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Iron is vital for many physiological functions, including energy production, and dysregulated iron homeostasis underlies a number
of pathologies. Ferroptosis is a recently recognized form of regulated cell death that is characterized by iron dependency and lipid
peroxidation, and this process has been reported to be involved in multiple diseases. The mechanisms underlying ferroptosis are
complex, and involve both well-described pathways (including the iron-induced Fenton reaction, impaired antioxidant capacity,
and mitochondrial dysfunction) and novel interactions linked to cellular energy production. In this review, we examine the
contribution of iron to diverse metabolic activities and their relationship to ferroptosis. There is an emphasis on the role of iron in
driving energy production and its link to ferroptosis under both physiological and pathological conditions. In conclusion, excess
reactive oxygen species production driven by disordered iron metabolism, which induces Fenton reaction and/or impairs
mitochondrial function and energy metabolism, is a key inducer of ferroptosis.
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FACTS

● Point 1. Iron plays a key role in inducing ferroptosis.
● Point 2. An imbalance in energy metabolism is closely

associated with ferroptosis.
● Point 3. Iron is involved in the metabolism of glucose, lipids,

and amino acids, and is thus associated with energy
metabolism.

● Point 4. Disordered iron homeostasis, deregulated energy
production, and ferroptosis are implicated in a variety of
diseases and pathological conditions.

OPEN QUESTIONS

● How much iron is required to trigger ferroptosis? Where is the
threshold? Does iron overload increase the sensitivity of
ferroptosis?

● Does copper possess the potential to function as an iron
substitute in inducing ferroptosis?

● How does lipid peroxidation lead to cell death?
● How do dysregulated glucose, lipid, and protein metabolism

processes contribute to ferroptosis?
● What role does mitochondria play in ferroptosis induction?

● One form of regulated cell death would dominate other forms
at a specific disease stage. How is this mediated?

INTRODUCTION
Iron is necessary for almost all forms of life, ranging from bacteria
to humans. It contributes to a number of essential biological
processes, including DNA replication, the tricarboxylic acid cycle
(TCA), and electron transport in mitochondria [1]. However, iron
can also catalyze reactions that lead to the production of toxic
reactive oxygen species (ROS) (e.g., the Fenton reaction) [2, 3].
Therefore, iron homeostasis is tightly controlled at both the
cellular and systemic levels by a complex network of regulatory
signaling pathways, and disturbances in iron homeostasis are
linked to a range of pathologies. Iron deficiency can limit iron
availability for heme synthesis and other biochemical pathways in
multiple tissues, ultimately leading to anemia, reduced work
capacity, and developmental retardation. Excess iron is also
detrimental to the body, and is associated with an increased risk
of cancer, neurodegenerative diseases, and diabetes [4].
Although the aspects of iron-mediated cell death were

established many years ago, it has only been during the last
10–20 years that ferroptosis, a specific, iron-dependent form of
regulated cell death (RCD), has been recognized as a discrete
entity [5]. Unlike apoptosis, necroptosis, and pyroptosis,

Received: 4 September 2021 Revised: 6 December 2021 Accepted: 20 December 2021

1Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China. 2Iron
Metabolism Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia. 3School for Radiological and Interdisciplinary Science, Soochow
University, Suzhou, Jiangsu 215123, China. 4Department of Endocrinology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong 250031, China.
5Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China. 6State Key
Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. 7These authors
contributed equally: Shuping Zhang, Wei Xin. ✉email: jjzhao@sdu.edu.cn; sjliu@rcees.ac.cn
Edited by Professor Boris Zhivotovsky

www.nature.com/cddis

Official journal of CDDpress

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41419-021-04490-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41419-021-04490-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41419-021-04490-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41419-021-04490-1&domain=pdf
http://orcid.org/0000-0002-8814-5866
http://orcid.org/0000-0002-8814-5866
http://orcid.org/0000-0002-8814-5866
http://orcid.org/0000-0002-8814-5866
http://orcid.org/0000-0002-8814-5866
http://orcid.org/0000-0001-6471-7658
http://orcid.org/0000-0001-6471-7658
http://orcid.org/0000-0001-6471-7658
http://orcid.org/0000-0001-6471-7658
http://orcid.org/0000-0001-6471-7658
http://orcid.org/0000-0003-3267-9292
http://orcid.org/0000-0003-3267-9292
http://orcid.org/0000-0003-3267-9292
http://orcid.org/0000-0003-3267-9292
http://orcid.org/0000-0003-3267-9292
http://orcid.org/0000-0002-5643-0734
http://orcid.org/0000-0002-5643-0734
http://orcid.org/0000-0002-5643-0734
http://orcid.org/0000-0002-5643-0734
http://orcid.org/0000-0002-5643-0734
https://doi.org/10.1038/s41419-021-04490-1
mailto:jjzhao@sdu.edu.cn
mailto:sjliu@rcees.ac.cn
www.nature.com/cddis


ferroptosis is characterized by two major features, lipid peroxida-
tion and iron dependency [3, 6]. When ferroptosis is induced by
exogenous or internal stimuli, polyunsaturated fatty acids (PUFAs)
are oxidized by intracellular ROS that arise from iron-dependent
Fenton reactions. The resulting lipid peroxides trigger cell death
[6]. Although numerous studies have examined the mechanisms
of ferroptosis over the last decade, many aspects of this process
remain unresolved. Important questions include: How much iron is
required to trigger ferroptosis? How does lipid peroxidation lead
to cell death? What role do intracellular organelles, particularly
mitochondria, play in ferroptosis induction? Consequently, it is of
interest to elucidate the role of iron in driving energy production
and instigating ferroptosis. It is of great significance to investigate
the involvement of disordered iron homeostasis in the imbalanced
metabolism of glucose, lipids, and amino acids, as this leads to
impaired energy production and ferroptosis. Importantly, the role
of ferroptosis in normal physiological processes needs to be
established, and its contribution to various pathological conditions
(e.g., metabolic disorders) warrants to be investigated.
The current review describes the interrelationships between

ferroptosis and energy metabolism with an emphasis on the
intermediate role of iron, and the role of these processes under
normal and diseased conditions.

IRON HOMEOSTASIS AND IRON DEPENDENCE IN
MODULATING ENERGY HOMEOSTASIS
Iron and its regulation
In the form of ferrous iron (Fe2+), heme, or iron sulfur clusters
(ISCs), iron acts in the catalytic centers of a number of important
enzymes, such as ribonucleotide reductase and DNA helicase
during DNA replication, nitric oxide synthases in governing
second messenger transduction, cytochrome oxidases in electron
transport, and the TCA for oxidative phosphorylation (OXPHOS)

and energy production. ISCs are integral components of the
electron transport chain (ETC), and function as electron-transfer
groups in the one-electron redox processes required for
adenosine triphosphate (ATP) synthesis in mitochondria [1].
ISC-dependent electron transfer is also a prominent source of
endogenous ROS production within the mitochondria (Fig. 1A).
Under normal conditions, ROS are crucial for orchestrating cell
physiology and signal transduction; however, overproduction of
ROS results in oxidative stress and its consequent adverse effects
on cells [2, 3].
Given the importance of iron in the context of fundamental

physiology, the levels of iron both within cells and in the body as a
whole are stringently regulated, and the processes of iron
absorption, transfer, storage, and retrieval by multiple mechan-
isms are finely balanced (Fig. 1A). In mammals, iron is absorbed
through the enterocytes of the duodenal mucosa in the
gastrointestinal tract by divalent metal transporter 1 (DMT1),
which provides the primary pathway for the entry of dietary iron
into enterocytes [7, 8]. After being transferred from the
enterocytes into bloodstream via ferroportin (FPN) [9], iron binds
to transferrin (Tf) which delivers it to cells throughout the body.
These cells take up iron-laden Tf via transferrin receptor 1 (TfR1).
After internalization of the Tf-TfR1 complex into endosome, iron is
released from Tf, and transferred to the cytosol by DMT1 to join
the labile iron pool (LIP). Endosomal iron can be directly delivered
to the mitochondria via the interaction between DMT1 and
mitoferrin. Excess iron from LIP is stored in ferritin, which can be
delivered to and degraded in lysosomes, and this, in turn,
replenishes LIP. Furthermore, iron from LIP can be transferred in
mitochondria by DMT1, mitoferrin, and siderofexin (SFXN1). Iron
efflux is mediated by FPN (Fig. 1B) [10].
Certain cells such as immature erythroid cells in the bone

exhibit particularly high iron requirements, while other cells,
particularly hepatocytes and splenic macrophages, play a major

Fig. 1 Systemic iron metabolism and iron-mediated physiological functions. A Systemic iron metabolism is regulated by the hepcidin-FPN
axis. After the uptake of dietary iron in the gut, iron binds to circulating Tf and is transferred to organs throughout the body, particularly to the
bone marrow for hemoglobin synthesis and RBC production. Liver-secreted hepcidin serves as a master regulator of systemic iron
homeostasis through inducing degradation of FPN, a protein that is ubiquitously expressed and is currently the only known mammalian iron
exporter. Kupffer cells in the liver and macrophages in the spleen phagocytize the damaged or aged red blood cells and recycle their iron.
Iron is taken up by cells via the Tf/TfR1 pathway and used for multiple functions including heme and ISC synthesis in mitochondria, and DNA
replication. ISCs are important for mitochondrial functions and DNA replication. However, excess iron can also generate ROS. B Iron uptake,
redistribution, and export at the cellular level. Endocytosis of Tf-TfR1 complex releases iron to the cytosol LIP by DMT1 or directly to
mitochondria via DMT1 and mitoferrin. Iron from LIP can be transported to mitochondria by DMT1, mitoferrin, and SFXN1, exported by FPN,
or stored in ferritin. After degradation of ferritin in the lysosomes, iron is released to replenish LIP.

S. Zhang et al.

2

Cell Death and Disease           (2022) 13:40 



role in iron storage [11]. Systemic iron metabolism is finely
regulated through multiple mechanisms, including transcriptional,
translational, post-translational (e.g., ubiquitin-proteasome-
mediated protein degradation), and hormonal mechanisms [12].
Hepcidin-mediated FPN internalization and degradation (the
hepcidin-FPN axis) is the most important regulatory mechanism
for systemic iron metabolism and regulates both dietary iron
intake and iron recycling from senescent red blood cells by
macrophages (Fig. 1A) [12]. Quantitatively, the latter is significantly
more important [12].
To this end, iron is vital for a wide range of physiological

functions and processes, including DNA replication, the TCA cycle,
ETC-driven ATP production, and signal transduction. In view of
this, systemic and cellular iron homeostasis is finely tuned to avoid
iron overload or iron deficiency through multiple regulatory
mechanisms.

Involvement of iron in the metabolism of glucose, lipid, and
amino acids
Both iron deficiency and iron overload have been associated with
dysregulated glucose metabolism (Table 1). Animals with iron
deficiency exhibit hyperinsulinemia, hyperglycemia, and hyperli-
pidemia, ultimately leading to their preferential fuel usage being
changed from fat to glucose [13]. Additionally, cardiomyocytes
and muscle cells that are treated with iron chelators markedly
increase their glucose uptake and transport, and this is associated
with an increased expression of GLUT1 [14]. Conversely, iron
overload decreases insulin sensitivity and induces insulin resis-
tance, which is associated with reduced glucose uptake, and this
occurs either by promoting ROS production or impairing
autophagy [15]. However, an in vivo study demonstrated that
mice fed a high-iron diet exhibited enhanced glucose uptake and
elevated AMP-activated protein kinase (AMPK) activity in skeletal
muscle and the liver [16]. These reports suggest that glucose is the
preferred metabolic fuel when iron homeostasis is disturbed.
Hepatic production of glucose-6-phosphatase (G6Pase), an
enzyme that catalyzes the last step in gluconeogenesis, is known
to be inhibited by both insulin and AMPK [17]. AMPK can be
activated by iron overload, thus supporting the view that iron acts
as a suppressor of gluconeogenesis. Furthermore, the transcrip-
tion of gluconeogenic genes, including G6Pase, can be down-
regulated by heme or heme-derived iron [18].
Carnitine palmitoyl transferase 1 (CPT-1) is the rate-limiting

enzyme in fatty acid oxidation and conjugates fatty acids with
carnitine [19]. In the fetal liver, iron deficiency markedly decreases
the abundance of CPT-1 mRNA, thus suggesting that fatty acid
oxidation is impaired [20]. Peroxisome proliferator-activated
receptors are key transcription factors that regulate the expression
of enzymes involved in fatty acid oxidation. Hepatic expression of
peroxisome proliferator-activated receptor α is dramatically
inhibited by iron overload. More importantly, hydroxyl radicals
(produced through iron-driven Fenton/Haber−Weiss reactions)
and nitrate anions (catalyzed by peroxynitrate) participate in the
oxidation of multiple unsaturated fatty acids [21]. Iron deficiency
and iron chelation promote fatty acid synthesis and cytosolic lipid
droplet accumulation, which is accompanied by a rapid increase in
intracellular citrate concentrations [22], leading to non-autophagic

and non-apoptotic cell death in human breast cancer cells [23].
Both in vitro and in vivo studies have demonstrated that hepatic
lipogenesis is enhanced by iron deficiency [24]. Iron is a critical
component of cytochrome, Δ-6 desaturase and stearyl CoA
desaturase, and desaturase activity in the liver of rats fed with
low-iron diets was significantly decreased [25]. As a result, hepatic
phospholipids in iron-depleted rats possessed lower proportions
of palmitoleic and oleic acids and a higher proportion of stearic
acid [26], thus indicating impaired desaturation of saturated and
essential fatty acids.
An important amino acid, 4-hydroxyproline, in collagen is

synthesized from proline by the iron-containing dioxygenase
prolyl-4-hydroxylase [27]. Cysteine dioxygenase, another iron-
containing enzyme, is vital for cysteine catabolism [28]. BOLA3, a
ISC biogenesis protein, is required for glycine cleavage, and BOLA3
deficiency leads to increased glycine accumulation and promotes
endothelial proliferation [29]. Furthermore, the iron-driven Fenton
reaction catalyzes the oxidative deamination-decarboxylation of
all amino acids, with [Fe(III)(salen)]Cl serving as an active and
selective catalyst for the oxidation of amino acids [30]. Impor-
tantly, NH4, α-ketoacids, CO2, aldehydes, and carboxylic acids are
generated by the oxidation of amino acids via the Fenton reaction
[31]. The oxidation of amino acids is also promoted by iron
chelators [31]. Although our knowledge of the involvement of iron
in amino acid metabolism is relatively limited, it is clearly an area
that warrants further investigation (Table 1).

The convergence of metabolic activities and their association
with iron
Energy production from glucose catabolism is conducted by two
major metabolic programs, anaerobic glycolysis in the cytoplasm
and aerobic OXPHOS in mitochondria. Glycolysis links the
metabolism of glucose, lipids, and amino acids. Glucose is converted
into pyruvate by enzyme-catalyzed reactions in the cytoplasm, and
it then enters the mitochondria and is decarboxylated to form acetyl
CoA. Under aerobic conditions, acetyl-CoA enters the TCA cycle and
is oxidized to water and carbon dioxide, ultimately producing a
large amount of ATP through OXPHOS (Fig. 2).
Iron is essential for metabolic activity in all living organisms due

to its catalytic role. In the TCA cycle, ISCs are crucial cofactors for
three enzymes, aconitase, succinate dehydrogenase (SDH), and
fumarase (Fig. 2) [32]. Intriguingly, there is also a cytosolic form of
aconitase, and when it loses its ISC, it becomes iron regulatory
protein 1 that acts as an important regulator of cellular iron uptake
and storage [33]. Given the importance of iron for these various
enzymes, modulating iron levels has the potential to alter the
expression of enzymes involved in glycolysis and the TCA cycle,
including citrate synthase, aconitase, isocitrate dehydrogenase,
and SDH and also their intermediates [34]. ISCs are also essential
for OXPHOS efficiency as a key component in several complexes in
the respiratory chain, including complex I (NADH-dehydrogenase),
complex II (SDH), and complex III (ubiquinol: cytochrome
c-oxidoreductase) [32]. Impaired ISC biogenesis and assembly
lead to deficiencies in multiple respiratory chain complexes [35].
Excess iron alters the mitochondrial oxidative enzymatic

machinery, and iron-guided metabolic remodeling is gaining
increasing attention. For example, iron supplementation results in

Table 1. Involvement of iron in the metabolism of glucose, lipid, and amino acids.

Metabolism Altered processes Refs

Glucose Iron deficiency induces preferential usage of glucose, and increases glucose uptake and transport. Iron
overload induces insulin resistance and suppresses gluconeogenesis.

[13, 14, 17, 18, 147]

Lipid Iron deficiency impairs fatty acid oxidation and desaturation of fatty acids, but promotes lipogenesis. Iron
overload also inhibits fatty acid oxidation.

[20–22, 24, 26, 148]

Amino acids Iron is required for 4-hydroxyproline synthesis, cysteine catabolism, and glycine cleavage. Ironically, both
iron-driven Fenton reaction and iron chelation promote amino acid oxidation.

[27–31]
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pyruvate accumulation and a decrease in lactate levels in
conjunction with changes in the concentrations of several other
metabolites [34]. Iron overload reduces glucose oxidation in
murine cardiac muscle, and this is accompanied by decreased
activity of mitochondrial complexes I-IV and low ATP production
[36]. In contrast, iron deprivation enhances glycolysis and
abolishes OXPHOS in human macrophages, along with associated
inhibition of the TCA cycle [22]. Metabolic reprogramming has also
been observed in human fibroblasts and cardiac myocytes when
iron status is perturbed [37].

FERROPTOSIS AND ITS DEPENDENCE ON IRON
Discovery and regulatory network of ferroptosis
In 2003, a novel synthetic compound, erastin was found to initiate
a new form of non-apoptotic cell death in RAS-overexpressing
cancer cells [38]. Subsequently, erastin was observed to directly
bind to mitochondrial voltage-dependent anion channels, leading
to oxidative stress and cell death via a non-apoptotic mechanism
in cancer cells with oncogenic RAS [39]. Furthermore, Ras-selective
lethal small molecule 3 (RSL3) was revealed to induce this type of
cell death with the implication of labile iron [40]. In 2012, this new
form of RCD was formally named ferroptosis by Dixon et al. [5].
Ferroptosis is characterized by iron-dependent ROS accumulation,
glutathione (GSH) depletion, glutathione peroxidase 4 (GPX4)
suppression, and ultimately lipid peroxidation [3, 6]. The
morphological features of ferroptosis include intact nuclei and
aberrant mitochondria with a decrease in the number of
mitochondrial cristae, and the occurrence of inner membrane
condensation, outer membrane rupture, and mitochondrial
shrinkage [41].

Ferroptosis can be induced or inhibited through several
metabolic pathways (Fig. 3). After Tf-TfR1-mediated import and
STEAP3-mediated conversion of Fe3+ to Fe2+, free Fe2+ can
catalyze the production of ROS through the Fenton reaction,
followed by lipid peroxidation and the induction of ferroptosis [2].
Degradation of ferritin (the major cellular iron storage protein), a
process termed ferritinophagy, also provides free Fe2+, which
contributes to ferroptosis [42]. Furthermore, increased cytoplasmic
Fe2+ via ferritinophagy was observed to activate SFXN1 expres-
sion on mitochondrial membrane. SFXN1, in turn, transported
Fe2+ from cytoplasm into the mitochondria, leading to mitochon-
drial ROS induction and ferroptosis in sepsis-induced cardiac
injury [43]. Apelin-13 can activate the expression of SFXN1 and
nuclear receptor coactivator 4 (NCOA4), thus leading to ferroptosis
via ferritinophagy and transport of cytoplasmic Fe2+ into
mitochondria [44]. DMT1 is also expressed in the outer
mitochondrial membrane and induces mitochondrial uptake of
iron and manganese [45], thus indicating its potential role in iron
influx and ferroptosis.
The antioxidant activity of GPX4 is key to inhibiting lipid

peroxidation and preventing ferroptosis by restoring cellular redox
homeostasis [46]. Cystine-derived GSH is necessary for the
maintenance of GPX activity. While GSH can be produced from
cysteine and glutamate, extracellular cystine is imported by the
amino acid antiporter system x�c , that consists two components,
solute carrier family 7 member 11 (SLC7A11) and solute carrier
family 3 member 2 (SLC3A2). System x�c exchanges cystine with
intracellular glutamate [47]. Glutamate itself can be replenished by
glutamine import via solute carrier family 1 member 5 (SLC1A5)
[48]. Isopentenyl pyrophosphate (IPP)-derived Sec is also neces-
sary for the catalytic activity of GPX4. IPP can be produced from

Fig. 2 Roles of iron in the metabolism of glucose, lipids, and amino acids and, in energy production. Iron deficiency can increase
intracellular glucose levels by promoting glucose uptake and gluconeogenesis. Lipid metabolism is also altered in response to iron deficiency
through increased lipogenesis and lipid droplet formation, and the inhibition of fatty acid desaturation. The metabolism of glucose, lipids, and
amino acids converges in mitochondria at the point of acetyl-CoA, which enters the TCA cycle for energy production. Iron levels can also
modulate the synthesis of several key enzymes in the TCA cycle, including aconitase, SDH, and fumarase, and complexes I, II, III, and IV in
the ETC.
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acetyl-CoA via the mevalonate pathway and function as the donor
of Sec in the incorporation of GPX4 [49]. Erastin and its derivatives
induce ferroptosis by inhibiting cystine import by the system x�c
[50]. RSL3 directly inhibits GPX4 [41]. Furthermore, IPP-derived
CoQ can be converted into ubiquinol (CoQH2) by ferroptosis
suppressor protein 1 (FSP1) to inhibit lipid peroxidation and
ferroptosis [51], and FSP1 can act in parallel to the GPX4 pathway
to inhibit ferroptosis in cancer cells [52]. Interestingly, conversion
of CoQ to ubiquinol by dihydroorotate dehydrogenase (DHODH)
in mitochondria was recently reported to suppress mitochondrial
lipid peroxidation and ferroptosis [53]. More importantly, DHODH
operates in parallel with mitochondrial GPX4 to inhibit ferroptosis,
and this is independent of cytosolic FSP1 and GPX4 [53]. PUFA and
arachidonic acid (AA) can be converted into PE-AA by lysopho-
sphatidylcholine acyltransferase (LPCAT) and acyl-CoA synthetase
long-chain family member 4 (ACSL4). PE-AA is then oxidized by
lipoxygenases (LOXs), leading to ROS production and lipid
peroxidation [54].
Ceruloplasmin and hephaestin are two multicopper ferroxidases

that play important roles in iron export. Knockout of ceruloplasmin
and hephaestin was demonstrated to induce iron deposition in
mouse astrocytes and oligodendrocytes, respectively [55, 56].
Furthermore, a copper chelator, cuprizone, was revealed to induce
rapid ferroptosis-mediated loss of oligodendrocytes by mobilizing
iron from ferritin [57].

The physiological roles of ferroptosis
Little is known regarding the physiological functions of ferroptosis.
GPX4 deficiency, which predisposes cells to ferroptosis, was
determined to be embryonically lethal in mice [58], and GPX4
deficiency resulted in impaired antiviral defenses [59],

neurodegeneration [60], and enhanced ischemia/reperfusion
injury [61]. GPX4 ablation in the hematopoietic system resulted
in anemia as a result of failed maturation of reticulocytes into red
blood cells [62]. These reticulocytes accumulated large autopha-
gosomes that engulfed the mitochondria [62], thus suggesting an
indispensable role for GPX4 in erythropoiesis. Ferroptosis has also
been demonstrated to be activated to combat the infection of
mice with Plasmodium falciparum [63] and rice with the fungus
Magnaporthe oryzae [64]. Additionally, ferroptosis has been
revealed to play a critical role in the defense against tumorigen-
esis. P53 and BAP1, two important tumor suppressors, predispose
nascent tumor cells to ferroptosis by downregulating SLC7A11
expression [65]. Cells carrying a p53 mutation that was defective in
apoptosis induction were revealed to be capable of suppressing
tumorigenesis by potentiating ferroptosis [65]. Additionally,
ferroptosis was determined to be involved in tumor suppression
by CD8+ cytotoxic T lymphocytes, as demonstrated by ferroptotic
cell death in mouse melanomas [66].
However, little is known regarding the physiological roles of

ferroptosis during ageing. In the roundworm Caenorhabditis
elegans (C. elegans), glutathione depletion is inversely correlated
with the aging-related accumulation of ferrous iron, thus leading
to the priming of ferroptosis [67]. Inhibition of ferroptosis can
reduce age-related cell death, thus increasing the lifespan of C.
elegans. The contribution of ferroptosis at specific life phases
rather uniformly throughout life appears to be particularly
important in determining the lifespan of C. elegans [67]. Other
areas where ferroptosis may be important include placenta
shedding, a process in which iron accumulation occurs [68].
In summary, ferroptosis may contribute to embryonic develop-

ment, erythropoiesis, determination of lifespan, and defense

Fig. 3 Overview of the metabolic routes contributing to ferroptosis. Several metabolic pathways are involved in the regulation of
ferroptosis, including: (i) iron-Fenton reaction (black). ROS are produced by the Fenton reaction that is driven by excessive iron, which can be
derived from the import of extracellular iron and the supply of intracellular stored iron via ferritinophagy. (ii) GPX4 antioxidant activity (brown
and blue). Suppression of lipid peroxidation and ferroptosis occurrence largely depends on GPX4 activity, which relies on GSH and IPP-derived
Sec. Cystine import by the amino acid antiporter system x�c and mevalonate routes are necessary for GSH and IPP production, respectively.
Additionally, IPP-derived CoQ inhibits ferroptosis mediated by FSP1 in the cytosol or by DHODH in mitochondria. (iii) Lipid metabolism
pathway (green). The oxidation of PUFA and AA is also involved in ferroptosis.
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against infection and tumors under physiological conditions. How
iron is involved and contributes to ferroptosis under these diverse
circumstances remains poorly understood. Thus, both the activa-
tion and inactivation of ferroptosis are indispensable in the
context of physiological settings.

A key role of iron in ferroptosis
ROS generation through the iron-catalyzed Fenton/Haber−Weiss
reaction is an essential step in ferroptosis [2, 3] (Fig. 4). Superoxide
radicals (O2

•−) can be generated from O2 by iron-containing
proteins, including cytochrome P450 enzymes, NADPH oxidases
(NOXs), and subunits of the mitochondrial ETC [2]. O2

•− can be
further reduced to H2O2 by superoxide dismutase (SOD). As a
consequence, O2

•− and H2O2 attack heme and proteins containing
ISCs, leading to the release of reactive Fe2+ [69]. However, the
major source of Fe2+ is LIP. The LIP is a pool of non-protein-bound,
chelatable and redox-active iron, that serves as a source of free
iron and sits at the crossroads of iron metabolism. LIP levels are
primarily regulated by iron uptake, iron release from ferritin, and
iron utilization. Driven by the conversion of Fe2+ to Fe3+, the
Fenton/Haber−Weiss reaction generates hydroxyl radicals (HO•)
from H2O2. HO

• further reacts with polyunsaturated lipids (LH),
including PUFA, to generate lipid radicals (L•) and initiate lipid
peroxidation. Following the initiation stage, a propagation stage
occurs, in which L• reacts with more LH to generate lipid peroxide
(LOOH) and L•. LOOH can react with Fe2+ and Fe3+ to generate LO•

and LOO•, respectively. Iron-containing LOXs, such as arachido-
nate-15-lipoxygenase, also catalyze the reaction between O2 and
LH to form LOOH [70, 71]. Moreover, iron is a component of the
catalytic subunit of LOX [72]. In general, iron-dependent LOXs
initiate ferroptosis, whereas the iron-driven Fenton reaction
propagates ferroptosis [73].
Although these toxic ROS can be eliminated by the x−c-GSH-

GPX4 and FSP1-CoQ axes (Fig. 3), excessive and continuous
production of ROS may eventually induce ferroptosis. Inhibition of
iron uptake by knocking down TfR1 can suppress lipid ROS
formation [74]. Furthermore, compounds that chelate intracellular
iron, such as desferrioxamine (DFO) or deferiprone (DFP), can
suppress lipid ROS generation [5]. Iron chelators can also remove
iron from LOXs, thus rescuing ferroptosis [75]. Ferritinophagy has
been reported to induce ferroptosis by releasing iron from ferritin
and thus increasing intracellular LIP levels (Fig. 3) [76, 77].
Knocking down NCOA4 inhibits ferritinophagy and subsequently
suppresses lipid ROS formation [42]. Suppression of the mitochon-
drial protein frataxin, an iron chaperone that drives ISC biogenesis,
has been demonstrated to promote cysteine deprivation-induced

ferroptosis in cancer cells [78]. Deletion of mitochondrial iron-
sulfur of the protein NEET (2Fe−2S) contributes to ferroptosis by
inducing iron accumulation in mitochondria and mitochondrial
lipid peroxidation [79]. Iron accumulation induced by the down-
regulation of mitochondrial ferritin can also cause mitochondrial
ROS accumulation, leading to ferroptosis [80].
Taken together, both cytosolic iron and mitochondrial iron is an

essential for ferroptosis. Iron-containing LOXs are required for
initiating lipid peroxidation, whereas the iron-driven Fenton
reactions are required for propagating lipid peroxidation. Ferrop-
tosis is enhanced by the conversion of non-reactive Fe3+, which is
primarily stored in ferritin, heme, and ISCs, into labile Fe2+. The
inhibition of iron uptake and chelation of intracellular iron are
effective in reducing lipid peroxidation and suppressing ferropto-
sis. However, the details of how intracellular iron levels,
particularly the size of the LIP, are controlled and what threshold
of iron concentration is required to induce ferroptosis remain
elusive.

Contribution of mitochondrial dysfunctions to ferroptosis
As mitochondria play an important role in ROS production, they
are closely associated with ferroptosis [81]. Indeed, complete
depletion of mitochondria increases the tolerance of cells to
ferroptosis under cysteine deprivation conditions [81, 82]. How-
ever, cells that are only partially depleted of mitochondria remain
sensitive to ferroptosis [83], thus suggesting that residual
mitochondria are capable of initiating ferroptosis. The inhibition
of the TCA cycle and ETC also suppresses ferroptosis, and this is
consistent with the role played by mitochondria in generating ROS
[81, 82]. In response to cysteine deprivation or erastin treatment,
several enzymes in the TCA cycle, including fumarate hydratase
(FH), aconitase (ACO), and citrate synthase (CS), are required to
induce ferroptosis [81]. Renal cancer cells with FH loss are resistant
to cystine deprivation-induced ferroptosis [81]. Additionally,
reducing the activity of the TCA cycle suppresses lipid peroxida-
tion and ferroptosis [84]. Consistent with the importance of this
process in driving ferroptosis, inhibiting the activities of com-
plexes I−IV of the ETC suppresses the accumulation of ROS and
the induction of ferroptosis in response to either cysteine
deprivation or erastin treatment [81]. Under cysteine deprivation,
mitochondrial respiration is promoted, leading to ROS production,
lipid peroxidation, and ferroptosis. However, regardless of cysteine
depletion or erastin treatment, glutamine (Gln) is required to
induce ferroptosis [81]. Moreover, fatty acid metabolism in
mitochondria is an important contributor to ferroptosis by
inducing lipid peroxidation [85].

Fig. 4 Iron-driven ROS generation and lipid oxidation in ferroptosis. O2
•− is generated from iron-containing proteins, including xanthine

oxidase, ETC subunits, and NOXs. O2
•− can be further converted to H2O2. Both O2

•− and H2O2 attack ISCs and heme, leading to the release of
Fe2+. The Fe2+-driven Fenton reaction generates OH•, which can react with LH to generate LOO•. Meanwhile, LH can be oxidized by LOXs to
produce LOOH, which can be further converted into LOO• by the Fenton reaction. Finally, LOO• induces ferroptosis. Ferroptosis can be
inhibited by iron chelators (e.g., DFO and DFP) and GPX4.
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Iron-related mechanisms underlying other forms of RCD
There are several characteristics that distinguish ferroptosis from
apoptosis, necrosis, and pyroptosis [5, 41] (Table 2). In particular,
ferroptosis induces a series of mitochondrial morphological
changes, including a reduction in the number of cristae, outer
membrane rupture, and membrane coagulation, whereas other
forms of RCD only exhibit swollen mitochondria [5]. However,
ferroptosis shares some regulators and signaling pathways with
other forms of RCDs. For example, all of these pathways can be
triggered by iron-related signals (Table 2). For intrinsic apoptosis,
iron-dependent oxidative stress is an important inducer of
mitochondrial outer membrane permeabilization. This is followed
by the release of cytochrome c and activation of caspase-9 and
caspase-3, leading to the induction of apoptosis [86]. Iron-induced
ROS also dissociate thioredoxin from apoptosis signal-regulating
kinase 1 (ASK1). Consequently, ASK1 is activated to stimulate the
c-Jun N-terminal kinase (JNK)/p38 pathway, thus leading to
apoptosis [87]. In extrinsic apoptosis, excess iron prevents the
generation of a short form of Fas by inhibiting the alternative
splicing of Fas, and thus activates caspase-8-dependent apoptosis
[88]. Similarly, suppression of alternative splicing of Fas by iron
activates the mixed-lineage kinase domain-like (MLKL) and
receptor-interacting serine-threonine kinase (RIPK), thus leading
to necroptosis [89]. Heme-induced tumor necrosis factor α also
activates the MLKL and RIPK pathways [90]. Moreover, iron-
induced ROS are involved in necroptosis [91]. Iron-induced
formation of ROS causes oxidation and oligomerization of
Tom20, leading to the recruitment of Bax and subsequent
cytochrome c release and caspase-3 activation. Caspase-3 further
triggers gasdermin E (GSDME) cleavage, leading to a switch from
apoptosis to pyroptosis [92].
Collectively, cytochrome c release and caspase activation driven

by iron-induced ROS are the common routes for the activation of
intrinsic apoptosis and pyroptosis, while the suppression of short
Fas by iron is a common route for the activation of extrinsic
apoptosis and necroptosis. Thus, excess iron is one of the inducers
for the activation of apoptosis, necroptosis, and pyroptosis, while
ferroptosis is initiated by iron-dependent LOXs and propagated by
the iron-driven Fenton reaction.

DYSREGULATED IRON HOMEOSTASIS, ENERGY PRODUCTION,
AND FERROPTOSIS IN PATHOLOGICAL CONDITIONS
Ferroptosis has been implicated in a variety of diseases, including
cancer, diabetes, neurodegenerative diseases, and ischemia/
reperfusion injury in many organs. More importantly, disorders
of iron hemostasis and energy production frequently occur in
these pathological conditions. Here, we review the literature to
elucidate the complicated connections among iron homeostasis
disorders, dysregulated energy production, and ferroptosis in the
context of these pathological conditions, particularly in cancer,
diabetes, and neurodegenerative diseases.

Ferroptosis resistance in cancer cells
Many types of cancer cells appear to be intrinsically sensitive to
ferroptosis. Importantly, sensitivity to ferroptosis occurs during the
therapy-resistant state transitions in cancer cells [93]. Furthermore,
cancer cells with a higher degree of malignancy, particularly those
with high metastatic capacity, are more sensitive to ferroptosis
[94]. Indeed, the levels of intracellular iron, PUFAs, oxidative stress,
and lipid peroxidation are key factors in determining the
susceptibility of cancer cells to ferroptosis [54, 70, 95]. However,
cancer cells can also develop resistance to ferroptosis. The
mechanisms underlying resistance to ferroptosis are not well
defined, and several routes have been implicated.
FSP1 was observed to be capable of compensating for GPX4

deletion to inhibit ferroptosis in cancer cells [51]. Furthermore,
FSP1 expression was positively correlated with ferroptosisTa
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resistance across hundreds of cancer cell lines and in mouse
tumor xenografts [52]. Monounsaturated fatty acids (MUFAs) were
demonstrated to potently inhibit ferroptosis in human fibrosar-
coma cells after activation by ACSL3 [96]. The tumor malignancy of
liver cancer is modulated by the balance between HIC1, a
transcription factor controlling the expression of a set of
ferroptosis-upregulated factors, and HNF4A, another transcription
factor controlling the expression of a set of ferroptosis-
downregulated factors [97].
Cancer cells exhibit particularly high iron requirements to

support their rapid growth, and consequently, they are well
adapted for acquiring iron and preventing its loss [98]. For
example, TfR1 is highly expressed on the surface of cancer cells to
facilitate iron uptake and support enhanced survival and
resistance to chemotherapy of these cells [99]. Consistent with
an increased iron content of cancer cells, levels of the iron storage
protein ferritin are increased in many cancers, including breast
cancer, and ferritin can be used as a prognostic marker for breast
cancer progression [100]. We have previously demonstrated that
serum levels of the iron regulatory peptide hepcidin are increased,
while levels of its target FPN are decreased in breast cancer tissue
from patients, and this is consistent with increased iron levels in
breast cancer cells [100].
Importantly, disordered iron metabolism, dysregulated p53

expression, and mitochondrial dysfunction appear to be inte-
grated in cancer metabolic reprogramming, and this may explain
cancer resistance to ferroptosis. Cancer cells adapt to hypoxia
through metabolic reprogramming [101]. Glycolysis is enhanced in
the cytosol, while the TCA cycle and OXPHOS are inhibited in the
mitochondria of cancer cells under hypoxia in a response termed
the Warburg effect [102]. Reprogrammed glucose metabolism in
cancer cells is coupled with increased uptake of glucose and
amino acids, reduced ATP production [103], and reduced ROS
generation. This, in turn, increases the carbon supply for
synthesizing proteins, lipids, and nucleic acids, prevents ROS-
triggered apoptosis [103], and suppresses ferroptosis by oxidative

stress. Adaption to hypoxia is primarily regulated by hypoxia
inducible factors (HIFs 1-3), which are composed of α and β
subunits [104]. Under hypoxia, ubiquitination and degradation of
the HIF α subunits, a process that is mediated by prolyl-4-
hydroxylase-catalyzed hydroxylation, is inhibited [105]. Ironically,
iron is required for the activity of prolyl-4-hydroxylase [105]. P53
can activate ferroptosis by suppressing SLC7A11 [106]. P53 can
also inhibit the production of some anti-ferroptosis metabolites,
such as squalene and ubiquinone, by modulating the mevalonate
pathway [107]. However, p53 expression is downregulated under
iron overload conditions via heme−p53 interactions [108].
Whether FSP1, MUFAs, and the disrupted balance of HIC1 and
HNF4A correlate with metabolic reprogramming in inducing
cancer resistance to ferroptosis still needs to be investigated.
Recently, energy stress was observed to inhibit ferroptosis, and
human renal carcinoma cells exhibiting high basal AMPK
activation were demonstrated to be resistant to ferroptosis via
AMPK-mediated phosphorylation of acetyl-CoA carboxylase and
biosynthesis of PUFA [109]. However, AMPK-mediated BECN1
phosphorylation was reported to promote ferroptosis by directly
blocking system x�c activity in human colorectal carcinoma cells
[110]. Whether AMPK activation upon energy stress has a cross-
talk with metabolic reprogramming to induce ferroptosis resis-
tance also warrants investigation. Furthermore, how iron accu-
mulation and metabolic reprogramming co-exist in cancer cells
remains unknown.
To this end, ferroptosis resistance can be induced directly by

elevating the levels of FSP1, HNF4A, and MUFAs, or by reducing
P53 levels. Although iron accumulates in these cells, ferroptosis is
suppressed and does not lead to excess ROS generation and lipid
peroxidation due to metabolic reprogramming. Loss of function of
p53, as a result of p53 mutations and excess iron, and AMPK
activation contributes to ferroptosis resistance either directly or
indirectly by promoting metabolic reprogramming in cancer cells
(Fig. 5). Targeting ferroptosis resistance is emerging as a promising
therapeutic strategy for cancer treatment. Therapeutic strategies

Fig. 5 The mechanisms underlying ferroptosis resistance in cancer cells. In cancer cells, direct and indirect mechanisms may be involved in
inducing ferroptosis resistance. Elevated levels of FSP1 and MUFAs, and a disrupted balance between HNF4A and HIC1 can directly inhibit
ferroptosis in cancer cells. Furthermore, p53 mutations can directly induce ferroptosis resistance. In contrast, metabolic reprogramming could
indirectly and substantially induce ferroptosis resistance by integrating iron metabolism disorders, dysregulated p53 levels, and mitochondrial
dysfunctions p53 mutations and hypoxia induce metabolic reprogramming, including enhanced glycolysis in the cytosol and inhibition of the
TCA cycle and OXPHOS in the mitochondria. This reduces ATP production and ROS generation, which can attenuate lipid peroxidation and
lead to ferroptosis resistance. Accumulated iron in cancer cells can induce p53mutations and also directly promote metabolic reprogramming.
Energy stress-induced AMPK activation also contributes to ferroptosis resistance in cancer cells.
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based on enhancing ferroptosis are being tested in some cancers,
including chemical drugs and nano drugs.

Ferroptosis occurrence in diabetes
Ferroptosis has been implicated in the pathology of diabetes. A
high-fat high-sucrose diet diminished the expression and activity
of GPX4 in the hypothalamus relative to a normal diet, indicating
that GPX4 plays an important role in regulating metabolic signals
[111]. Additionally, ferroptosis impairs islet function, and ferrop-
tosis inhibitors can reverse this impairment. Interestingly, in
isolated islets, bilirubin suppresses ferroptosis and ferroptosis-
related characteristics, thus leading to reduced oxidative stress,
elevated GPX4 expression, upregulated nuclear factor erythroid
2-related factor 2NRF2/heme oxygenase-1, and decreased iron
levels [112]. Consequently, glucose levels normalized after
bilirubin-pretreated islets were transplanted into diabetic mice
[112]. Furthermore, maternal hyperandrogenism and insulin
resistance activate ferroptosis in the gravid uterus and placenta
[113]. Mitochondrial dysfunction is an important feature of
diabetes mellitus and is a key component of ferroptosis. In most
organs and tissues of patients with diabetes and also animal
models of diabetes, excessive mitochondrial ROS production is
observed, while other mitochondrial abnormalities, including
impaired mitochondrial biogenesis and OXPHOS, disordered
mitochondrial dynamics, and mitophagy, are tissue-specific
[114]. In both type 1 diabetes mellitus (T1DM) and type 2 diabetes
mellitus (T2DM), a switch in the energy source from glucose to
fatty acids occurs. Increased uptake and utilization of fatty acids
via β-oxidation further reduces glucose uptake in T2DM, thus
leading to enhanced gluconeogenesis [115] and mitochondrial
uncoupling [116]. The NADH/NAD ratio is increased due to
complex I dysfunction and inhibition of the activities of complexes
II, IV, and V in patients with diabetes and animal models [117].
Ultimately, the energy source switch and mitochondrial

dysfunction lead to decreased ATP production and increased
ROS generation [118]. Excessive ROS production in mitochondria
can induce insulin resistance by decreasing GLUT4 levels, inducing
beta-cell and mitochondrial dysfunction, promoting inflammation,
and inhibiting insulin signaling pathways [119].
Diabetes mellitus is also associated with iron overload, another

ferroptosis inducer. A variety of meta-analyses and systematic
reviews have confirmed the relationship between iron homeostasis
disorders and T2DM risk [120]. Pregnant women with gestational
diabetes were also observed to exhibit significantly higher levels of
serum iron, serum ferritin, and transferrin saturation, and increased
fasting plasma glucose levels compared to those of pregnant
women without this condition [121]. Additionally, increased serum
ferritin levels were observed to be positively associated with the
risk for T2DM in otherwise healthy women, and this was
independent of known diabetic risk factors [122]. Consistent with
these observations, iron depletion through phlebotomy can
increase insulin sensitivity [123]. In streptozotocin-induced diabetic
rats, an iron-restricted diet ameliorated diabetes-induced mito-
chondrial dysfunction and restored mitochondrial respiration and
respiratory complex activity, thereby reducing oxidative stress
[124]. Diabetes-driven ferroptosis reflects a switch in cellular
energy sources, mitochondrial dysfunction, and iron overload,
leading to reduced insulin secretion.
Collectively, both the energy source switch and the iron

overload contribute to mitochondrial dysfunction, including
uncoupled respiration and reduced activities of ETC complexes.
Mitochondrial dysfunction decreases ATP production, increases
ROS generation, and likely suppresses GPX expression, all of which
are key inducers of ferroptosis. Iron overload can directly promote
ROS generation via the Fenton reaction as discussed above.
Importantly, bilirubin can suppress ferroptosis in the context of
diabetes by decreasing iron levels and restoring mitochondrial
function (Fig. 6).

Fig. 6 The mechanisms underlying ferroptosis induction in diabetes. In diabetes mellitus, a switch of energy source (from glucose to fatty
acids) occurs, leading to uncoupling of OXPHOS, and impaired function of ETC complexes. Consequently, Gpx expression and ATP production
are both inhibited, while ROS generation is increased. These events ultimately induce ferroptosis in the islet cells. In addition to directly
promoting ROS generation and insulin resistance, iron overload in diabetes mellitus can promote uncoupling of OXPHOS and dysfunction of
the components of the ETC.
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Ferroptosis in neurodegenerative diseases
Disordered iron metabolism is closely associated with neurode-
generative diseases, and ferroptosis has been demonstrated in
this context [125]. For example, upregulation of the iron regulatory
protein IRP2 induces ferroptosis by increasing the intracellular iron
content in aging-related auditory cortical neurodegeneration
[126]. Additionally, enhanced NCOA4-mediated ferritinophagy is
linked to neurodegenerative diseases, and is also linked to
ferroptosis [77]. Importantly, mitochondria play an important role
in regulating iron homeostasis in the brain, and are implicated in
the death of neuronal cells by inducing lipid peroxidation [127].
A deficiency in complex I has been uncovered in the

mitochondria of the substantia nigra (SN) and platelets from
patients with Parkinson’s disease (PD) [128] and similar findings
have been reported in patients with Alzheimer’s disease (AD)
(deficiency of complexes I and IV) and Huntington’s disease (HD)
(deficiency of complexes II and III) [129]. In patients with AD,
reduced activity of various TCA cycle enzymes, including isocitrate
dehydrogenase, α-ketoglutarate dehydrogenase, and pyruvate
dehydrogenase, has been observed [130]. High levels of ROS are
released from defective mitochondria [131], where complex I
releases O2

•− to the mitochondrial matrix and complex III releases
O2

•− to both sides of the IMM [132]. In turn, ROS impairs the
functions of complexes I, III, and IV [133]. Furthermore, the release
of cytochrome c oxidase (COX) and mitochondrial permeability are
both increased by Aβ and alpha-synuclein oligomerization and
polymerization in AD [134]. Nevertheless, direct evidence for the
involvement of mitochondrial dysfunction in ferroptosis is still
lacking in neurodegenerative diseases.
In AD, tau tangles inhibit the transport of β-amyloid precursor

protein (APP), a protein that stabilizes FPN1, to the cell membrane,
and in turn, this leads to intracellular iron accumulation and
oxidative stress-induced cell death, including ferroptosis [135]. Iron
accumulation and lipid peroxidation occur in the SN, where the
death of melanized neurons is the most severe degeneration event
in PD, and is associated with more rapid PD progression [136].
Furthermore, ferroptosis has been observed to be involved in the
death of dopaminergic neurons, another severe degeneration
event that occurs in PD [137]. DFP and ferrostatin-1 treatments
were demonstrated to be beneficial to PD by chelating iron and
inhibiting ferroptosis, respectively [137, 138]. Similar to AD, tau
tangles in PD also inhibit the transport of APP and, in turn, they
decrease the stabilization of FPN1, leading to intracellular iron
accumulation and lipid peroxidation in dopaminergic neurons
[139, 140]. Moreover, iron deposition in central nervous system is
observed in HD and is associated disease progression [141].
Ferroptosis-related features have also been observed in patients
with HD [142]. Marked lipid peroxidation has been observed in the
striatal neurons of an HD mouse model [143], and a significant
decrease in GSH level was observed in a HD rat model [144].
Taken together, excess iron in both the cytosol and mitochondria

significantly contributes to the development of ferroptosis in
neurodegenerative diseases, and this occurs primarily through its
promotion of oxidative stress and lipid peroxidation. The inhibited
formation of the FPN1-APP complex is the key mechanism driving
iron accumulation in neurodegenerative diseases. Although neuro-
degenerative diseases are associated with disturbed mitochondrial
function, further investigation is required to determine whether
impaired mitochondria are directly involved in ferroptosis.

CONCLUDING REMARKS AND PERSPECTIVES
In the current review, we recapitulate the intricate functions of
iron governing energy metabolism and modulating ferroptosis at
the cellular and subcellular levels in the context of both
physiology and pathology. Thus far, a wealth of insights has been
obtained to understand the complex regulatory networks that

modulate the balanced energy supply and toxic effects of excess
iron on cells. In contrast, deregulated regulatory networks would
give rise to iron-dependent disorders including ferroptosis and
closely implicated diseases, such as cancers, diabetes, and
neurodegenerative diseases. Regardless, puzzling questions and
knowledge gaps still exist as follows:

i. As iron plays a key role in promoting ferroptosis, the
rationale underlying the rapid involvement of iron and also
the amount of iron in LIP that is sufficient for this process
remained to be explored. Specifically, little is known
regarding the threshold regulation of iron availability.
Furthermore, whether diseases related to disordered iron
homeostasis are prone to ferroptosis in certain cells remains
to be tested. The difficulty in directly measuring LIP changes
hinders the establishment of an iron threshold for
ferroptosis. Recently, a new fluorescence resonance energy
transfer iron probe (FRET Iron Probe 1, FIP-1) was designed
[145] and could be used in the future to define the LIP
threshold for ferroptosis. As discussed above, disordered
copper metabolism induces iron deposition and ferroptosis
in oligodendrocytes. Moreover, copper has also been
reported to potentiate both GSH loss and nerve cell death
[146], thus posing a question regarding the substitutes of
iron in inducing ferroptosis.

ii. Although mitochondria have been implicated in ferroptosis,
current reports remain debatable, and further efforts are
warranted to elucidate the biochemical reactions related to
ferroptosis in different contexts and in different cell types.
Moreover, iron-mediated electron transfer, OXPHOS, and
energy production converge within the mitochondria
warrants to be investigated. Accordingly, it would be of
great interest to untangle the unbalanced sites responsible
for promoting ferroptosis.

iii. The imbalance in energy metabolism is closely associated
with the occurrence of ferroptosis; however, research in this
field is in its infancy, and with several questions concerning
dysregulated glucose, lipid, and protein metabolism remains
unresolved. For example, the current literature detailing the
role of AMPK, the central sensor in response to the cellular
energy state, remains controversial. This discrepancy may be
ascribed to tissue specificity. Additionally, different cancers
may use distinct energy sources for their major energy
supply, thus indicating that their metabolic processes are
different, leading to different ferroptotic signaling pathways.
Additional work is required to determine the intricate nexus
responsible for coordinating energy production and pre-
venting ferroptosis.

iv. The implications of ferroptosis and iron dysregulation in
metabolic disorders have not been clearly defined. For
example, diabetes is often observed following iron overload,
such as in patients with hereditary hemochromatosis.

v. In the real context, the co-existence of different RCD forms
appears to be more frequent under physiological and
particularly pathological conditions. Thus, it is important to
investigate the connections among them (e.g., synergy or
antagonism mode) and to clarify the common factors (such
as genes, proteins, metabolites, and nutrients) and mechan-
isms. This would help to provide a combination therapy and
solve the issues of drug resistance. However, one form of
RCD would dominate other forms at a specific disease stage.
How this is mediated is an interesting question. Importantly,
whether a superior regulatory network coordinates these
forms of RCD warrants further investigation. In this regard,
iron and disordered iron homeostasis may provide a
breakthrough to elaborate the interplay of ferroptosis with
other iron-coupled RCD forms.
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Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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