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Abstract: (1) Adipsin is an adipokine that may link increased fat mass and adipose tissue dysfunction
to obesity-related cardiometabolic diseases. Here, we investigated whether adipsin serum concen-
trations and adipose tissue (AT) adipsin mRNA expression are related to parameters of AT function,
obesity and type 2 diabetes (T2D). (2) Methods: A cohort of 637 individuals with a wide range of
age and body weight (Age: 18–85 years; BMI: 19–70 kg/m2) with (n = 237) or without (n = 400) T2D
was analyzed for serum adipsin concentrations by ELISA and visceral (VAT) and subcutaneous (SAT)
adipsin mRNA expression by RT-PCR. (3) Results: Adipsin serum concentrations were significantly
higher in patients with T2D compared to normoglycemic individuals. We found significant positive
univariate relationships of adipsin serum concentrations with age (r = 0.282, p < 0.001), body weight
(r = 0.264, p < 0.001), fasting plasma glucose (r = 0.136, p = 0.006) and leptin serum concentrations
(r = 0.362, p < 0.001). Neither VAT nor SAT adipsin mRNA expression correlated with adipsin serum
concentrations after adjusting for age, sex and BMI. Independent of T2D status, we found significantly
higher adipsin expression in SAT compared to VAT (4) Conclusions: Our data suggest that adipsin
serum concentrations are strongly related to obesity and age. However, neither circulating adipsin
nor adipsin AT expression reflects parameters of impaired glucose or lipid metabolism in patients
with obesity with or without T2D.

Keywords: adipose tissue; adipsin; obesity; T2D

1. Introduction

Obesity can be considered a slow motion pandemic, as its prevalence has been tripled
worldwide since 1975 [1–3]. Obesity increases the risk of cardiovascular, metabolic and
multiple other comorbidities [4,5], but the individual risk for these diseases may vary and
is at least partly related to distinct alterations in adipose tissue (AT), including its endocrine
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function [6,7]. In genetically susceptible people, increased energy intake results in AT
accumulation and is often accompanied by adipocyte hypertrophy [8,9], AT inflamma-
tion and heterogeneous body fat distribution [6,10]. Altered secretion of adipokines and
changes in AT metabolites release may link obesity to AT dysfunction and obesity-related
cardiometabolic diseases [4,6,7,11,12]. In the past two decades, hundreds of adipokines
have been discovered [13]. For many of these adipokines, we only have an incomplete
understanding about their mechanism of action, regulation of expression and clinical
relevance [14].

Adipsin is an adipokine that represents one of the major proteins expressed by
adipocytes [15]. First reported in 1987, adipsin has been identified as complement factor
D, an integral part of the complement system [16–18], which induces amplification of the
alternative complement pathway [18,19]. In this process, adipsin is integrated into an enzy-
matic cascade that releases the C5–C9 membrane attack complex and anaphylatoxins like
C3a and C5a [20]. Adipsin is predominantly synthesized by AT cells [17] and associations
between circulating adipsin and parameters of obesity and glucose metabolism have been
found recently [21–23]. Adipsin catalyzes the release of complement factor C3a, which
has been shown to stimulate insulin production in pancreatic ß-cells [20]. Adipsin serum
concentrations are reduced in patients with type 2 diabetes (T2D) and ß-cell failure [20].
Furthermore, adipsin facilitates glucose uptake and increases triglyceride synthesis in
adipocytes [24]. Mice with a genetic ablation of adipsin are characterized by impaired
glucose homeostasis in response to diet-induced obesity [18,20]. The model revealed an
important role of adipsin in the regulation of normal insulin secretion. Taken together, these
recent findings propose adipsin as an important AT-secreted factor that may link obesity
and adipocyte dysfunction to impaired β-cell function and cardiometabolic diseases.

We therefore tested the hypothesis that adipsin gene expression in human AT and
its serum concentrations are related to obesity, fat distribution and parameters of AT
function and glucose metabolism. We sought to determine whether AT adipsin mRNA is
differentially expressed in subcutaneous and visceral fat depots and whether it correlates
to adipsin serum concentrations in patients with obesity with or without T2D.

2. Results
2.1. Adipsin mRNA Is Higher in SAT Compared to VAT but Not Related to Obesity and T2D

Analysis of 607 paired AT samples showed significantly higher adipsin mRNA expres-
sion in SAT compared to VAT (Figure 1A), regardless of the degree of obesity or T2D status
(Figure 1). The results showed a trend towards increased expression of VAT adipsin mRNA
according to the degree of obesity (Figure 1C) and to the diabetes status (Figure 1D). There
was no significant difference between women and men in adipsin gene expression in both
fat depots (Figure 1B).

We performed additional analyses in subgroups of individuals with a BMI < 30 kg/m2

(n = 21), individuals with a BMI between 30 and 40 kg/m2 (n = 48) and patients with a
BMI > 40 kg/m2 (n = 538). SAT and VAT adipsin mRNA expressions were not significantly
different between these BMI subgroups (Figure 1C).

We further stratified study participants according to glucose tolerance and T2D status.
SAT and VAT adipsin mRNA expressions were not significantly different across participants
with normal or impaired glucose tolerance and T2D (Figure 1D). Linear regression analysis
revealed a significant positive relationship between SAT and VAT adipsin mRNA expres-
sion, even after adjustment for BMI, sex and age (Figure 2). SAT adipsin mRNA expression
significantly correlated with the waist-to-hip ratio (WHR) and remained significant even
after respective adjustment. VAT adipsin mRNA expression significantly correlated with
serum leptin concentrations adjusted for age, sex and BMI (Table 1). VAT adipsin mRNA ex-
pression significantly correlated with circulating adipsin levels in the univariate regression
analysis, but this association did not withstand adjustment for age, sex and BMI (Figure 3).
Moreover, we did not observe a significant association between SAT adipsin expression and
serum adipsin concentrations (Figure 3).
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Figure 1. Adipsin mRNA expression in visceral (VAT) and subcutaneous (SAT) adipose tissue in 
control individuals and patients with obesity and/or type 2 diabetes (T2D). Adipsin gene expression 
in (A) the entire study population (n = 607); (B) men (n = 163) and women (n = 444); (C) subgroups 
of controls (BMI < 30 kg/m2, n = 21), patients with moderate obesity (30 kg/m2 < BMI < 40 kg/m2, n = 
48) or morbid obesity (BMI > 40 kg/m2, n = 538); (D) subjects with normal glucose tolerance (NGT, 
n = 274), impaired glucose tolerance (IGT, n = 14) or T2D (n = 232). Statistical significance at * p < 0.05 
and ** p < 0.01 when comparing adipsin mRNA expression between both adipose tissues. Data are 
given as means ± SEM. 

 
Figure 2. Linear regression of visceral and subcutaneous adipsin mRNA expression. Adjusted p-
values were calculated in linear regression after adjusting for age, sex and BMI. VAT, visceral 
adipose tissue; SAT, subcutaneous adipose tissue. 

Figure 1. Adipsin mRNA expression in visceral (VAT) and subcutaneous (SAT) adipose tissue in
control individuals and patients with obesity and/or type 2 diabetes (T2D). Adipsin gene expression
in (A) the entire study population (n = 607); (B) men (n = 163) and women (n = 444); (C) subgroups
of controls (BMI < 30 kg/m2, n = 21), patients with moderate obesity (30 kg/m2 < BMI < 40 kg/m2,
n = 48) or morbid obesity (BMI > 40 kg/m2, n = 538); (D) subjects with normal glucose tolerance
(NGT, n = 274), impaired glucose tolerance (IGT, n = 14) or T2D (n = 232). Statistical significance at
* p < 0.05 and ** p < 0.01 when comparing adipsin mRNA expression between both adipose tissues.
Data are given as means ± SEM.
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Table 1. Correlation analyses of visceral and subcutaneous adipsin mRNA expression and adipsin
serum levels with anthropometric and metabolic parameters (n = 637).

SAT Adipsin mRNA
r (p-Value; p-Value adj)

VAT Adipsin mRNA
r (p-Value; p-Value adj)

Adipsin Serum Levels
r (p-Value; p-Value adj)

Age (years) 0.078 (0.057; 0.064) 0.074 (0.071; 0.025) 0.282 (<0.001; <0.001)
Body weight (kg) −0.018 (0.664; 0.219) 0.058 (0.165; 0.460) 0.264 (<0.001; <0.001)

Height (m) −0.058 (0.166; 0.137) −0.017 (0.687; 0.623) 0.037 (0.444; 0.534)
BMI (kg/m2) 0.008 (0.849; 0.482) 0.077 (0.060; 0.170) 0.359 (<0.001; <0.001)

Waist circumference (cm) −0.234 (0.080; 0.576) 0.089 (0.504; 0.670) 0.137 (0.439; 0.398)
Hip circumference (cm) 0.039 (0.803; 0.971) 0.175 (0.262; 0.051) 0.099 (0.66; 0.45)

WHR −0.49 (0.001; <0.001) 0.03 (0.849; 0.666) −0.108 (0.633; 0.170)
Body fat (%) 0.048 (0.569; 0.290) 0.081 (0.330; 0.561) 0.073 (0.423; 0.101)

FPG (mmol/L) 0.025 (0.576; 0.338) 0.022 (0.624; 0.748) 0.136 (0.006; 0.948)
FPI (pmol/L) −0.048 (0.588; 0.911) −0.100 (0.256; 0.875) 0.126 (0.176; 0.53)

HbA1c (%) 0.018 (0.770; 0.272) 0.036 (0.547; 0.727) 0.044 (0.470; 0.095)
HOMA-IR −0.074 (0.402; 0.777) −0.100 (0.253; 0.574) 0.076 (0.410; 0.794)

Total Cholesterol (mmol/L) 0.003 (0.955; 1.00) 0.019 (0.751; 0.278) −0.067 (0.326; 0.896)
HDL-C (mmol/L) 0.042 (0.476; 0.462) −0.050 (0.401; 0.615) −0.012 (0.858; 0.486)
LDL-C (mmol/L) 0.012 (0.842; 0.907) −0.025 (0.681; 0.455) 0.007 (0.919; 0.508)

Triglycerides (mmol/L) 0.018 (0.753; 0.671) 0.033 (0.571; 0.753) −0.068 (0.313; 0.694)
CrP (mg/L) −0.065 (0.115; 0.158) −0.049 (0.238; 0.297) 0.039 (0.411; 0.825)

Leptin serum levels (ng/mL) 0.008 (0.875; 0.44) 0.135 (0.001; 0.021) 0.362 (<0.001; <0.001)

BMI, body max index; FPG, fasting plasma glucose; FPI, fasting plasma insulin; HDL-C, high density lipoprotein
cholesterol; LDL-C, low density lipoprotein cholesterol; r, Pearson correlation coefficient; SAT, subcutaneous
adipose tissue; TG, triglycerides; VAT, visceral adipose tissue; WHR, waist to hip ratio. Non-normally distributed
parameters were logarithmically transformed to approximate a normal distribution. p-values adj were calculated
in linear regression after adjusting for age, sex and BMI, except for weight and % body fat, which were adjusted
only for age and sex. Significant correlations (p < 0.05) are highlighted in bold.
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tions, body weight, BMI and leptin serum concentrations (Table 1).  

Figure 3. Linear regression of adipsin serum concentrations with (A) subcutaneous adipose tissue
(SAT) and (B) visceral (VAT) adipsin mRNA expression. Adjusted p-values were calculated in linear
regression after adjusting for age, sex and BMI.

2.2. Adipsin Serum Concentrations Are Higher in Patients with Obesity and T2D

Adipsin serum concentrations were not different between women and men (p = 0.549).
Patients with a BMI > 40 kg/m2 had significantly higher adipsin serum concentrations
compared to patients in the BMI range between 30 and 40 kg/m2 (Figure 4). Importantly,
we found significant positive relationships between adipsin serum concentrations, body
weight, BMI and leptin serum concentrations (Table 1).
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40 kg/m2, n = 38) and morbidly obese patients (BMI > 40 kg/m2, n = 414). Statistical significance at
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Adipsin serum concentration was significantly higher in patients with T2D compared
to normoglycemic controls (Figure 5). There was no significant difference in circulat-
ing adipsin levels between patients with T2D and impaired glucose tolerance (Figure 5).
Furthermore, we stratified patients with T2D for whom we had information on their di-
abetic complications, such as nephropathy and retinopathy, among others, according to
the presence of one or more diabetic complications (Subjects with T2D but without dia-
betic complications, n = 75; subjects with T2D and one or more diabetic complications,
n = 57). However, adipsin serum concentrations were not statistically different between
groups of T2D patients with or without diabetic complications (p = 0.965). Furthermore,
adipsin serum levels significantly correlated with age and fasting plasma glucose (FPG)
(Table 1). However, the correlation of serum adipsin with FPG did not remain significant
after adjustment for sex, age and BMI (Table 1).
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3. Discussion

Adipsin has been suggested to play a role in the development of obesity and its comor-
bidities [17,21–23]. Circulating adipsin has been shown to decline in several animal models
for obesity and diabetes [25]. Moreover, rodent studies demonstrated that adipsin treat-
ment has beneficial effects on insulin secretion and glucose parameters [20,21]. Circulating
adipsin has been proposed to predict ß-cell failure in a subgroup of patients with T2D [20].
On the other hand, human studies found positive correlations between adipsin serum
concentrations and BMI [21,26]. Interestingly, increased adipsin serum concentrations seem
to be associated with acquired syndromic partial lipodystrophy [27].

A mechanistic role of adipsin in the development of obesity and T2D could be related
to its function in regulating factors of the complement system, most importantly C3 [28–30].
C3a, which is part of the complement system, is released by the upstream catalytic action of
adipsin and may then stimulate insulin synthesis in pancreatic ß-cells under hyperglycemic
conditions [20]. Indeed, deficiency or antagonism of the C3a receptor 1 protects mice against
obesity, reduces AT inflammation and improves systemic insulin sensitivity [29,30]. In this
context, obesity-associated AT inflammation could be aggravated by complement activation
and subsequent infiltration of immune cells into AT [31]. Consequently, adipsin may play a
role in the pathogenesis of human obesity and its comorbidities including T2D. We therefore
tested the hypothesis that AT adipsin mRNA expression and adipsin serum concentrations
are related to parameters of obesity, glucose metabolism and AT distribution.

In the context of a cross-sectional study including 637 individuals with a wide range of
body weight and metabolic parameters, we analyzed relationships between adipsin serum
concentrations and/or adipsin mRNA expression in visceral and subcutaneous AT with
body weight, anthropometric and metabolic traits. Our approach extends previous human
adipsin studies [15,17,20–22] by providing parallel data on circulating adipsin and adipsin
gene expression from two abdominal fat depots.

As main findings, our analyses revealed that adipsin serum concentrations were
significantly higher in patients with T2D compared to normoglycemic individuals and
that adipsin serum concentrations significantly correlated with age, body weight, BMI,
fasting plasma glucose and leptin serum concentrations. AT adipsin mRNA expression
did not correlate with adipsin serum concentrations after adjustment for age, sex and
BMI. Independent of T2D status, we found significantly higher adipsin expression in SAT
compared to VAT. The observed fat depot differences in adipsin expression are in accordance
with data from the Genotype-Tissue Expression (GTEx) repository [32] and from a study of
16 men and 16 women with a BMI between 20 and 54 kg/m2 [33]. Given that VAT and SAT
adipsin gene expressions are significantly correlated, fat-depot specific differences in the
regulation of adipsin expression may be related to intrinsic differences between these depots,
including cellular composition rather than a depot-specific regulation of expression. Our
findings indicate that adipsin may not be exclusively produced by AT and that, to some
extent, it is released from other tissues. GTEx data show increased adipsin expression levels,
of course, in SAT and VAT, but also in coronary arteries, tibial nerve and the female breast
and vagina in human subjects [32]. Further studies are required to define the contribution
of tissues other than AT to circulating adipsin levels.

Higher adipsin gene expression in SAT may reflect lower AT stressors and lower AT im-
mune cell infiltration compared to visceral fat depots [34–36] suggesting that adipsin may
predict “healthier AT”. In accordance with another study [33], we found a trend towards
increased expressions of VAT adipsin mRNA with increasing BMI and T2D. It has been
suggested that adipsin may reflect obesity subphenotypes, including metabolically healthy
obesity [20]. On the other hand, SAT adipsin gene expression significantly negatively corre-
lated with WHR, suggesting that adipsin expression either reflects fat distribution or may
contribute to the regulation of regional body fat accumulation. Supporting this hypothesis
and recent data from other groups [37–39], we also found that patients with obesity and
T2D have significantly higher circulating adipsin compared to normoglycemic individuals
in the same BMI range. However, these differences were not reflected in differences in
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adipsin AT expression among patients with obesity discordant for the T2D status. Studies
that excluded patients with morbid obesity (including only BMI < 40 kg/m2) did not find
differences in circulating adipsin between patients with T2D and controls [40,41].

We found a positive correlation between adipsin serum concentrations and VAT adipsin
expression. However, this correlation did not remain significant after adjustment for poten-
tial confounding factors age, sex and BMI. Although visceral fat depot is characterized by
lower adipsin expression compared to SAT, it could contribute to higher adipsin serum con-
centrations observed in patients with T2D, thereby further linking visceral fat distribution
to metabolic alterations of obesity. Our study design did not allow drawing conclusions
about a mechanistic role of adipsin in the link between obesity, VAT dysfunction and the
development of impaired glucose metabolism. Future studies are needed to gain further
knowledge about the role of adipsin in the development of obesity and T2D.

Linear regression analyses further revealed a positive relationship between serum
adipsin levels and age, which remained significant after adjustment for sex and BMI. Our
results are in contrast to data from a Chinese study that did not find associations between
age and circulating adipsin [40]. However, we confirm data from other studies [37,42,43]
that adipsin serum levels are not significantly different between men and women. In
addition, our results showed that adipsin in SAT and VAT was not differently expressed in
women and men.

Our data confirm previous studies in smaller cohorts [21,25,26,44–46] that adipsin
serum concentration positively correlates with body weight and BMI. The association
between adipsin and BMI has been attributed to effects of increased fat mass [45], however,
univariate regression analyses did not identify body fat mass as a significant correlate
of circulating adipsin. On the other hand, leptin—another correlate of body fat mass—
positively correlated with adipsin, suggesting that our analyses of body fat associations may
lack statistical power due to a lower number of individuals for whom body composition
measurements were available.

Our results are also consistent with the assumptions by Lo et al., who found increased
adipsin levels in the early stages of the metabolic syndrome, which are attributed to the
increased amount of AT in obesity to compensate for the decreased adipsin synthesis per
AT unit [20]. Furthermore, we found a significantly positive relationship between adipsin
serum levels and fasting plasma glucose, at least in unadjusted univariate correlation
analyses. The fact that statistical significance of the relationship between adipsin and
FPG was lost after adjusting for age and BMI suggests that these confounding factors
are stronger determinants of adipsin serum concentrations. Previously reported inverse
correlations between adipsin and FPG [21,40,41] may be explained by differences between
these cohorts and ours with regard to the duration of hyperglycemia and other indices
of the metabolic status [20]. Lo et al. suggest that higher adipsin synthesis reflects early
stages of T2D and plays a compensatory role in the organisms attempt to normalize glucose
and lipid metabolism [20]. During T2D progression, adipsin levels might decrease in the
context of AT dysfunction and, eventually, ß-cell failure may develop [20]. In this context,
Lo et al. found decreased circulating adipsin levels in patients with T2D and ß-cell failure
compared to patients with T2D and preserved ß-cell function [20]. Our findings do not
support previous reports suggesting that adipsin serum concentrations are lower in animal
models for diabetes and people with T2D [20,21,40,47,48]. Low circulating adipsin seems
to be particularly associated with ß-cell failure in patients with T2D [20,21,40]. We found
higher adipsin serum concentrations in patients with impaired glucose tolerance (IGT), a
prediabetic state. These data suggest that patients with T2D included into our analyses
may be characterized by a preserved or at least better ß-cell function compared to the
patients with T2D included into previous studies [20,21,40]. Indeed, higher adipsin serum
concentrations in people with IGT support the hypothesis that increased circulating adipsin
may reflect an intrinsic mechanism of the organism to compensate for impaired insulin
secretion. Longitudinal studies over the entire range from prediabetes to advanced T2D
stages are required to test this hypothesis in the future. Taken altogether, adipsin might
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become clinically relevant as a future target to improve ß-cell function in patients with T2D.
The manipulation of adipsin as a molecular switch to improve insulin secretion has been
suggested to further study in the context of treating ß-cell failure in T2D [20].

In our study, we included T2D patients with concomitant medication including met-
formin, DPP-4 and SGLT-2 inhibitors or GLP-1 receptor agonists. We can, therefore, not
exclude that specific anti-diabetic medication may affect adipsin serum concentrations.
In this context, Taşdemir et al. reported that diabetic rats treated with metformin have
increased plasma adipsin levels compared to untreated diabetic rats [49]. Moreover, we
investigated whether adipsin serum concentrations reflect T2D complications such as car-
diovascular disease, retinopathy or nephropathy. In this context and against the hypothesis
that circulating adipsin may decline with more advanced stages of T2D, we did not find
differences in circulating adipsin between subgroups of T2D patients with or without
secondary diabetes complications.

Our study has some limitations. First, we predominantly included patients under-
going bariatric surgery with a BMI > 40 kg/m2. This high body weight bias needs to
be acknowledged. Therefore, our results may not reflect associations between adipsin
and metabolic traits in the lower BMI range. In addition, we cannot exclude effects of
concomitant medications such as antidiabetic, antihypertensive medications, statins or
pain killers, although there was no statistical evidence for an interference between adipsin
measurements and specific pharmacotherapies. Although serum samples were taken im-
mediately prior to surgery, the pre-operative fasting period may differentially influence
adipsin AT expression and adipsin serum concentrations. Moreover, despite adipsin being
released from AT and thereforeis considered an adipokine, its role as complement factor
D and alternative pathway convertase cofactor in the cleavage of C3 is functionally rel-
evant [16,18]. Therefore, data on complement levels such as total C3 levels would have
further extended our general view on presented data. Since we are not able to provide data
on complement factor serum concentrations, we have to acknowledge the lack of data on
the complement factor status of our study participants as a limitation.

In conclusion, our data suggest that adipsin serum concentrations are strongly related
to obesity and age. However, neither circulating adipsin nor adipsin AT expression reflects
the parameters of impaired glucose or lipid metabolism in patients with obesity with or
without T2D.

4. Materials and Methods
4.1. Subjects

We included 637 metabolically well-characterized participants of the Leipzig Obesity
BioBank recruited at four bariatric surgery centers in Leipzig, Karlsruhe, Dresden and
Gera (all in Germany) (Table 2). All subjects underwent clinical phenotyping as described
previously [7,50,51]. All subjects had a stable weight, defined as no fluctuations of > 2% of
body weight for at least 3 months before surgery. According to American Diabetes Asso-
ciation (ADA) criteria [52], 248 study participants (~39%) were diagnosed with T2D. We
defined the following exclusion criteria: (i) thyroid dysfunction, (ii) alcohol or drug abuse,
(iii) pregnancy and (iv) treatment with thiazolidinediones. The study was approved by the
ethics committee of the University of Leipzig (Approval numbers: 159-12-21052012 and
017-12-23012012). The study design follows the Declaration of Helsinki and all participants
gave written informed consent prior to participation.
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Table 2. Anthropometric and metabolic characterization of the cohort.

BMI < 30 kg/m2

(n = 21)
BMI 30–40 kg/m2

(n = 52)
BMI > 40 kg/m2

(n = 564)

Age (years) 66.13 ± 10.56 48.41 ± 11.34 *** 46.60 ± 11.93 ***
Men/Women (n) 14/7 14/38 148/416

T2D (n) 4 22 211
Body weight (kg) 75.90 ± 12.28 107.41 ± 14.19 *** 142.81 ± 26.36 ***,###

Height (m) 1.74 ± 0.97 1.70 ± 0.084 1.70 ± 0.098
BMI (kg/m2) 25.05 ± 2.33 36.70 ± 2.84 *** 49.52 ± 7.21 ***,###

Body fat (%) 22.91 ± 5.01 42.97 ± 9.40 *** 48.42 ± 10.09 ***
Waist circumference (cm) 96.39 ± 14.95 122.50 ± 9.20 * 143.667 ± 14.22 ***
Hip circumference (cm) 97.11 ± 10.64 124 ± 11.32 * 149.42 ± 14.50 ***,#

WHR 0.99 ± 0.11 0.99 ± 0.17 0.99 ± 0.09
FPG (mmol/L) 5.72 ± 0.66 6.12 ± 1.96 6.40 ± 2.43
FPI (pmol/L) 47.33 ± 29.99 115.78 ± 88.57 145.47 ± 104.87

HbA1c (%) 5.73 ± 0.45 6.25 ± 1.46 5.99 ± 1.139
HOMA-Index 1.67 ± 1,08 5.00 ± 4.16 5.90 ± 6.00

Total Cholesterol (mmol/L) 5.40 ± 1.25 5.30 ± 1.27 5.99 ± 1.139
HDL-Cholesterol (mmol/L) 1.25 ± 0.25 1.26 ± 0.30 1.16 ± 0.61
LDL-Cholesterol (mmol/L) 3.31 ± 0.98 3.46 ± 1.15 3.09 ± 0.93

Triglycerides (mmol/L) 1.26 ± 0.57 1.98 ± 1.22 2.06 ± 2.24
CrP (mg/L) 9.75 ± 11.77 7.00 ± 10.48 12.57 ± 17.58

AT adipsin mRNA (n) 21 48 538
Adipsin serum levels (n) 4 38 414

Parallel adipsin mRNA and serum
levels data (n) 4 32 388

Data are given as means ± SD. Statistical significance at *** p < 0.001 and at * p < 0.05 when compared with
BMI < 30 kg/m2 group. Statistical significance at ### p < 0.001 and at # p < 0.05 when compared with BMI
30–40 kg/m2 group. AT, adipose tissue; BMI, body max index; FPG, fasting plasma glucose; FPI, fasting plasma in-
sulin; HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; SAT, subcutaneous
adipose tissue; VAT, visceral adipose tissue; WHR, waist to hip ratio.

4.2. Measurement of Adipsin Serum Concentrations

Adipsin serum concentrations were analyzed in duplicate using enzyme-linked im-
munosorbent assay (ELISA) according to the manufacturer’s instructions (Quantikine®

ELISA Human Complement Factor D, R&D Systems, Minneapolis, MN, USA) in 455 pa-
tients. The age from these subjects ranged from 18 to 76 years and body mass index (BMI)
from 30 to 70 kg/m2. Adipsin assay sensitivity was 0.025 pg/mL and inter-assay and
intra-assay coefficients of variation were less than 9% and 6.4%, respectively.

4.3. Adipsin mRNA Expression Analysis in AT

Paired samples of abdominal omental AT (visceral, VAT) and subcutaneous AT (SAT)
were obtained from 607 Caucasian men (n = 163) and women (n = 444) (Table 2), who
underwent open abdominal surgery as described previously [50,51]. The age ranged
from 18 to 85 years and body mass index (BMI) from 19 to 70 kg/m2 (Table 2). AT was
immediately frozen in liquid nitrogen and stored at −80 ◦C. RNA was extracted from AT
by using the RNeasy Lipid Tissue Mini Kit (Qiagen, Hilden, Germany), and qPCR was
performed as described elsewhere [53,54]. Real-time quantitative PCR was performed with
the TaqMan Assay predesigned by Applied Biosystems (Foster City, CA, USA) for the
detection of human adipsin (Hs00157263_m1) and glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) (Hs 02786624_g1) mRNA expression in AT. All reactions were carried out in
96-well plates using the QuantStudio (TM) 6 Flex System Fast Real-Time PCR system.
Adipsin mRNA expression was calculated relative to GAPDH mRNA expression.

4.4. Statistical Analyses

Prior to statistical analysis, non-normally distributed parameters were logarithmically
(ln) transformed to approximate a normal distribution. Results are expressed as mean ± SD
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(standard deviation). Multivariate linear relationships between adipsin mRNA expression
and phenotypic traits were assessed by generalized linear regression models. Differences
in adipsin mRNA expression between visceral and subcutaneous AT were assessed using
the paired Student’s t-test or one-way ANOVA. Statistical analyses were performed using
SPSS/PC+ for Windows statistical package (Version 25.0; SPSS, Chicago, IL, USA).
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