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ABSTRACT
The antibody (Ab) germline gene rearrangement of variable (V), diversity (D), and joining (J) gene
segments, as well as somatic hypermutation, give rise to the human Ab variable gene sequence
repertoire. It is common to characterize single nucleotide frequencies of the variable region by align-
ment to species-specific wildtype germline genes. The increasing application of next-generation sequen-
cing to immune repertoire studies has led to the compilation of increasing large adaptive immunome
receptor repertoire datasets. We have developed a method that maps the sequence of a target Ab onto
an immunome dataset of 326 million human Ab sequences. For this purpose, we created a position- and
gene-specific scoring matrix (PGSSM) and its corresponding antibody similarity score. We characterized
our PGSSM score and found that it strongly correlated with the phylogenetic distance of 181,355 Ab
sequences from GenBank across 20 species. The most likely human nucleotide back-translation was
obtained given only PGSSMs and the amino acid sequence of an Ab achieving a nucleotide sequence
recovery of 95.9% and 97.2% for human heavy and light chains, respectively. In conclusion, the scoring
of our back-translation is a valuable estimate for the similarity of an Ab sequence to the natural human
repertoire. As expected, Ab therapeutic molecules developed from a human source showed a higher
similarity to the repertoire than engineered Abs. Thus, the PGSSM metric introduced here can be used to
engineer human-like Ab therapeutics.
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Introduction

Antibodies (Abs) bind to epitopes on the surface of microbial
pathogens like bacteria and viruses. Abs are produced by
B lymphocytes that use genetic mechanisms to increase
sequence diversity of the expressed repertoire. These genetic
mechanisms include recombination of variable (V), diversity
(D), and joining (J) gene segments as well as enzymatic
modification and addition of non-templated (N) or palindro-
mic (P) nucleotides in the V-D, D-J and V-J junction regions.1

The variable domain of an antibody is encoded by the three
genes (V, D, and J) for heavy chain sequences, and two genes
(V, and J) for light chain sequences. The variable domain can
further be divided into framework regions (FR) and comple-
mentarity determining regions (CDR). The introduction of
somatic mutations in the variable domains occurs in recom-
bined genes during the secondary immune responses.2,3 The
resulting sequence space of the combined set of naïve and
mature sequences of the V domain in an individual organism
depends on general characteristics of the Ab genes for
a species and on the prior experience of the individual includ-
ing pathogen exposures. We previously determined the
immunome (adaptive immunome receptor repertoire) com-
prising Ab sequences for three healthy human blood donors
using very deep next-generation sequencing (NGS).4 The Ab

sequences of this dataset either cover the full variable domain
or start midway into the FR region.

The analysis of human Ab sequences usually comprises the
partitioning into V, D, and J gene-encoded domains, and the
determination of the FR and CDR as well as somatic muta-
tions. Various computational tools are available to assign
inferred genes and domains to portions of Ab sequences by
making species-specific germline gene calls.5–10 Germline
genes also may vary in individuals and ethnic subgroups,
potentially biasing the maturation process in ways that may
be of clinical relevance.11 The increasing availability of large
immunome datasets4,12–15 was leveraged to create a position-
and gene-specific scoring matrix (PGSSM) for datasets in
order to describe the human Ab sequence space. For this
study we used the sequencing dataset from the Soto et al.4

dataset composed of the antibody sequencing from the blood
compartment of three healthy human donors. The PGSSMs
were derived from this dataset and consisted of 326 million
unique antibody sequences. The PGSSM was used to model
the single nucleotide frequencies (SNFs) per position in the
germline gene, allowing us the estimation of similarity of an
Ab sequence to a given immunome repertoire collection.
SNFs can arise from different sources such as: allelic differ-
ences, hypermutation, or sequencing errors. The method
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developed in this study attempts to capture frequencies caused
by hypermutations by grouping all SNFs to their respective
germline gene. The size of immune repertoire dataset ensures
that any errors that arise from sequencing are minimized.

Our PGSSMs are germline gene-specific16 for templated
regions, and length-dependent for the heavy chain comple-
mentarity-determining region three (CDRH3). This approach
allows us to model SNFs that exclude insertions, but include
non-templated (N) and palindromic (P) nucleotide additions
that bracket the CDR3. This feature enables us to derive the
nucleotide sequence that maximizes the nucleotide frequen-
cies in the PGSSM model so that the resulting nucleotide has
a high human likeness. In this study, we attributed each
optimized nucleotide sequence with a score for the variable
(V) and joining (J) domain (PGSSMVJ) and characterized the
properties of the PGSSMVJ. We show that the PGSSMVJ

represents a similarity measure between an amino acid
sequence and a given immune repertoire. Thus, the
PGSSMVJ could in principle be used to engineer an antibody
sequence to make it more human-like in the future.17

Methods for detecting human-likeness in antibody amino
acid sequences support the screening and engineering of
antibodies with immunogenic effects, which tend to reduce
the efficacy of Abs in a clinical setting. The H-Score method
to estimate human-likeness developed by Abhinadan et al. in
2007 was based on pairwise sequence identity calculations.18

The method evolved by replacing pairwise sequence calcula-
tions with Basic Local Alignment Search Tool (BLAST) data-
bases. The resulting T20 score was also derived from a dataset
of about 38,700 sequences.19 To take germline gene family
specificity of immunogenic effects into account, the germline
gene aware G-Score was developed.20 Seeliger et al.21 demon-
strated the usefulness of a heuristic scoring function to
increase human-likeness and reduce immunogenic effects.
The heuristic scoring function is capable of suggesting muta-
tions to reduce immunogenicity and increase human-likeness
based on a pairwise probabilistic model.

The Human String Content (HSC) is an alternative method
to decrease immunogenic effects by increasing the germline
similarity to 9-mer fragments of germline genes in order to
reduce the class II MHC binding affinity.22 The HSC has
successfully been combined with structure-based antibody
design to produce humanized antibodies with high affinity.23

The methods H-Score, T20 and the heuristic scoring function
have been developed from small amino acid sequence datasets
of several thousand sequences. Recent advances of deep-
learning methods enabled Wollacott et al. to precisely capture
human-likeness of antibody sequences using a Long-Short-
Term-Memory (LSTM) model trained on 25,000 sequences.24

Human likeness scores are usually derived from small data-
sets, and are primarily concerned with the question of how to
separate human from non-human antibodies instead of devel-
oping a sequence model that explains how an Ab can emerge
from a repertoire.

In this study, we developed the algorithm IgReconstruct,
which draws conclusions about Ab human-likeness that are
distinctly different from other methods. Firstly, our method is
based on single nucleotide frequencies. Secondly, to estimate
the similarity of a target Ab amino acid sequence to a given

repertoire, a germline gene rearrangement tailored to the
nucleotide frequency observations made in the repertoire is
generated. Thirdly, the target Ab amino acid sequence is back-
translated to the nucleotide sequence to allow a fine-grained
comparison with the observed immune repertoire nucleotide
frequencies. IgReconstruct scales well with large repertoires
consisting of hundreds of millions of sequences, and will be
useful for computational antibody engineering.

Results

We calculated position- and gene-specific PGSSM matrices
(Figure S1) from a publicly available human immunome
repertoire of 326 million antibody Ab sequences.4 The
PGSSM matrices encode the observed single nucleotide fre-
quencies in the repertoire. The PGSSM matrices were used to
calculate the PGSSMVJ score (Figure 1, Equation 1) for any
given antibody sequence, which essentially represents the
similarity of a given antibody sequence to the immunome
repertoire. We then curated a set of in total of 181,355
GenBank25 sequences from 20 different species (see Material
and Methods for a sequence breakdown by species). To mea-
sure the performance of our PGSSM method with an inde-
pendent dataset, we used the GenBank sequences and
estimated the similarity to the human immunome repertoire
of 326 million naturally occurring antibody Ab sequences.

Human Likeness was assessed by calculating the Z-Score of
the PGSSMVJ score (Equation 2), for which we used the
distribution of PGSSMVJ scores of human GenBank sequences
as reference. As expected, human GenBank antibody
sequences were most similar to the antibody sequences in
our human immunome repertoire.

We demonstrated that our statistical PGSSM model captures
a human-like antibody sequence space by recovering the
human-like nucleotide sequences. We further were able to cal-
culate a score of the V and J gene-encoded regions to quantify
the similarity of an antibody sequence to a given immunome
repertoire. The PGSSMVJ score is the average of SNFs in the
V and J gene-encoded region of the optimized sequence
(Equation 1). We successfully used the score to distinguish
between human, non-human, and engineered antibodies. We
assessed the scores for 475 antibodies in clinical trials or
approved by the U.S. Food and Drug Administration (FDA),
indicating a high level of human likeness, but distinguishable
difference from natural human antibody sequences.

Processing of immune repertoire data and counting SNFs
in V, D, J gene-encoded, and CDR3

Our NGS sequence dataset was annotated with IgBLASTn
results comprising germline gene alignments (Figure 1, A1).
We only considered Ab sequences without sequencing ambi-
guity that contain nonstandard nucleotide letters. A collection
of 196,755,218 heavy chain and 128,815,779 light chain
sequences was used to create PGSSMs (325,570,997 in total).
The dataset was processed with IgBLASTn and inferred germ-
line gene alignments were assigned. We generated a full-
length PGSSM for each of the 287 VH, 79 VK, 72 VL, 37 D, 13
JH, 9 JK, and 9 JL germline gene alleles. In-frame (+open
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reading frame (ORF)) germline reference sequences that are
pre-annotated with CDR and FR start positions were pulled
from IMGT/GENE-DB.26 Each of the matrices ultimately
contains the frequency of observed G, A, T or C nucleotides
for each position in each human germline gene (SNF). Here,
we defined the CDR3 sequence as the sequence that starts
with the first untemplated position after the V germline gene-
encoded alignment and stops one position before the first
J germline gene-encoded residue. For each observed heavy
chain CDR3 loop (CDRH3) length, we created a germline
gene independent PGSSM.

Calculation of PGSSMs from single nucleotide counts

To generate the PGSSMs, we first counted nucleotide obser-
vations in each germline gene as well as CDR3 loops. We
extracted the V, D, and J gene alignments for each sequence as
well as the untemplated region of the CDR3 loops. For some

light chains and heavy chain sequences with high mutation
frequency, no unambiguous D gene assignment was possible,
whereas V, and J alignments are present for all analyzed
sequences. Here, we refer to this D gene segment uncertainty
with (D). IgBLASTn generates alignments that contain in
some cases overlaps of a few residues between V, (D), and
J genes. In this case, we prioritized the alignments in the
following descending order: V, J, (D). Each column of
a PGSSM matrix corresponds to a nucleotide position in
a germline gene. We then incremented either the G, A, T,
C or gap cell in each aligned column of the PGSSM, avoiding
double counts caused by gene overlaps (Figure 1, A2). We
converted the observed counts into frequencies for each col-
umn after adding one pseudo-count to each cell, which
resembles the SNFs. In addition to germline gene dependent
V, D, and J PGSSMs, we generated germline gene indepen-
dent CDR3 PGSSMs for each observed loop-length in the
same manner (Figure 1, A3).

Figure 1. Flowchart of scoring Ab sequences with IgReconstruct. The algorithm can be divided into three tasks (a-c) with three steps (1–3) in each task. (a) The
IgReconstruct algorithm starts with the generation of Position and Gene Specific Scoring Matrices (PGSSM) for the variable (V, light blue bars), diversity (D, red bars),
joining (J, green bars) and CDR3 (dark blue bars) regions of the Ab nucleotide sequence (yellow bars). In this study, nucleotide sequences were obtained from a large
immunome repertoire dataset. (b) For a given amino acid Ab sequence (purple bars), the V, D, and J germline gene rearrangement is determined from the alignment
to the PGSSMs by creating a hierarchic tree of aligned nucleotide PSSMs. (c) The highest scoring rearrangement then is mapped to germline gene-dependent V, D,
J and germline gene independent CDR3 PSSMs. The resulting nucleotide model is used to determine a back-translation which maximizes the observed nucleotide
frequencies in the repertoire. The V and J regions of back-translated sequence is then scored (PGSSMVJ) after the observed nucleotide frequencies in the repertoire.
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BLAST database generation and searches for creating
a plausible amino acid germline gene rearrangement

In order to construct a PGSSM for a given amino acid target
Ab sequence, we create a germline gene rearrangement as
the first step (Figure 1, B1). For this purpose, we translated
all human nucleotide germline genes using the reference
sequences in the ImMunoGeneTics information system®
(IMGT) database26 in all reading frames, allowing nonpro-
ductive sequences, and generated separate BLAST
databases27 containing V, D, and J genes while not distin-
guishing between heavy, kappa, or lambda chains. For each
target Ab amino acid sequence, our algorithm conducts
three independent BLAST searches with e-value thresholds
of 20 (V), 100 (D), or 50 (J). The number of alignments was
limited to 3 (V), 100 (D), or 10 (J). Word sizes were 4 (V), 2
(D), or 3 (J). BLAST hits were discarded if a stop codon was
observed in the aligned region or if a corresponding PGSSM
was not available. The length and position of the CDR3 is
defined by the V, and J germline gene alignments. For each
combination of V, and J BLAST hits, we assigned its distinct
CDRH3 PGSSM, which is solely chosen by the length of the
non-templated part of the CDRH3.

Assignment of a plausible V(D)J rearrangement for an
amino acid target sequence

Our algorithm chooses a plausible V(D)J rearrangement for an
amino acid sequence by scoring the combinations of BLAST hits.
First, we create a V-J-D-CDRH3 tree hierarchy in the form of
a nested data structure for each possible V(D)J alignment
(Figure 1, B2). We prevented incorrect alignments from being
added to the tree, such as D alignments that were not over-
lapping with the CDR3, and J alignments not overlapping with
the FR4 region. Both regions were calculated for eachV germline
gene dynamically following the IMGT Unique Numbering
scheme,28,29 which encodes the positions of FR and CDR as
fixed positions in gapped germline genes. The pattern [WF]
GXG in the J gene-encoded region marks the end of the
CDR3. We also ensured the rearrangements were consistent
regarding chain type (heavy, kappa, or lambda).

Second, to choose a final V(D)J rearrangement from the
tree, we rescored all recombinations of V, (D), and
J alignments after trimming all overlapping regions (Figure
1, B3). We calculated the BLOSUM62 scores for each align-
ment after pruning the aligned region from overlaps.
Overlapping alignments were trimmed or kept with the fol-
lowing descending priority: V, J, D. For example, a D gene
alignment overlapping with N residues of a J gene alignment
shortens the scoring area of the D gene alignment by
N residues. The remaining V(D)J recombinations then were
sorted after summing the scores of the individual alignments.
We discarded all rearrangements but the one with the highest
score. This process does not require D germline gene align-
ments, since BLAST D germline genes could not be aligned in
about 50% of all cases.

It is important to point out, that the germline gene rear-
rangement tree is individually generated for each antibody
and depends on the unique SNF of the repertoire.

A rearrangement in the tree is preferred if a compatible and
optional CDRH3 PSSM has been found. A CDRH3 PSSM is
compatible if it can bridge the distance between the last
aligned V residue and the first J residue. Hence, the chosen
V, J, D, CDRH3 rearrangement is dependent on observed
CDRH3 lengths in the repertoire.

Creation of the final PGSSM model and scoring of an
amino acid target sequence

We used the V(D)J rearrangement chosen earlier and mapped
the aligned amino acids corresponding to V, (D) or J genes to
their nucleotide counterparts. In addition, we assigned one
CDR3 PSSM depending on the length of the loop (Figure 1,
C1). We concatenated each V, (D), J and (CDR3) PGSSM such
that overlapping parts were discarded. We again respected the
domain priority in the descending order V, J, D, CDR3 (Figure 1,
C2). Despite the important role of the CDRH3 PSSM for back-
translation as well as scoring of the germline gene rearrange-
ment, we chose to not include the untemplated CDRH3 region
in the score calculation for two reasons. Firstly, the germline
D gene and CDRH3 PSSMs cannot always be assigned. Success
depends on the chain type and the availability of CDRH3 PSSMs
of a certain length, i.e., the CDRH3 must be observed in the
repertoire. Secondly, the CDRH3 PSSM contains all CDRH3
loops of 128,815,779 heavy chain sequences, solely grouped by
length. As a result, we do not expect predictive capabilities to the
PSSM regarding human-likeness (Figure S3b), even though it
supports the generation of a back-translated sequence in this
region (Figure S3a).

We therefore restricted calculation of the PGSSM score to
V and J PGSSMs, whereas residues without assigned V or
J PGSSM remain unscored (Equation 1). Mann-Whitney sta-
tistics were used to assess the significance between PGSSMVJ

scores of human, non-human Abs and Ab drugs.
To assess the human likeness of the PGSSMVJ score, we

calculated the Z-Score using mean and standard deviation of
PGSSMVJ scores obtained for all human GenBank antibody
sequences separated by heavy or light chain type (Equation 2).

Strategy to reconstruct nucleotide sequences from Ab
amino acid sequences

The concatenated nucleotide PGSSM (Figure 1, C2 and Figure
S1) aligned and cropped to fit the amino acid target sequence
was used to calculate the PGSSMVJ score. Naturally, this
approach also can deduce a nucleotide sequence that maximizes
the SNFs (Figure 1, C3). Such a nucleotide back-translation is
codon-optimized and exhibits the highest possible similarity to
the PGSSM and its underlying immune repertoire data. Creating
an optimized nucleotide sequence eliminates a potential
sequence bias of reported nucleotide sequence and increases
the robustness of our method in scenarios where only amino
acid sequences are available. This situation occurs frequently in
artificial computational protein Ab design in which typically the
design process is performed without regard to germline gene
rearrangements or nucleotide sequences.30,31 The generation of
our nucleotide sequence comprises two steps. First, we interro-
gated for each amino acid the aligned nucleotide PGSSM and
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chose the triplet with the smallest hamming distance to the wild-
type germline gene. For the untemplated CDRH3, we skipped
this step. Second, if multiple triplets after step one are available,
we chose the triplet, which maximizes the cumulative SNF.

Figure 1 depicts the complete strategy from amino acid Ab
target sequence to nucleotide reconstruction. This method
presents per-nucleotide frequency statistics for almost the
complete Ab variable domain, including the junction areas
of the CDR3 loop and the loop itself. The few exceptions to
this assignment are N and C termini without alignments,
short light chain junctions, or residues encoded by insertions
in the templated regions. Figure S1 shows the complete
PGSSM rearrangement of the heavy chain with GenBank
accession number EU620063.

The PGSSMVJ acts as a human likeness score in the
context of immunomes from healthy humans

We calculated the PGSSMVJ (Equation 1) for all reconstructed
nucleotide sequences in the context of three human healthy
immunome repertoires (Figure 2b). The scores for human
heavy and light sequences were significantly higher with
93.6% ± 3.5% (heavy chain) and 93.7 ± 2.9% (light chain),
respectively, than the scores for other species.

The non-human primates Callithrix jacchus (91.1 ± 2.2%/
90.9 ± 2.9%), Chlorocebus sabaeus (89.1 ± 2.4%/91.5 ± 2.7%)
and Macaca fascicularis (89.2 ± 2.4%/91.7 ± 2.1%) scored
significantly lower with P values from a Mann-Whitney test
≪ 10−7. The lowest scoring species include Gallus gallus (Red
junglefowl) and Salmo salar (Atlantic salmon) with
78.6 ± 1.9%/82.0 ± 1.5% and 79.3% ± 3.7%/N.A (heavy
chain/light chain). The lower bound of PGSSMVJ as well as
sequence recovery is constrained by the chance to guess

nucleotides of a fixed amino acid sequence correctly, which
is approximately 73.68% (Appendix). Scores around the value
of 73.68% are strong indicators for sequence alterations such
as engineered sequences.

The PGSSMVJ score can be used to identify engineered
and atypical antibodies

Some sequences of the species Homo sapiens are outliers in
that they score significantly lower than the 95% confidence
interval. For Abs annotated with Mus musculus, a number of
high-scoring outliers outside the 95% confidence interval
occurred (Figure S2b). These findings can be attributed to
engineered or other non-natural Abs. For the case of Mus
musculus, sequences often can be associated to studies invol-
ving transgenic mice with human Ab loci.32–36

A large number of low scoring human sequences are
annotated with patents related to engineering and or animal
Ab sources (US20050002930A1, JP2007524605A,
EP2150565A2) often directed to human cancer and immune
disorder treatments (JP2009221224A, EP2150565A2,
WO2005063299A3, WO2004085474A2) like prostate cancer
(WO0173032A2, JP2003528591A), or patents evolving in the
vicinity of anti-human Abs (WO2005067477A3). Another
possible explanation for the low scoring GenBank entries are
their annotations designating them as unpublished or having
incomplete publication records (e.g., GenBank IDs:
EU620060, FW576479, DQ187727). Our observations match
previously reported concerns of incorrectly annotated Abs.37

Heavy chain/light chain sequences of structures from the
Protein Database (PDB)38 with IDs 1GAF (79.9%/86.3%),
1AXS (80%/83.9%), 1BBJ (81.9%/84.7%) 4UOK (88.0%/
82.8%), and 4UOM (80.7%/90.0%) were scored. These PDBs

Figure 2. Native nucleotide sequence recovery and PGSSMVJ score for Ab sequences taken from GenBank. Amino acid sequences were downloaded from GenBank25

and then back-translated to nucleotide sequences using IgReconstruct. (a) The sequence recovery rate after back-translation with IgReconstruct is highest for human
(H. sapiens) sequences when compared to that for sequences from non-human primates (C. jacchus, C. sabaeus, M. fascicularis), mouse (M. musculus), rat
(R. norvegicus) or rabbit (O. cuniculus). (b) The PGSSMVJ score for the same set of back-translated nucleotide sequences also scores highest for amino acid sequences
derived from humans. Light colors (left bar in each subplot) represent light chain sequences, dark colors (right bar in each subplot) represent heavy chain sequences.
A Mann-Whitney test shows statistically significant (*, p ≪ 10−7) recovery rates and scores for human sequences compared to the other species.
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were reported previously as incorrectly annotated with human
origin.37 The low PGSSMVJ scores (< 1σ of GenBank
sequences assigned as human) also underlines the probable
non-human origin of all heavy chains and most light chains.

One shotgun sequenced human light chain of the tran-
scriptome with ORF expressed sequence tags described in
200039 exhibits two insertions and a region of five deletions,
dropping the sequence score to 77.16%. Other examples for
sequences with presumably human background but atypical
mutation patterns are broadly neutralizing HIV Abs40,41 like
VRC01 and its derivatives that occurred after long-term line-
age evolution.42 These highly matured Abs can indicate sen-
sitivity to the progress in sequencing methods. Low-scoring
HIV mAbs may highlight the challenge for the human system
to generate the right combination of rare mutations against
the highly variable sequences of HIV envelope protein.43

Another example of Abs with rare mutations are fetal
lymphocyte progenitors,44 highly mutated Abs of tonsillar
IgD-cells,45 or expanded multiple sclerosis associated lineages
in immortalized B cells.46 Some of these Abs are related to
tissue location or to autoimmune diseases, and might there-
fore not be typical of Abs found circulating in the peripheral
blood, which is the current context of our Ab analysis
method.

The PGSSMVJ score correlates with the phylogenetic
distance to human V germline genes

We further interrogated the PGSSMVJ properties and esti-
mated their correlation with the phylogenetic distances
between human and non-human species. The phylogenetic
distance was calculated as the sum of the branch length
between the two closest germline genes of the same class
(heavy, kappa, lambda) of two species. We calculated
a phylogenetic tree between the available IMGT reference
germline sequences. Nucleotide frequencies in V and J gene-
encoded domains are on average low in number and guide the
overall sequence space of a species. This germline gene pre-
ference of nucleotides is directly captured in the PGSSM
frequencies and ultimately in the PGSSMVJ score.

The average PGSSMVJ score for all studied sequences is
plotted against the phylogenetic distance from the assigned
human V gene to its closest V gene of the organism of origin
separately for heavy chain (Figure 3a) and light chain V genes
(Figure 3b). GenBank sequences of the species Mus musculus
are frequently the subject of lineage evolution and of engi-
neering studies, and such sequences exhibit highly artificial
mutation patterns, which causes a low correlation between
phylogenetic distance and score. We therefore separated Mus
musculus sequences and highlighted these in red color. The
correlation of heavy chains remains less affected due to the
higher number of datapoints.

Single nucleotide frequencies in Abs roughly recapitulate
phylogenetic distances. One can thus use the PGSSMVJ to
confirm or question the Ab species annotation. The
PGSSMVJ therefore can be used as a measure of the degree
of recombinant engineering with known phylogenetic
relations.

PGSSMVJ allows for the recovery of nucleotide sequences
for human Abs

We performed a nucleotide sequence recovery benchmark to
demonstrate that triplet independent observations of single
nucleotide frequencies can approximate the human Ab
sequence space. 181,335 GenBank sequences of 20 different
species were translated with IgBLASTn.5 The nucleotide
sequence was optimized by maximizing the PGSSMVJ score.

Back-translation recovery rates peak for human sequences,
with an average heavy and light chain recovery of 95.9 ± 2.6%
or 97.2 ± 2.8%, respectively (Figure 2a, Figure S2a). As
expected, when we leveraged the human PGSSMVJ score to
determine the most likely human nucleotide sequence for Abs
of different species, correct nucleotide identification dropped,
labeling these Abs as non-human. For non-human primates,
recovery rates were Callithrix jacchus (93.5 ± 1.5%/
93.3 ± 2.2%), Chlorocebus sabaeus (93.4 ± 1.9%/94.5 ± 2.7%)
and Macaca fascicularis (92.8 ± 1.9%/94.7 ± 1.9%). The lowest
scoring species included Gallus (Red junglefowl) and Salmo
salar (Atlantic salmon) with heavy/light chain scores as low as
82.7 ± 1.1%/82.9 ± 1.4% and 82.6 ± 2.2%/N.A. A comparison
of PGSSMVJ scores with sequence recovery rates (Figure 2)
shows striking similarity, suggesting that the PGSSMVJ score
is a predictor of sequence recovery. Figure S2 depicts the
similarity of sequence recovery (a) with PGSSMVJ score (b)
for all 20 species.

The sequence recovery frequency strongly correlates with
the PGSSMVJ

A third property of PGSSMVJ is the ability to estimate the
nucleotide sequence recovery rate. We calculated the correla-
tion between average nucleotide mutation frequency
(PGSSMVJ score) with the sequence identities determined in
our sequence recovery benchmark. The recovered sequence is
of importance to determine the minimal distance to its con-
text for Ab-dataset comparisons. With a Mann-Whitney cor-
relation coefficient of R = 0.92, P = 0 for heavy chains (Figure
3c) and R = 0.86, P = 0 for light chains (Figure 3d), the
PGSSMVJ is approximately the sequence recovery rate for
human sequences ± 5%.

Ab therapeutics in context of the Ab repertoire of healthy
humans

We used 475 unique Abs that are either approved by the U.S.
FDA or are in clinical trials.47,48 All biologics were either
annotated with the INN designations49 HU, ZU, XI, and
XIZU as reported by Jain et al.47 or annotated with Human,
Humanized, Chimeric, and Mouse in case of antibodies taken
from IMGT/mAb-DB.48 For this study, we chose appropriate
labels for HU (Human), ZU (Humanized), XI (Chimeric), and
XIZU (Humanized Chimeric Hybrid) to match the designa-
tions used in IMGT/mAb-DB. The sequences were treated the
same way independent from its labeling in the algorithm. We
investigated the Ab sequences in the context of our three
individual immunome repertoires and in the context of one
large merged repertoire. For Z-Score calculation, mean and
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standard deviation (σ) from GenBank sequences (Figure 2b)
were used (Equation 2).

We compared the Z-Score of PGSSMVJ either grouped by
clinical stage (Figure 6) or source subsystem, which indicates
the origin and type of engineering of the biologics (Figure
5).49 Drugs with a human source scored highly similar to
GenBank sequences (Z-Score around 0), followed by huma-
nized, chimeric and murine Abs. This trend was consistent for
both drug datasets processed. Scores of sequences from mice
still score in a similar range of GenBank Mus musculus
sequences. This finding shows that antibody sequences from
IMGT/mAb-DB with a murine background remain distin-
guishable from biologics with human origin. On the other
hand, humanized and chimeric sequences populate a scoring
range closer to human and non-human primate sequences.
Pooling drugs by their clinical status shows that drugs in
Phase 2 to 3 clinical trials and approved Abs have an average
Z-score of −0.56 ± 1.05 (Phase 2), −0.77 ± 1.35 (Phase 3), and
−1.18 ± 1.45 (Approved). On average, human drugs appear
human-like with a Z-Score greater than −2, caused by the

high number of human (57) and humanized (68) drugs com-
pared to 13 chimeric. The low number of available sequences
aggravates the challenge to draw reliable conclusions. The
PGSSMVJ indicates that there is a non-human sequence
space compatible with the human system. However, we
hereby choose a Z-Score cutoff of −2 or greater to roughly
group the majority of clinical stage antibodies (Figure 6,
horizontal red line). For our next experiment, we used this
cutoff to distinguish between biologics/human antibodies, and
non-human antibodies.

To further investigate the role of public and private reper-
toires on the eligibility of Abs as drugs, we calculated
PGSSMVJ scores using each of the three individual immu-
nome repertoires. The majority of staged antibodies exhibit
a cutoff of −2 or greater (Figure 6). Hence, we roughly defined
any of the three scores as human-like as long as the Z-Score of
the PGSSMVJ was greater or equal to −2. Figure 7 depicts the
number of human-like scores for non-human (orange),
human GenBank Abs (blue), and biologics (green), separated
by light chains (a) and heavy chains (b). We observed high

Figure 3. The PGSSMVJ score approximates the evolutionary distance from human immunoglobulin germline genes to immunoglobulin germline genes belonging to
20 species. Amino acid sequences were downloaded from GenBank25 and then back-translated to nucleotide sequences using IgReconstruct. (a) The average
PGSSMVJ scores for heavy chain Ab sequences or (b) light chain Ab sequences are plotted against the phylogenetic distance from the assigned human germline gene
using IgReconstruct (see Methods section for details). The PGSSMVJ scores correlate with the phylogenetic distance with a Spearman rank correlation coefficient of
ρ = −0.83 (P = 2e-41, α = 0.01) for heavy chain Ab sequences and ρ = −0.83 (P = 2e-37, α = 0.01) for light chains Ab sequences. (c) Sequence recovery between
native heavy chain sequences and back-translated nucleotide sequences, made using IgReconstruct, gave a Spearman rank correlation coefficient of ρ = 0.92 (P = 0,
α = 0.01). (d) Sequence recovery between native light chain sequences and back-translated nucleotide sequences using IgReconstruct gave a Mann-Whitney
correlation coefficient of ρ = 0.86 (P = 0, α = 0.01). Mouse (M. musculus) Abs engineered to be human-like are colored red (top right corner of subplot a and b).
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agreement between the three scores for human and therapeu-
tic Abs. We also observed high agreement rates between all
three repertoires, including 70.0% of all biologics and 92.3%
of all human GenBank heavy chain sequences and 81.8% of all
biologics and 94.6% of all human GenBank light chain
sequences. In contrast only 8.8% light chain and 8.8% heavy
chain sequences of biologics and 1.3% of light chain biologics
and 2.6% of heavy chain human GenBank sequences were
scored as non-human in all three cases.

Performance and robustness

The initial release of our algorithm requires amino acid Ab
sequences that cover at least a fraction of the V and J gene-
encoded region, which can be successfully aligned via BLAST.
The algorithm then places optional D PGSSMs as well germ-
line gene CDR3 loop PGSSMs in the appropriate locations if
available. Templated regions as well CDR3 junctions are
modeled statistically; insertions are represented in the statis-
tical SNF model as gaps.

We compared the germline gene families with the top five
germline gene families assigned by IgBLASTp, the IgBLAST
tool for protein sequences (Table 1). Our method reliably
assigns germline V genes to our sequences when IgBLASTp
is taken as reference.

Output

We provide a webservice called IgReconstruct (http://meiler
lab.org/index.php/servers/IgReconstruct), which takes amino
acid sequences of Ab variable domain in FASTA format as
input. The output is presented graphically in a downloadable
PDF file (Figure 4), and a spreadsheet with equivalent
machine-readable information. The PDF report presents the
query amino acid sequence aligned to its reconstructed
nucleotide sequence, V, (D), and J germline gene alignments.
The germline gene alignments indicate sequence identity with
a dot and residue type replacements with a one-letter code.
The variable region is annotated in the form of branches for
the predicted IMGT-CDR1-3. V(D)J domains are colored
blue, red, and green and match the colors used in the
IgReconstruct flowchart (Figure 1). In case of overlapping
alignments, the region is colored according to the hierarchy
of the rearrangement tree.

Discussion

We have shown that statistics of SNFs of the variable region
using large human immunome repertoires are capable of
modeling the human Ab sequence space by predicting nucleo-
tide sequences from amino acid sequences (Figure 2). With

more and more large NGS nucleotide sequence datasets
becoming publicly available,4,12–15 IgReconstruct resembles
an approach to link the nucleotide sequence space with
resources of Abs where primarily amino acid information is
available, like de-novo computational models or structural
databases.38,50 Approaches of structural modeling of Abs30

have been made to include amino acid sequence profiles of
V and CDR3. IgReconstruct may pave the way to completely
model the germline gene rearrangement of an amino acid
sequence at the nucleotide level and provide full access to
large-scale human immunome repertoire statistics.

We demonstrated that the PGSSMVJ score, derived from
the SNF statistics of an individual Ab, is an appropriate
distance measure of a particular chosen Ab to a nucleotide
immunome repertoire or arbitrary large set of sequences
(context). For this, we fulfilled the requirement to find the
minimal distance by suggesting the most probable nucleotide
sequence for a given repertoire (context-dependent). The
PGSSMVJ then can be used to estimate the likelihood to
observe a context-dependent nucleotide sequence in the data-
set. Finally, the PGSSMVJ strongly correlates with the phylo-
genetic distance between human and non-human germline
genes (Figure 3). These combined properties allowed us to
estimate the similarity of a variable domain to a dataset and to
interpret it as a distance value. For example, further studies
might conclude that infections like HIV exhibit a greater
distance to the human sequence space, which results in less
effective immune responses.

A current shortcoming of our method is that our CDRH3
statistics, which include the heavy chain junctions, are only
length dependent. As a result, the major domain that diversi-
fies an immunome repertoire51–53 is merged into relatively
small bins, disregarding the sequence similarity and function.
As a result, our PGSSMVJ score is currently exclusively calcu-
lated from V and J gene templated regions. We do not
anticipate or observe sufficient performance using solely
CDRH3 PSSMs to distinguish between non-human, human,
and biologics only using CDRH3 sequences due to high varia-
bility (Figure S4). However, CDRH3 PSSMs can be used to
support the back-translation of amino acid sequences to
nucleotides (Figure S3).

We evaluated Ab sequences from 20 species and were able
to distinguish sequence origins between human primates,
non-human primates and other species reliably. While doing
this, we found that the prior species annotation in deposited
sequences often was not reliable. The signal that allows us to
distinguish between human vs. non-human persisted while
studying the IgReconstruct results of clinical-stage and FDA-
approved Abs (Figure 5). A non-human source could reliably
be detected in murine, chimeric, humanized chimeric and
humanized Abs. Due to the higher count of therapeutic Abs

Table 1. Recovery frequency of germline gene families for each species in the dataset. We display the frequency with which the germline gene rearrangement
families of our algorithm can be found in the top five IgBLASTp hits.

Antibody gene type

Agreement of inferred V germline gene family betweenIgReconstruct and IgBLASTp for indicated species

Homo sapiens Callithrix. jacchus Chlorobaeus. sabaeus Macaca fascicularis Mus musculus Oryctolagus cuniculus Rattus norvegicus

IGHV 96.4 98.5 97.6 93.5 94.4 83.7 93.2
IGKV 98.3 98.5 97.8 97.4 92.7 94.3 94.5
IGLV 96.1 96.8 92.6 97.1 99.7 99.7 96.0
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with a human sequence background, the combined popula-
tion of sequences scores at the lower end of “human-like”
(Figure 6). A more comprehensive therapeutic Ab and immu-
nome repertoire relationship might be developed in the
future, when our statistical Ab model incorporates a more
sophisticated CDRH3 model. The results indicate that there is
a non-human sequence space, which is compatible with
human biology (i.e., is associated with a manageable fre-
quency of adverse effects). Abs from that space can be used
as therapeutics. These sequences remain unlike the repertoire
in our study with low human likeness scores, despite huma-
nization efforts. However, the majority of Z-Scores of anti-
body biologics in clinical phases appears to be −2 or greater
(red horizontal line). For our next experiment, we used this
cutoff to distinguish between biologics/human antibodies, and
non-human antibodies.

Krawczyk et al. used amino acid alignments of variable and
CDR regions to show that sequences with high similarity to
therapeutic Abs can emerge in the human antibody repertoire,
whereas chimeric and humanized antibodies tend to be
slightly more dissimilar.54 This observation could be repro-
duced using SNFs mapped onto germline genes instead of
amino acid sequence alignments. In addition, a Z-score cutoff

of −2 was chosen, which enables us to separate between non-
human and human as well as biologics. The ability to separate
drugs from non-human antibodies is hypothesized to support
antibody drug development in the future.

The human-likeness score in this study is distinctly differ-
ent from previously published methods, where typically the
ability of the separation of real human and non-human
sequences was being maximized. Recent advances in deep-
learning have shown excellent classification capabilities.24

Here, we devised a method that generates a nucleotide fre-
quency model based on repertoire observations, which repre-
sents the plausibility that an Ab sequence arises from
a particular repertoire. The results of a previous study could
be confirmed, which has shown that biologics can be distin-
guished from human sequences.54 On the one hand, this study
does not aim to maximize the separation between truly
human and non-human sequences, resulting in less clear
boundaries between human and, for example, macaque
sequences.20 On the other hand, the approach could hypothe-
tically be used to capture the biologically relevant question of
the immunogenicity of an Ab, which cannot strictly be
answered by separating human from non-human sequences.
Consequently, a slightly worse separation performance

Figure 4. Alignment report generated by IgReconstruct. An example alignment report for the human heavy chain Ab sequence with the GenBank accession number
AF044419. Reports generated by IgReconstruct provide information on the query amino acid sequence (first row), the back-translation (second row) and alignments
to the germline gene sequences (third and following row if applicable). The color code blue (V gene), red (D gene), and green (J gene) refers to the aligned germline
PSSMs which were used to create the back-translated sequence. Columns without color are not aligned to a specific germline gene. Dots represent the germline
sequence; mutations are shown using the one-letter amino acid code. CDR loops 1 to 3 are inferred based on alignments to the V and J germline genes. The numbers
on top of the amino acid sequence was implemented using the IMGT numbering scheme.28 Non-templated regions at the V-D and D-J junctions flanking the D gene
alignment (red) are covered by the CDRH3 PSSM, but are not visualized in the color scheme. The PDF report gives a quick insight into the nature of the germline
gene rearrangement which is used to generate the back-translation and the human-likeness score.
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compared to the deep-learning approach of Wollacott et al.
could be observed with an Area Under the Curve (AUC) of
0.94 compared to 0.97 (Figure S6). At the same time,
IgReconstruct is able to leverage the substantial sizes of the
largest repertoires with hundreds of million to billion
sequences like the Observed Antibody Space15 by using

nucleotide germline gene rearrangements as reference, as
opposed to using smaller datasets in the ranges of ten thou-
sands of sequences of previous methods.18–21,24,19

IgReconstruct provides an alternative to extrapolating
sequence landscapes from a small representative set of
sequences in favor of leveraging large repertoires to its full

Figure 5. The PGSSMVJ score ranks human Abs highest when compared to either chimeric or mouse Abs used as biologics. Ab sequences for biologics were obtained
from IMGT/mAb-DB48 separated by heavy chain (blue) and light chain (orange). All PGSSMVJ scores were transformed into Z-scores and ranked within each group. (a)
Biologics analyzed from the Jain et al.47 study show that human Abs rank highest when compared to either chimeric or mouse Abs. Humanized Abs also rank higher
than either chimeric or mouse Abs. (b) Biologics from the IMGT monoclonal Ab database show a similar picture, with human sequences scoring higher than biologics
with a non-human origin. Approved Biologics are distinguishable from human antibodies. Mann-Whitney significance tests show statistical significance (p ≪ 10−7)
and are labeled with a star (*).

Figure 6. PGSSMVJ score cannot discriminate between clinical stage and FDA-approved biologics. The Z-Scores of heavy chains (blue) and light chains (orange) were
calculated using the distribution of GenBank sequences annotated as human. PGSSMVJ scores of biologics from Jain et al.,47 grouped by their clinical phase, show an
overall picture of human-like sequences (within one standard deviation of human GenBank sequences) and a smaller population of low scoring sequences. A Mann-
Whitney test between clinical trial Phase 2, 3 and FDA-approved Abs revealed no significance (ns) to very weak statistical significance (p < 5 x 10−2, *).
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extent. The definition of human-likeness in this study is
a novel approach with the potential to support Ab engineering
and explain immunogenic effects in future studies.

Materials and methods

We developed the PGSSM method and supplementary tools
for repertoire processing in Python-3.7.1. We provide
a webserver that generates germline gene rearrangements for
amino acid Ab sequences in text or PDF form, and numeric
information in a spreadsheet format.

Curation of sequences from three sources

We curated a set of 181,355 Ab sequence from GenBank.25

119,827 heavy chains Ab were from the following species:
Bos indicus (5), Bos taurus (1,520), Callithrix jacchus (328),
Camelus dromedarius (388), Canis lupus familiaris (253),
Chlorocebus sabaeus (82), Equus caballus (427), Felis catus
(94), Gallus gallus (157), Homo sapiens (76,728), Lama
glama (499), Macaca fascicularis (3,592), Mus musculus
(27,863), Oryctolagus cuniculus (1,253), Ovis aries (1719),
Rattus norvegicus (544), Salmo salar (109), Sus scrofa
(4029), Vicugna pacos (237). 61,528 light chain sequences
were from the species Anas platyrhynchos (298), Bos indicus
(191), Bos taurus (353), Callithrix jacchus (874), Camelus
dromedarius (32), Canis lupus familiaris (417), Chlorocebus
sabaeus (74), Equus caballus (319), Felis catus (76), Gallus
(301), Homo sapiens (41,347), Lama glama (15), Macaca
fascicularis (673), Mus musculus (13,249), Oryctolagus

cuniculus (1,099), Ovis aries (583), Rattus norvegicus (299),
and Sus scrofa (1,328). We applied our method on the
translated variable domains reported by IgBLASTn. To
estimate the performance, we calculated the nucleotide
sequence identity of the complete variable region and com-
pared the germline gene families assigned with our method
with the results from IgBLASTp for protein sequences.

In addition to GenBank, we used a dataset of 137 Ab
drugs47 and extracted 382 Abs for clinical use from IMGT/
mAb-DB.48 In total, we had sequences for 475 unique Ab
drugs available for analysis.

Calculation of PGSSMVJ scores and assessment of
human-likeness

We developed a method that creates position- and gene-
dependent scoring matrices for a given immunome repertoire
(Figure 1). Our PGSSMVJ score assesses the similarity of any
given amino acid antibody sequence to the repertoire by averaging
the observed single nucleotide frequencies over the Ab V and
J gene-encoded regions. The single nucleotide frequencies were
looked up in the PGSSM matrix that was generated for each
antibody individually (Figure S1). Equation 1 was used to calcu-
late the similarity score using a specific sequence and PGSSM
matrix.

Equation 1 Calculation of the PGSSMVJ score for the vari-
able and joining region calculated as an average of the
observed single nucleotide frequencies

PGSSMVJ ¼
XN

resi
PGSSMVJ resi; resnð Þ=N

Figure 7. Scoring medically relevant Abs using sequencing data from three individual human immunome repertoires. PGSSMVJ scores of biologics (Jain et al.47)
versus human and non-human Ab sequences from GenBank. All Ab sequences were scored using sequencing data from three separate immunome repertoires.4

Z-Scores of the PGSSMVJ was calculated using GenBank sequences annotated as human. A binary score was used to indicate if an amino acid sequence was human-
like. A score of 1 indicates a human-like sequence with a Z-score of −2 or greater. A score of 0 indicates a non-human-like sequence with a Z-score less than −2 (see
human data in Figure 6 for Z-score cutoff value). Each sequence was scored against each repertoire and summed up. Thus, a maximum number of three scores can
be achieved for any individual sequence which signifies that the sequence is human-like according to comparison with all three individual repertoires. Using the
cutoff of −2 allows to roughly separate between non-human (orange), human (blue) GenBank sequences and biologics (green). In case of light chains (a) the cutoff of
−2 classifies a larger amount (~30%) of non-human antibodies as human than in the case of heavy chains (~12%) (b).
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N: = Sequence Length
resi: = Residue Position i
resn: = Residue Type at position i ∈ {G, A, T, C}
PGSSMVJ(resi, resn): = Observed frequency of nucleotide resn
at position resi if aligned to V or J

The Z-Score of the PGSSMVJ score was used to estimate
the human likeness of an antibody. For Z-Score calculation,
we used the average and standard deviation of PGSSMVJ

scores we calculated for 76,728 human GenBank sequences
(Equation 2). We also defined an antibody as human-like as
long as its Z-Score was −2 or greater.

Equation 2. Z-Score calculation to assess the human like-
ness of PGSSMVJ scores using average and standard distribu-
tions from human GenBank antibodies

Z ¼ ðPGSSMVJ � μÞ=σ
μ: = Mean of PGSSMVJ scores of human GenBank sequences
σ: = Standard deviation of PGSSMVJ scores of human
GenBank sequences

Phylogenetic tree construction and the evolutionary
distance of germline genes

To characterize the PGSSMVJ score, we correlated scores of
20 species with the phylogenetic distance to human germ-
line genes. For this purpose, we constructed a phylogenetic
tree from the complete set of IMGT reference sequences55

of all species available using the program PhyML.56 For
each human V germline gene allele, we calculated the
minimal phylogenetic distance to each genus of the same
chain class (heavy, lambda, kappa) by summing up the
branch lengths of the closest path. We averaged the
sequence recovery rate and PGSSMVJ score for each germ-
line gene in the tree.

Availability

IgReconstruct is available as a webservice, hosted by Meiler Lab with no
restrictions for sequence files up to 4 MB. (http://meilerlab.org/index.
php/servers/IgReconstruct)
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