e normal hepatic epi-
thelial cell line (LO2) and human HCC cell line (SMMC-
7721) were cultured in RPMI 1640 medium (Gibco, USA)
containing 10% fetal bovine serum (FBS, Gibco, USA), 100
units/ml penicillin and streptomycin at 37°C, and 5% CO2.

-e other HCC cell lines, including HuH-7, Hep3B, HepG2,
and PLC/PRF/5, were cultured in DMEM medium con-
taining FBS, penicillin, and streptomycin as mentioned
above. All cells were acquired from Zhong Qiao Xin Zhou
Biotechnology (Shanghai, China) and cultured in cell culture
dishes (Jet Bio-Filtration, Guangzhou, China).

2.4. RNA Interference and Plasmid Transfection. -e specific
siRNA of SNHG17 was designed and offered by RiboBio
(Guangzhou, China), and overexpressed SNHG17 was
produced with pcDNA3.1 vector (GENECHEM, Shanghai,
China). -e siRNA sequences were si-SNHG17-1: CGGA
TCCACTGTTCAATCT; si-SNHG17-2: GCCTGGAAT-
GACTTTAATA. Lipofectamine 3000 transfection reagent
(Invitrogen, USA) was used for transient transfection
according to the manufacturer’s instruction. siRNAs were
transfected into Hep3B and PLC/PRF/5, while
pcDNA3.1_SNHG17 plasmid was transfected into HuH-7
and SMMC-7721.

2.5. RNA Isolation and qRT-PCR. Total RNAs were extracted
from cells by using the total RNA isolation kit (Foregene,
Chengdu, China) and then reversely transcripted into cDNA
with the PrimeScript RT reagent kit (TaKaRa, Japan). qRT-
PCR analyses were carried out using SYBR Premix Ex Taq II
(TaKaRa, Japan) on LightCycler 480 II (Roche, USA), fol-
lowing the manufacturer’s instructions. Expressions of target
RNAs were normalized to β-actin with the 2−△△Ct method.
-e specific primers were listed as follows: SNHG17 :
5’-AGAGAATGGAGAGTGAGGCTACC-3’ (forward) and
5’-CCAGGCATGGACAGAGGGAT-3’ (reverse); ADAM9:
5’-TCACGCAGTTACTCGCTTCC-3’ (forward) and 5’-AG
GAAGCTACTAGGAGACACAA-3’ (reverse); ERH: 5’-AAG
AGAGTTTGGCGCGATGT-3’ (forward) and 5’-AAGTTC
TGCCTTCTGGCCTC-3’ (reverse); GLI1: 5’-GGCTAT
TCTGGATGAGCCCC-3’ (forward) and 5’-CATCTTGTG-
CATGGGACTGC-3’ (reverse); PDK4: 5’-CAGACAGGA
AACCCAAGCCA-3’ (forward) and 5’-GACGAGAAATTG
GCAAGCCG-3’ (reverse); SIRT4: 5’-ACTGTGGGGTGT-
GAAGTGTC-3’ (forward) and 5’-GGCCAGCCTAC-
GAAGTTTCT-3’ (reverse); TBCA: 5’-CAGGTTGGAAGCC
GCATATT-3’ (forward) and 5’-AGCGGTATAAAGGGCA
AGTGA-3’ (reverse); TDO2: 5’-GAGACGATGACAGCCTT
GGA-3’ (forward) and 5’-TGCAAACTCTGGAAGCCTGA-
3’ (reverse); and β-actin: 5’-TGGCACCCAGCACAATGAA-
3’ (forward) and 5’-CTAAGTCATAGTCCGCCTAGAAGC
A-3’(reverse).

2.6. Cell Proliferation Assay. Cell proliferation assay was
performed using the Cell Counting Kit 8 (Dojindo, Japan).
After transfection was accomplished, cells were harvested
and suspended into 96-well plates with 5000 cells per well.
Cell viability in different groups was monitored by mea-
suring the spectrophotometric absorbance of cells at 450 nm
wavelength every 24 hours according to the manufacturer’s
instructions.
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2.7. Cell Apoptosis Assay. -e FITC Annexin V Apoptosis
Detection Kit (BD Biosciences, USA) was employed to
perform cell apoptosis assay according to the manufacturer’s
instructions. 105 cells were plated into 6-well plates and
transfected with siRNAs or plasmid the following day. After
48 hours of transfection, FACS caliber flow cytometry (BD
Biosciences, USA) was used to assess apoptotic rate.-e sum
of early and late apoptotic cells was measured. Unstained-
isotype cell was used as negative control (Figure S1).

2.8. Cell Migration Assay. Transwell chamber inserts (BD
Biosciences, USA) were used to perform cell migration assay.
105 cells were seeded in the upper chambers with serum-free
medium while the lower chambers were in 500 μ l medium
with 10% FBS and the cells were incubated for 24 h. Cells
that migrated to the lower chamber were fixed and stained
with 0.1% crystal violet. All experiments were executed in
threefold.

2.9. RNA Sequencing. Total RNAs from Hep3B cells trans-
fected with si-NC or si-SNHG17-1 were isolated by TRIzol
reagent (TaKaRa, Japan), and the quality and quantity met
the following standards: OD260/280�1.8–2.2, OD260/
230≥ 2.0, RIN≥ 6.5, and 28S :18S≥ 1.0 and >10 μg. -en,
20 μl of high-quality RNAs from each sample was sent for
RNA sequencing on the Illumina HiSeq2000 platform. -e
clean reads were then aligned to the human genome (version
GRCh38) using the HISAT2 [20, 21]. STRING TIE [21] was
used to count genes. We employed the DESeq2 algorithm to
filter the differentially expressed genes after the significant
analysis and P value under the following criteria: (1) ≥2-fold
change and (2) P< 0.05. KOBAS 3.0 (https://kobas.cbi.pku.
edu.cn/index.php) and DAVID (version 6.8, https://david.
ncifcrf.gov/) online tools were performed for functional and
pathway enrichment, including Kyoto Encyclopedia of
Genes and Genomes [22] (KEGG) pathway and Gene
Ontology [23] (GO) enrichment analyses. All the RNA-seq
data have been uploaded in the GEO dataset (GSE152256).

2.10. Statistical Analysis. All data were analyzed with
GraphPad Prism 6 (GraphPad, USA). All results were dis-
played as means± SD. Student’s t-test with two-tailed or
two-way ANOVA was utilized to determine the differences
between groups.-e log-rank test was employed to compare
survival rates. A P value of <0.05 was considered to have
statistical significance.

3. Results

3.1. SNHG17 Expression Is Upregulated in HCC Tissues and
Cell Lines Compared with Controls. To address the function
of SNHG17 in HCC, we first examined the expression of
SNHG17 in HCC tissues and adjacent tissues from two
online-available datasets downloaded from TCGA-LIHC
and GEO (GSE102079). As elucidated in Figures 1(a) and
1(b), SNHG17 were significantly upregulated in HCC tissues
compared to adjacent tissues in both TCGA-LIHC

(P< 0.001) and GSE102079 datasets (P< 0.05). Moreover,
35 of 50 HCC tissues were with elevated SNHG17 expression
compared to paired adjacent tissues (Figure 1(c), P< 0.01,
n� 50). Moreover, by performing qRT-PCR, we found the
expression of SNHG17 in HCC tissues was consistently
upregulated compared to that in paired noncancerous tis-
sues (P< 0.05, Figure 1(d), n� 28). Furthermore, the level of
SNHG17 in HCC cell lines was higher than that in LO2
(Figure 1(e)).

3.2. SNHG17 Increases Cell Proliferation in HCC Cells.
For assessing the role of SNHG17 in HCC, SNHG17 was
silenced in PLC/PRF/5 and Hep3B and overexpressed in
SMMC-7721 and HuH-7. After transfection was accom-
plished for 48 h, qRT-PCR was used to reveal that the ex-
pression of SNHG17 was obviously decreased in both PLC/
PRF/5 and Hep3B cells and increased in SMMC-7721 and
HuH-7 cells (Figures 2(a) and 2(b), P< 0.001). As shown in
Figures 2(c)–2(f), knockdown of SNHG17 notably repressed
cell proliferation in PLC/PRF/5 and Hep3B cells (P< 0.05)
while overexpression of SNHG17 significantly promoted cell
proliferation of SMMC-7721 and HuH-7 cells (P< 0.001).
Overall, SNHG17 promotes the cell proliferation ability of
HCC cells.

3.3. SNHG17 Accelerates Cell Migration in HCC Cells.
-e role of SNHG17 in HCC metastasis was examined by
transwell assays. -e results showed that SNHG17 knock-
down inhibited cell migration of PLC/PRF/5 and
Hep3B cells (Figures 3(a) and 3(b), P< 0.001). Meanwhile, as
presented in Figures 3(c) and 3(d), overexpression of
SNHG17 significantly facilitated SMMC-7721 and HuH-7
cell migration (P< 0.01). Moreover, overexpression of
SNHG17 significantly promoted the invasion ability of Huh-
7 HCC cells (Figure S2). -ese results suggest that SNHG17
accelerates cell migration of HCC cells.

3.4. SNHG17 Inhibits Apoptosis in HCC Cells. For deter-
mining the effect of SNHG17 on HCC apoptosis, flow
cytometric analysis was utilized. After transfection for 48 h,
the FACS analyses were executed, and as presented in
Figures 4(a) and 4(b), knockdown of SNHG17 obviously
induced apoptosis of Hep3B cells transfected with si-
SNHG17 (P< 0.001). Furthermore, overexpression of
SNHG17 inhibited the apoptosis in SMMC-7721 cells
(Figures 4(c) and 4(d), P< 0.001). -ese results demon-
strated that SNHG17 may inhibit apoptosis of HCC cells.

3.5. RNA Sequencing and Bioinformatics Analysis Explore the
Downstream Genes Regulated by SNHG17 in HCC. To ex-
amine the molecular mechanism underlying the function of
SNHG17 in HCC, we performed RNA sequencing of gene
expression profiles of Hep3B cells transfected with si-NC or si-
SNHG17-1. 599 genes were upregulated while 438 genes were
downregulated after SNHG17 silenced by si-SNHG17 in HCC
(≥2-fold change, P< 0.05, Figure 5(a) and Table S1). Fur-
thermore, to further interpret the function of these genes in
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Figure 1: SNHG17 expression was upregulated in HCC tissues and cell lines. (a) SNHG17 was upregulated in HCC tissues (n� 374)
compared with adjacent tissues (n� 50) in the TCGA-LIHC dataset. (b) SNHG17 was upregulated in HCC tissues (n� 152) compared with
adjacent tissues (n� 91) in the GSE102079 dataset. (c) SNHG17 was upregulated in HCC tissues compared with corresponding non-
tumorous tissues in the TCGA-LIHC dataset (n� 50). (d) SNHG17 was upregulated in HCC tissues compared with corresponding
nontumorous tissues (n� 28), which was examined by qRT-PCR. (e) Expression levels of SNHG17 were examined in HCC cell lines and
normal hepatic epithelium cell line (LO2). ∗P< 0.05, ∗∗P< 0.01, and ∗∗∗P< 0.001.
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HCC, KEGG and GO annotations were performed. As shown
in Figure S3 and Table S2, enriched pathways in KEGG in-
cluded metabolic pathways, the PI3K-Akt signaling pathway,
herpes simplex virus 1 infection, and cell adhesion molecules

(CAMs). Regarding GO, these differentially expressed genes
were predominantly enriched in cell adhesion, regulation of
cell proliferation, and positive regulation of the apoptotic
signaling pathway (Figure S4 and Table S3).
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Figure 3: SNHG17 promoted cell migration of HCC. (a) -e representative images of transwell assay in PLC/PRF/5 and Hep3B cells
(magnification: 100X). (b) Quantitative data of transwell results in PLC/PRF/5 and Hep3B cells. (c) -e representative images of transwell
assay in SMMC-7721 and HuH-7 cells. Scale bar represents 200 pixels. (d) Quantitative data of transwell results in SMMC-7721 and HuH-7
cells. ∗∗P< 0.01 and ∗∗∗P< 0.001.
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Figure 2: SNHG17 promoted cell proliferation of HCC. (a-b) SNHG17 expression level was determined by qRT-PCR in HCC cells as
indicated. (c-d) CCK8 assays were employed to detected the effect of SNHG17 on the cell viability of PLC/PRF/5 and Hep3B cells. (e-f )
CCK8 assays were employed to detect the effect of SNHG17 on the cell viability of SMMC-7721 and HuH-7 cells. ∗P< 0.05 and ∗∗∗P< 0.001.
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Moreover, Pearson correlation analysis was used to find
SNHG17-related genes in HCC tissues in the TCGA-LIHC
dataset. A total of 9535 SNHG17-related genes with rela-
tionship index over 0.2 were found in HCC tissues, and
interestingly, among these genes, 92 were overlapped with
1037 differentially expressed genes in Table S1 (Figure 5(b)
and Table S4). Seven genes identified above were then se-
lectively validated using qRT-PCR. As shown in Figure 5(c),
ERH and TBCA were downregulated after knockdown of
SNHG17 in both PLC/PRF/5 and Hep3B cells (P< 0.05)
while TDO2 and PDK4 were upregulated (P< 0.05). Sub-
sequently, ERH and TBCAwere upregulated in SMMC-7721
andHuH-7 with overexpression of SNHG17 (P< 0.05) while

TDO2 and PDK4 were downregulated (Figure 5(d),
P< 0.05). Moreover, the expression levels of ERH and TBCA
were significantly upregulated in HCC tissues (Figure S5)
while TDO2 and PDK4 were significantly downregulated in
HCC tissues in both TCGA-LIHC and GEO datasets
(Figure S6).

3.6. SNHG17 Predicts a Poor Prognosis of HCC.
Subsequently, to understand the clinical significance of
SNHG17 in HCC, the association between SNHG17 ex-
pression and patients’ prognosis and clinicopathological
characteristics was evaluated. Results of this evaluation
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Figure 5: RNA sequencing and bioinformatics analysis explore the downstream genes regulated by SNHG17 in HCC. (a) Mean-centered,
hierarchical clustering of 1037 genes altered (≥2-fold change, P< 0.05) after knockdown of SNHG17 in Hep3B cells, with three repeats. (b)
-e (A) Venn diagrams represent the overlap of downregulated genes in RNA-seq data and SNHG17-positive-related genes in TCGA-
LIHC. -e (B) Venn diagrams represent the overlap of upregulated genes in RNA-seq data and SNHG17-negative-related genes in TCGA-
LIHC. (c) qRT-PCR was performed to detect the expression of indicated genes in (A) PLC/PRF/5 and (B) Hep3B cells. (d) qRT-PCR was
performed to detect the expression of indicated genes in (A) SMMC-7721 and (B) HuH-7 cells. ∗P< 0.05, ∗∗P< 0.01, ∗∗∗P< 0.001, and NS,
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showed that higher SNHG17 expression was obviously
correlated with larger tumor size, poor differentiation, the
presence of vascular invasion, and advanced TNM stage
(Figures 6(a)–6(d)). Furthermore, Kaplan–Meier survival
analysis revealed that patients in the SNHG17-high group
displayed a remarkably shorter OS (P< 0.01, Figure 6(e))
and DFS (P< 0.05, Figure 6(f )). Moreover, the expression of
SNHG17 was significantly associated with overall survival in
HCC as indicated by univariate (HR� 1.257, 95%
CI� 1.046–1.511, P � 0.015) and multivariate (HR� 1.229,
95% CI� 1.025–1.474, P � 0.026) Cox regression analyses
(Figure S7). Broadly, these findings suggested that SNHG17

was an independent prognosis predictor of HCC patients.
Interestingly, as shown Figures 6(g)–6(j), HCC patients in
the ERH-lower group had significantly longer OS (P< 0.001)
and DFS (P � 0.06) while patients in the PDK4-lower group
had shorter OS (P � 0.08) and significantly shorter DFS
(P< 0.05), which was also validated by univariate and
multivariate Cox regression analyses (Figures S8 and S9).

4. Discussion

Accumulating evidence showed the great significance of
lncRNAs in tumorigenesis and progression of HCC, such as
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Figure 6: SNHG17 was correlated with poor prognosis of HCC. (a–d) Elevated SNHG17 expression was correlated with larger tumor size,
poor differentiation, the presence of vascular invasion, and advanced TNM stage in HCC patients. (e-f ) Kaplan–Meier curves for SNHG17
in HCC. (g-h) Kaplan–Meier curves for ERH in HCC. (i-j) Kaplan–Meier curves for PDK4 in HCC. ∗P< 0.05 and ∗∗P< 0.01.
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HOTAIR, MEG3, Lnc-SchLAH [11–13]. Apart from the
well-characterized lncRNAs, the biological functions and
potential mechanisms of most lncRNAs in HCC remain
unclear [24, 25]. In this study, we discovered LncRNA
SNHG17 was significant upregulated in HCC.

Previous studies have discovered SNHG17 plays an
important role in the development of cancer, such as co-
lorectal cancer, non-small-cell lung cancer, gastric cancer,
breast cancer, melanoma, and glioma [8–10]. However, the
role and molecular mechanisms of SNHG17 in HCC car-
cinogenesis remain unclear. Our present study showed that
SNHG17 was significantly upregulated in both public da-
tabases and collected HCC tissues and HCC cell lines.
Furthermore, elevated SNHG17 expression was noticeably
associated with larger tumor size, poor differentiation, the
presence of vascular invasion, advanced TNM stage, and
poor prognosis, indicating SNHG17 may be an oncogene
which predicts a poor prognosis of HCC patients. Gain- and
loss-of-function experiments proved that SNHG17 pro-
motes cell proliferation andmigration and inhibits apoptosis
of HCC, which confirmed the function of SNHG17 in HCC.
However, as lack of predictors and prognostic indicators for
HCC patients treated with immune checkpoint inhibitors
(ICIs) or tyrosine kinase inhibitors (TKIs), HCC patients
with ICIs or TKIs treatment history should be included for
treatment response prediction regarding SNHG17 expres-
sion in future study, which would help clinicians for the
choice of therapeutic method and daily management [26].
Since the BRAF pathway played a marked role in hepato-
cellular carcinoma, future studies may be needed to explore
the relationship between the SNHG17 and BRAF pathway
[27].

To explore the specific mechanism of SNHG17 in HCC,
RNA sequencing was performed, and 1037 differentially
expressed genes were found caused by knockdown SNHG17;
among them, 92 were overlapped with SNHG17-related
genes in the TCGA-LIHC dataset. According to KEGG and
GO annotation, SNHG17 might influence the occurrence
and progression of HCC by modulating several pathways,
including metabolic pathways, the PI3K-Akt signaling
pathway, cell adhesion, proliferation, and the apoptotic
signaling pathway. Furthermore, ERH, TBCA, TDO2, and
PDK4 genes were successfully validated.

Interestingly, ERH and TBCA, as the positive SNHG17-
related gene, were also upregulated in HCC, and ERH also
predicts a poor prognosis for HCC patients. ERH is critically
required for genomic stability and cancer cell survival by
regulating cell cycle through its mRNA splicing activity [28].
Weng et al. reported that ERH was upregulated in HCC and
played a role as a regulator of DNA damage response genes
[29], which is consistent with our results. TBCA has been
found to regulate progression, invasion, and metastasis of
clear cell renal cell carcinoma [30]. Subsequently, TDO2 and
PDK4, as the negative SNHG17-related gene, were down-
regulated in HCC; moreover, PDK4 also predicts a relative
better prognosis for HCC patients. Moreover, Strowitzki
et al. reported that high hepatic expression of PDK4 im-
proves the survival of multimodal treatment of colorectal
liver metastasis [31], while Bai et al. found TDO2 was

downregulated in liver cancer [32]. However, the role and
underlying mechanism of TBCA, PDK4, and TDO2 in HCC
have not yet been illustrated and deserve further study.

RNA sequencing and bioinformatics analysis of a public
dataset could partially elucidate the mechanism by which
SNHG17 regulates proliferation, migration, and apoptosis of
HCC and provide a novel method for measuring the po-
tential mechanism. However, further studies such as RNA
pull down, mass spectrometry, rescue experiments, and
western blot are needed to explore the downstream mech-
anism of SNHG17. Nevertheless, results may be different
between experiments in vivo and in vitro, due to some causes
such as the tumor microenvironment, and animal study is
needed to further explore the role of SNHG17 in vivo.

5. Conclusions

Our studies confirmed that SNHG17, which is upregulated
in HCC, promotes cell proliferation and migration and
inhibits apoptosis and predicts a poor prognosis of HCC. By
employing RNA sequencing, we preliminary explore the
genes and pathways regulated by SNHG17 in HCC. Hence,
our findings illustrate that SNHG17 acts as a noncoding
oncogene in HCC progression and explores its potential
target genes in HCC.
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