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ABSTRACT

We describe a new approach for labeling of unique
sequences within dsDNA under nondenaturing con-
ditions. The method is based on the site-specific
formation of vicinal nicks, which are created by nick-
ing endonucleases (NEases) at specified DNA sites
on the same strand within dsDNA. The oligomeric
segment flanked by both nicks is then substituted, in
a strand displacement reaction, by an oligonucleo-
tide probe that becomes covalently attached to the
target site upon subsequent ligation. Monitoring
probe hybridization and ligation reactions by electro-
phoretic mobility retardation assay, we show that
selected target sites can be quantitatively labeled
with excellent sequence specificity. In these experi-
ments, predominantly probes carrying a target-
independent 3' terminal sequence were employed.
At target labeling, thus a branched DNA structure
known as 3'-flap DNA is obtained. The single-
stranded terminus in 3'-flap DNA is then utilized to
prime the replication of an externally supplied ssDNA
circle in a rolling circle amplification (RCA) reaction.
In model experiments with samples comprised of
genomic A-DNA and human herpes virus 6 type B
(HHV-6B) DNA, we have used our labeling method in
combination with surface RCA as reporter system to
achieve both high sequence specificity of dsDNA
targeting and high sensitivity of detection. The
method can find applications in sensitive and specific
detection of viral duplex DNA.

INTRODUCTION

Considerable interest in methodologies capable of label-
ing and detecting specific double-stranded (ds) DNA

sequences without requiring DNA denaturation has arisen
in recent years, as it has been recognized that such
approaches may open up new avenues for functional
studies of DNA-modifying enzymes, for studies of
intracellular DNA trafficking, genomic analysis, medical
diagnostics or pathogen identification. Direct dsDNA
labeling technologies may provide with a significant
improvement in the specificity of DNA targeting, may
result in reduced assay time and cost, may be easily
implemented in miniature diagnostic devices, and may
lead to cellular diagnostic assays (1).

A number of different approaches for sequence-specific
dsDNA Ilabeling have been proposed. In a number of
methods, DNA molecules are tagged sequence-specifically
at short sequence motifs (4-8bp), which occur quite
frequently within genomic DNA. Some of them apply site-
specific binding of synthetic molecules [such as peptide
nucleic acids (PNAs) (2-4) or hairpin polyamides (5,6)]
or of a restriction endonuclease to directly label cognate
dsDNA sequences (7). In contrast to these noncovalent
dsDNA-labeling strategies, reporter groups such as
fluorophores can be incorporated covalently into
dsDNA at target sequences by using a methyltransferase
in the presence of a chemically modified cofactor (8,9) or
by using a nicking endonuclease followed by nick
translation (10,11). The interrogation of such recurrent
sequence sites has been successfully employed in combina-
tion with DNA stretching techniques and fluorescent
single molecule detection for novel DNA-mapping tech-
nology (3,4,10,11). It has been projected that this
technology may be especially useful in the rapid identifica-
tion of microbial pathogens. However, this technology is
not without limitations, as sites must be accurately labeled
and labeling positions precisely determined in order to
compare calculated (virtual) and experimental sequence
motif maps. Being incompatible with other detection
schemes, the developed approaches moreover require
sophisticated  instrumentation for single molecule
detection.
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We and others have been pursuing alternative
approaches to label dsDNA sequence-specifically at sites
ranging from 15 to 30 bp. In a number of methods, a single
oligonucleotide probe is hybridized to its complementary
target sequence at an internal DNA segment and,
following hybridization of its termini to a scaffold
oligonucleotide, circularized into a padlock-like complex
by ligation (12-16). In another approach, a split protein
system is reassembled in the presence of a cognate dsSDNA
target sequence (17,18). Provided that labeling is extre-
mely sequence-specific and occurs with high efficiency,
such approaches may allow labeling and detection of
a single (or few) unique sequence(s) within a genome
yielding, for instance, new assays for genome identifica-
tion. We have developed an exceedingly specific approach
of this kind based on local opening of a dsDNA segment
(~20bp) by homopyrimide PNAs and subsequent circular
probe assembly (19,20). High sensitivity of detection is
achieved using the circularized probe as a template for
rolling-circle amplification (RCA) (21-24). Recently, we
have successfully applied this methodology on surface-
immobilized cells for bacterial detection (25,26).

Here, we propose another method for highly sequence-
specific dsDNA labeling of unique genomic DNA
sequences under nondenaturing conditions, which does
not involve PNAs. This method generates stable DNA
tagging and is potentially versatile to either be used with
single molecule detection or in combination with signal
amplification technology. We demonstrate that in two
steps comprising cooperative actions of nicking endonu-
cleases, probe oligonucleotides, and a DNA ligase,
selected dsDNA sites can be labeled in high yield
and with excellent sequence specificity. Labeled DNA
samples are detected, in a heterogeneous assay format,
through RCA performed in the presence of an amplicon-
complementary PNA beacon (27-29). In proof-of-concept
experiments we have applied our approach for the specific
labeling and detection of target sites present in genomic
DNA of dsDNA viruses.

MATERIALS AND METHODS
Materials (chemicals, DNAs and enzymes)

Succinic anhydride, 1-methyl-2-pyrrolidinone, 20x SSC
buffer and betaine were obtained from Sigma-Aldrich.
Poly-L-lysine microscope slides were from PolySciences.
Oligodeoxyribonucleotides were purchased from Integ-
rated DNA Technologies (Coralville, IA, USA). Except for
probes P*-45k-3’ and P*-18k (HPLC-purified) and CO-1
(PAGE-purified), oligonucleotides were purchased with-
out purification. Lambda DNA was obtained from New
England BioLabs (Berverly, MA, USA), and human
herpes virus 6 type B viral DNA was obtained from
Advanced Biotechnologies Inc (Columbia, MD, USA).
DNA concentrations were determined on a NanoDrop
ND-1000 spectrophotometer. CircLigase and Ampligase
were obtained from Epicentre (Madison, WI, USA).
All  other enzymes were purchased from New
England BioLabs (Berverly, MA, USA). PNA beacon,
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Flu-Glu-AAGGCTAGGAA-K-K(Dabcyl)-NH,, was
synthesized as described in ref. 29.

Identification of potential target sites

Genome sequences of dsDNA viruses (http://www.ncbi.
nlm.nih.gov/genomes/VIRUSES/10239.html) were pasted
into RestrictionMapper (http://www.restrictionmapper.
org/), and virtually digested by selecting the restriction
endonuclease analogs of nicking endonucleases. From
these digests, fragments with appropriate length were
selected. Sequences with two nicks at opposing strands
were then discarded.

PCR

Reactions were performed in 1x ThermoPol buffer (New
England Biolabs) containing 200 uM of each dNTP,
0.5uM ecach of a corresponding primer pair F1 and R1
(see Supplementary Table 1) and 0.02 U/ul of Tag DNA
polymerase. Amplification was carried out with an initial
denaturation step at 94°C for 60s, followed by 37 cycles of
denaturation at 94°C for 30s, primer annealing at 56°C
for 30 s and extension at 72°C for 30s. The last cycle was
followed by an extension step at 72°C for 2min. Like all
other DNA samples that were obtained by enzymatic
reactions (see below), PCR amplicons were purified by a
standard workup procedure, i.e. extracted with phenol/
chloroform/isoamyl alcohol (25:24:1) and chloroform/
isoamyl alcohol (24:1), precipitated by the addition of
2 volumes of cold ethanol and centrifugation and
dissolved in 1x TE buffer [10mM Tris—=HCI (pH 7.4),
0.1 mM EDTA].

Assembly PCR

Assembly PCR was performed by conducting first
extension reactions with hybridized, overlapping oligonu-
cleotides in the absence of primers, followed by PCR
amplification in the presence of primers. Extension
reactions were performed in 1 x Pfu reaction buffer
(Stratagene) containing 20nM of oligonucleotides A-D
(see Supplementary Table 1 for sequences), 200uM
dNTPs and 0.025U/ul of cloned Pfu DNA polymerase
(Stratagene) at the following conditions: one step at 94°C
for 60s, followed by 10 cycles of denaturation at 94°C for
30s, annealing at 35°C for 30s and extension at 72°C for
30s. The last cycle was followed by an extension step
at 72°C for 2min. PCR amplification reactions were
performed in 1x ThermoPol polymerase buffer (NEB)
containing 200 uM dNTPs, 0.5 uM each of primers P1 and
P2, 5l of extension reaction product and 0.02 U/l of Tag
DNA polymerase. PCR conditions were: one step at
94°C for 60s, followed by 28 cycles of denaturation
at 94°C for 30s, annealing at 53°C for 30s and extension
at 72°C for 30s. The last cycle was followed by an
extension step at 72°C for 2 min.

Preparation of ssDNA circles

Oligonucleotide CO-1 (20pmol, see Supplementary
Table 1) was incubated for 1h at 60°C with 5U/ul of
CircLigase in 1x reaction buffer [SOmM MOPS (pH 7.5),
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10mM KCI, 5mM MgCl, and 1 mM DTT] supplemented
with 0.05mM ATP and 2.5mM MnCl,. Remaining linear
molecules were removed by incubation of reaction pro-
ducts for 15min at 37°C with 60 U of Exonuclease I.

Treatment of dsDNA with nicking endonucleases

Duplex DNA samples (A-DNA, HHV-6B viral DNA or
PCR products) were incubated at 55°C with Nt.BstNBI
or sequentially incubated with Nb.Bsml and Nb.BsrDI at
65°C in 1x reaction buffer recommended by the supplier.
Typically, incubation was performed for 2-4h with
10-40 U of nicking endonuclease.

Strand displacement probe hybridization and ligation

In a typical procedure, nicked dsDNA samples (40—60 ng
per PCR product) were incubated for 10 min at 50°C in
the presence of one or several corresponding probe
oligonucleotides (50-100 M excess over dsDNA target)
in 30-pl buffer containing 10 mM Tris—HCI (pH 7.4) and
0.1mM EDTA, followed by cooling to 16°C at a rate of
1°C/min. Subsequently, Sul of 10x ligation buffer and
14 ul of H,O were added. Samples were then equilibrated
at the specified ligation temperature for Smin prior to
addition of 1pl of DNA ligase (T4 DNA ligase or
Ampligase). Ligation reactions were performed for 1h
at 16°C (T4 DNA ligase) or at 65°C (Ampligase) and
stopped by addition of 2 ul of 0.5M EDTA. Samples to
be used for RCA were additionally incubated in 1x
NEBuffer 2 (New England BioLabs) with RecJ; (typically
60-150 U) for 16h at 37°C.

Gel electrophoresis

Samples were generally analyzed on 7.5% polyacrylamide
gels (29:1 acrylamide/bis-acrylamide) containing 3 M urea.
Samples obtained after incubation with NEase were ana-
lyzed in the presence of 7M urea to differentiate intact
and singly nicked dsDNA fragments (30). Gels were run
for 2-3h at 12.5V/cm (ambient temperature) in 1x TBE
buffer (90 mM Tris—borate, 2mM EDTA, pH 8.0), stained
with ethidium bromide or SYBR Gold (ssDNA samples),
illuminated at 302nm and scanned with a CCD camera.
Quantification was performed using the IS-1000 digital
imaging system (Alpha Innotech Corporation, CA).

RCA

Reactions were performed at 31°C in 1x ThermoPol
buffer (NEB) containing 1 pmol ssDNA circle, 0.25 pg/pl
BSA, 0.5mM of each dNTP, 0.2uM PNA beacon and
0.4U/ul units of phi29 DNA polymerase. In real-time
RCA experiments, samples were excited at 499 nm, and
the emission was measured at 525 nm.

Immobilization of DNA samples onto glass slides

Following probe attachment and Recl; incubation, sam-
ples were suspended in buffer containing 3x SSC (45 mM
sodium citrate pH 7.0, 450 mM NaCl) supplemented with
1.5M betaine (31), and spotted onto poly-lysine coated
glass slides (~50nl per spot). Spotted DNA was cross-
linked to slides by UV irradiation with a total energy of
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60mJ in a Stratalinker 2400 UV Crosslinker (Stratagene).
After DNA immobilization, glass slides were blocked with
succinic anhydride (32). Slides were then washed by
immersion twice in 1x SSC and twice in 1x TE buffer.
After each washing step, slides were left to dry at room
temperature.

Incubations on slides and analysis of slides

Strand displacement probe hybridization, ligation and
RCA reactions were performed by placing the correspond-
ing components in 40 pl buffer on the center of the slide.
The slide was then covered by a 24 x 50 microscope cover
glass, sealed with rubber cement and incubated in a humi-
difying chamber essentially under conditions described
above. RCA reactions were performed overnight. After
each reaction, the rubber cement was gently peeled off,
and slides were washed by immersion twice in 1x SSC
and twice in 1x TE buffer. Following RCA, slides were
washed four times in 1x TE buffer and mounted with
Vectashield mounting medium. Detection of fluorescence
signal was performed on a Nikon Eclipse 80i inverted
microscope equipped with an epifluorescence system
X-Cite 120 and a Nikon Cool Snap, HQ black and
white digital camera (12 bit, 20 MHz), and analyzed using
IPLab 3.7 software (Scanalytics). Fluorescence signals
were pseudocolored in green.

RESULTS AND DISCUSSION
Outline of the assay

Figure 1 shows the principle of the assay. In the initial
step, site-specific nicks are introduced into dsDNA by
its treatment with one or two nicking endonucleases
(NEases). Although currently only a very limited set of
NEases is commercially available, we have found that
even short genomes <200 kb (i.e. dSDNA viral genomes)
contain a significant number of locations, at which two of
the resulting nicks are positioned in close vicinity (<25 bp)
on the same DNA strand (see Table 1 for examples).
These regions between vicinal nicks serve in our procedure
as target sites for probe oligonucleotide binding via strand
displacement hybridization. Through subsequent ligation,
hybridized probe oligonucleotides become covalently
linked to the dsDNA at the selected target sites. The use
of a probe with a target-independent segment at one
terminus results in the formation of a bifurcated DNA
structure, so-called flap DNA. A structure with a 3'-flap
may serve afterward as a priming site for an externally
added ssDNA circle, thus initiating RCA in the presence
of an appropriate DNA polymerase and dNTPs. The
resulting ssDNA amplicon can be detected via hybridiza-
tion with a complementary fluorophore-labeled probe
such as a PNA beacon. We employed this strategy for
fluorescence detection of probe-labeled dsDNA following
DNA immobilization onto glass slides. As described
below, we first examined and optimized individual
reactions stepwise in solution before advancing to the
heterogeneous assay format.
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Strand displacement probe hybridization and ligation
reactions

It was far from being obvious that the strand displacement
reaction in our case could be efficient and highly sequence-
specific. Indeed, after nicking we deal with a relatively
long DNA oligonucleotide hybridized with its comple-
mentary partner, which forms a very stable duplex.
Moreover, in nicking sites stacking interactions are pre-
served leading to additional stabilization of the complex
(33) that could make the strand exchange with oligonu-
cleotides in solution even more problematic. Yet, our
optimism was based on the data of Lyamichev and
collaborators (34), which indicated that in the presence of
excess displacing oligonucleotide the strand exchange
occurs very efficiently even at low temperatures via a
branch-migration mechanism. It should be noted,
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however, that these data were obtained in the absence of
the stabilizing effect of stacking.

We therefore performed experiments to evaluate the
efficiency and sequence specificity of strand displacement
probe hybridization and ligation reactions on nicked
DNA substrates under various conditions. To this end, we
prepared appropriate dsDNA fragments by PCR. We
reasoned that typical PCR amplicons, in contrast to long
dsDNA molecules (kb scale), could be analyzed with
respect to reaction products by electrophoretic mobility
retardation assay, in case probe oligonucleotides resulting
in flap DNA structures are employed. In the first set of
experiments, we prepared a 170-bp-long PCR product
containing a suitable labeling site encountered within
A-DNA that requires only treatment by the nicking
endonuclease Nt.BstNBI (wt in Figure 2A). For labeling

4) RCA & Tagging

5) Fluorescence Detection

Figure 1. Schematic overview of the method. In this study, mainly probe oligonucleotides with an additional, target-independent 3’-terminal section
were employed, leading to 3’-flap DNA upon probe hybridization and ligation. Linear rolling-circle amplification (RCA) was used as a reporter

system to fluorescently detect probe incorporation events.

Table 1. Representative targets for the proposed assay within some virus dsDNAs*

Genome” Position (nt) Length (nt) NEase(s) Target site® (5—3")

Lambda 33779-33791 13 Nt.BstNBI TTCAGAGTCTGAC
26151-26166 16 Nb.BsmI/Nt.BstNBI CATTCTTGAGTCCAAT
10841-10857 17 Nt.BstNBI/Nt.Alwl CGCCGAAGGAGTCCTTC
44815-44831 17 Nt.BstNBI ATCGTGAAGAGTCGGCG
37289-37306 18 Nb.BsrDI/Nt.Alwl CATTGCATGGGATCATTG
48483-48502 20 Nt.Alwl CGTAACCTGTCGGATCACCG

EBV 50324-50337 14 Nb.BsmI/Nb.BsrDI CATTGCCCCCAATG
90615-90631 17 Nb.BsmI/Nb.BbvClI CATTCTCAGGAGCAGGC

HHV-6A 17380-17397 18 Nb.BsmI/Nb.BsrDI CATTCCGAAAGTTTTATA
21797-21814 18 Nb.BsrDI CATTGCCTTTGAACTCTT

HHV-6B 18321-18338 18 Nb.BsmI/Nb.BsrDI CATTCCGAAAGTTTTATG
36668-36686 19 Nb.BsmI/Nb.BsrDI CATTCAACAAACGATGTAT
125843-125862 20 Nb.Bsml CATTCGGATCTTGCCTTTGG
18687-18710 24 Nb.BtsI/Nb.BsrDI CACTGCCTTATAAAACAGTATGAG

HCMV 148206-148219 14 Nb.Btsl CACTGCTCGTCGGT
114721-114738 18 Nb.BsmI/Nb.BsrDI CATTCTGCCGCTCTTTAT
202043-202060 18 Nb.BtsI/Nb.BsrDI CATTGCCCTTCTGGAGCA

#Only sites with 13-24nt between two nicks were selected. Except for lambda, only those sites are shown that can be obtained by using NEases

with a recognition sequence of >6bp.

°EBV, Epstein Barr Virus; HHV-6, human herpes virus 6; HCMV, human cytomegalovirus.

“Partial and complete recognition sequences for NEases are shown in italics or in bold, respectively.
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reactions, we initially employed probe oligonucleotide
P-45k-5'F containing a short additional segment of five
thymines and a biotin label at the 5'-terminus (see Table 2
for probe oligonucleotide sequences). To establish suitable
conditions for strand displacement, the nicked PCR
fragment was incubated, in buffer of low ionic strength,
with molar excess of probe at different reaction tempera-
tures, followed by ligation with T4 DNA ligase at 16°C.
Nearly quantitative formation of 5-flap product with
reduced electrophoretic mobility was obtained, when
the hybridization step was carried out at 50-60°C (see
Supplementary Figure 1, lanes 5 and 6). Addition of

Lambda 44815-44831
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Figure 2. Vicinal nicks are prerequisite for target labeling. (A) Partial
sequences of different dSDNA substrates prepared by assembly PCR.
The recognition sequence and cleavage site for NEase Nt.BstNBI
present in the selected wild-type and prepared mutant A-DNA
sequences are marked. (B) Probe hybridization and ligation of nicked
substrates. PCR amplicons (170bp, lanes 1) were treated with
Nt.BstNBI, leading to doubly nicked wt and singly nicked ml and
m2 fragments (lanes 2). Samples were then incubated with probe
P*-45k-3'F for 10 min at 50°C, followed by cooling and incubation with
T4 DNA ligase for 1h at 16°C. Here and below, M denotes a 100-bp
DNA ladder (NEB). (C) Removal of excess probe oligonucleotide.

Table 2. Probe oligonucleotides
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streptavidin led to a further decrease in the mobility of
this product, as anticipated for a biotin-labeled branched
DNA structure (lane 8).

To verify that probe labeling requires the occurrence
of vicinal nicks, we generated corresponding dsDNA
fragments carrying a single mutation in the upstream
or downstream recognition sequence for Nt.BstNBI
(Figure 2A, ml and m2). Labeling reactions were now
performed with probe oligonucleotide P*-45k-3'F featur-
ing an extra segment of 25nt at the 3’-terminus, of which
20nt were intended to serve as a priming site in RCA
reactions at a later stage of our protocol. As expected,
successful labeling occurred with the nicked wt fragment,
but not with the nicked mutant fragments (Figure 2B,
lane 3). Of note, due to the considerably longer nontarget
tail in this probe compared to the previously used probe,
the obtained 3'-flap DNA fragment moved much slower.

Detection of 3'-flap DNA by RCA

Following strand displacement probe hybridization and
ligation reactions, the DNA samples (wt, m1 and m2) were
treated with RecJy to remove probe molecules not
covalently linked to the dsDNA target (Figure 2C).
Samples were then subjected to RCA performed with
phi29 DNA polymerase and a supplied ssDNA circle.
Before embarking on performing RCA with immobilized
DNA samples, which should provide with a high sensi-
tivity of detection by fluorescence microscopy, we ana-
lyzed RCA reactions in solution. In this homogeneous
format, RCA can be monitored in real-time, thus allowing
to rapidly examine the performance of RCA with 3'-flap
DNA substrate under various conditions. For fluorescent
detection, we investigated the use of PNA beacons, which
hitherto had not been used for the detection of ssDNA
amplicon generated during linear RCA. It is also worth
mentioning that phi29 DNA polymerase has a strong 3’
exonucleolytic activity (35). For RCA reactions with
circularized probes as template, this enzymatic activity
does not create a problem since primers are supplied in
large excess. By contrast, in our case, the number of
primers for RCA is strictly limited by the number of target
sites and therefore any substantial primer degradation will
decrease the sensitivity of our assay. To avoid primer
degradation, we obtained probe oligonucleotide P*-45k-
3'F with phosphorothioate linkages in the two 3’-terminal
nucleotides. This modification makes the probe resistant

Oligo Sequence (5'—3')

Lambda

P-45k-5'F biotin-TTTTTATCGTGAAGAGTCGGCG

P*-45k-3'F  P-ATCGTGAAGAGTCGGCGTTTTTCAGACAGCAGAGTGAACA*A*G
HHV-6B

P-18k P-CATTCCGAAAGTTTTATGTTTTTCAGACAGCAGAGTGAACAAG
P*-18k P-CATTCCGAAAGTTTTATGTTTTTCAGACAGCAGAGTGAACA*A*G
P-37k P-CATTCAACAAACGATGTATTTTTTCAGACAGCAGAGTGAACAAG
P-126k P-CATTCGGATCTTGCCTTTGGTTTTTCAGACAGCAGAGTGAACAAG

P, phosphate; asterisk indicates phosphorothioate. Target-complementary segments are

underlined and priming segments are italicized.
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Figure 3. Real-time RCA. (A) Measured fluorescence from PNA
beacon Flu-Glu-AAGGCTAGGAA-K-K(Dabcyl)-NH, plotted against
the time of RCA reactions containing 500 (red), 100 (blue), 25
(green) or 5 (gray) fmol wt target or 500 fmol each m1 (black) or m2
target (orange), respectively. Inputs comprised aliquots of samples
shown in Figure 2 after Recl; treatment. Phi29 DNA polymerase was
added at 7= 1min. (B) Plot of the initial speed of the fluorescence
increase (v;,) as a function of input wt 3’-flap dsDNA present in RCA
reactions.

to the 3’-exonuclease activity of phi29 DNA polymerase
but does not interfere with enzymatic polymerization
activity (36,37).

RCA reactions were carried out with various inputs of
DNA samples and a fixed amount of ssDNA circle.
At input of samples containing labeled wt a significant
increase in fluorescence was observed in real-time
(Figure 3A). As expected in case of linear RCA, the
initial speed of fluorescence signal increases proportional
to the number of input molecules (Figure 3B). By contrast,
no fluorescent signal could be detected for the analogously
treated m1 and m2 samples, compliant with the absence
of 3-flap DNA product in those samples, as assessed
by electrophoretic mobility retardation assay. Note that
similar data with regard to the sensitivity and quantifica-
tion have been previously obtained with circularized
padlock probes as analytes and 2’-O-Me-RNA molecular
beacons (38). Thus, our data demonstrate that the 3’
terminus in flap DNA serves as a very effective primer
during RCA and that a PNA beacon makes it possible to
detect that amplicon.

Fluorescent detection of immobilized lambda DNA

Immobilized RCA products labeled with a detection
oligonucleotide can be individually visualized in a
straightforward manner by fluorescence microscopy (21).
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Having established the protocol of our approach in
solution, we moved forward by incorporating an immob-
ilization step into our procedure. In addition, DNA
samples now consisted of genomic A-DNA in order to
investigate the workability of our assay on a full viral
genome. Labeled samples were spotted and immobilized
together with control samples onto polylysine-coated
glass slides, which were subsequently blocked in succinic
anhydride to inactivate free lysine groups. Representative
results obtained after RCA in the presence of the PNA
beacon for samples immobilized at apparently most
favorable conditions (see Materials and methods section)
are shown in Figure 4A. Control samples of A-DNA, in
which either incubation with Nt.BstNBI or incubation
with probe P*-45k-3'F were omitted, did not yield any
detectable fluorescence above background (see row a). By
contrast, a clear fluorescence signal was detected with
samples, for which all steps were performed apyropriately.
With inputs between 0.1 and 10amol (6 x 10* to 6 x 10°
copies), the signal intensity increased roughly propor-
tional to the number of spotted molecules (rows b—d). On
average, the observed fluorescent objects were about 1 pm
in size (Figure 4B), in agreement with previously measured
fluorophore-tagged RCA products (39,40). In addition to
the condensed fluorescent objects, we observed in some
experiments various elongated molecules, which were
several micrometers long. The occurrence of such
unfolded or partly folded amplification products has
been previously reported for RCA reactions performed
on polylysine-coated glass slides (21). We conclude that in
A-DNA, our first model system, we successfully incorpo-
rated a probe oligonucleotide into the chosen target site
and detected it with high sensitivity following sample
immobilization and RCA.

Sequence specificity of the assay

One important factor concerning the specificity of our
method is the configuration of the sequence recognition
motifs pertaining to the cleavage positions. With the few
NEases existing at present (Figure 5A), target sites can be
divided into four different configurations. Configuration I,
in which both recognition sequences lie completely or
largely outside of the cleaved DNA segment, is evidently
superior over other configurations in terms of obtaining
high sequence specificity of probe labeling, because
possible off-target sites with vicinal nicks of the same
NEases will likely differ significantly in the cleaved
segment (and thus probe sequence). On the contrary, in
configuration IV the recognition sequences comprise a
substantial part of the cleaved segment. Thus, a site with
this configuration seems only appropriate for labeling, if
off-target sites can be excluded or if probe labeling is
performed under precisely controlled conditions.

To investigate the exemplary sequence specificity of
probe labeling, we sclected three target sites present in
human herpes virus 6 type B (HHV-6B) generated by
NEases Nb.Bsml and Nb.BrsDI (Figure 6A). These sites,
representing intermediate configuration III, constitute a
good test for our assay since they are nearly identical
in length and contain the same 5-bp-long sequence at the
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Figure 4. Detection of genomic A-DNA. All steps of the assay were performed in solution with the exception of RCA, which was conducted on glass
slides following surface-immobilization of samples. (A) Fluorescent images of signals generated by RCA. (a) A-DNA sample (10 amol), for which the
nicking step was omitted. (b—d) Probe-labeled A-DNA samples. Spotted DNA amounts were: 0.1 amol (b), 1amol (¢) or 10amol (d). Scale bar,
50 um. (B) Partial image of the central spot in panel d, acquired at higher magnification (100x). Scale bar, 20 um. Inset: enlarged view of an image

section with reduced signal density. Scale bar, 2 um.

S-terminus of the cleaved segment. By PCR, dsDNA
fragments of different length carrying each one centrally
located target site were prepared. Incubation of each
fragment with Nb.Bsml and Nb.BrsDI resulted in the
formation of doubly nicked DNA molecules in essentially
quantitative yield (Supplementary Figure 2A). To cor-
rectly assess the sequence specificity in labeling reactions
with pooled amplicons, we first generated deliberately all
possible incorrect ligation products by performing ligation
with T4 DNA ligase under low fidelity conditions. We also
prepared corresponding gapped DNA fragments (41),
which may be formed in probe labeling reactions to some
extent, if dissociated cleaved segments do not rehybridize
and if incorrect probes are not ligated into target sites.
The various products were then analyzed concurrently
with correct ligation products. Under the employed gel
electrophoretic conditions, gapped DNA had a higher
electrophoretic mobility and incorrect ligation products
had markedly reduced mobility in comparison with the
three correct ligation products (Supplementary Figure 2B).

The fact that the different classes of potential reaction
products can be spatially well separated on a gel made it
possible to monitor probe hybridization and ligation
reactions of all three sites simultaneously. Because the
thermophilic DNA ligase Ampligase is commonly
employed for achieving high sequence discrimination
with probe oligonucleotides (42), we performed experi-
ments with this enzyme to investigate the sequence
specificity of target labeling. When incubations were
carried out at 65°C, target sites proved to be labeled
with high yield (84-93%), individually or in any combina-
tion with the correct probe oligonucleotide(s) (Figure 6B).
Due to the fact that we employed unpurified probe

v
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Figure 5. (A) Recognition sequences and cleavage positions of currently
available NEases. (B) Possible configurations of NEase sequence
recognition motifs at sites with vicinal nicks. Overlaps between these
motifs and the cleaved DNA segment are minimal or absent in
configuration I, moderate in II and III and extensive in IV.

oligonucleotides, weak bands resulting from truncated
oligomers were observed below correct ligation products
in any ligation reaction. Interestingly, the sites that were
not targeted in a reaction were sealed again into intact
dsDNA. Only in some ligation samples, weak bands
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Figure 6. Sequence specificity of the assay at elevated ligation
temperature. (A) Target sequences present in human herpes virus 6
type B (HHV-6B) at nicking with Nb.Bsml and Nb.BsrDI.
(B) Individual or combined labeling of HHV-6B target sites. All three
sites are amplified within corresponding PCR products, which differ in
length to be distinguished in electrophoresis. Ligation reactions were
performed for 1h at 65°C with SU of Ampligase.

corresponding to gapped DNA could be detected. Most
importantly, no incorrect probe labeling was observed in
any of the labeling reactions. Theses data clearly show
that sites of vicinal nicks can be labeled with high sequence
specificity by probe oligonucleotides, notwithstanding
considerable sequence homology between probes at the
site of ligation.

Labeling of human herpes virus 6 type B(HHV-6B)
genomic DNA

As previously, all steps with the exception of the final
amplification step were performed in solution. Strand
displacement hybridization was performed in the presence
of phosphorothioate-containing probe P*-18k, and liga-
tion was carried out with Ampligase at 65°C. Identical
reactions were conducted with either HHV-6B or lambda
dsDNA as input. Other controls consisted in omission
of one NEase or other components in the labeling of
HHV-6B. Figure 7 shows representative images of
observed fluorescent signals at the end of the procedure.
Clear signals were obtained with immobilized samples
containing nicked, probe-labeled HHV-6B DNA at inputs
of 7amol (row d) and 70 amol (row e). At lower input of
0.7amol, the observed fluorescence signal was relatively
weak (row c), albeit still considerably above background

PAGE 8 oF 10

Figure 7. Detection of genomic HHV-6B DNA. Fluorescent images of
signals generated by RCA. (a) HHV-6B DNA sample (70 amol), for
which the nicking step was omitted. (b) A-DNA sample (150 amol)
treated analogous to the HHV-6B sample shown in row e. (c—e)
HHV-6B DNA samples after labeling procedure with probe P*-18k.
Spotted DNA amounts were: 0.7 amol (c), 7amol (d) or 70 amol (e).

signal obtained with control samples at high input
(rows a and b). It should be noted that the observed
background was slightly higher in those control samples
than in previous controls for the detection of lambda
genomic DNA. Most probably, incomplete digestion of
free oligonucleotide probe molecules caused a higher
background.

CONCLUSION

We have proposed and validated a new method for
efficient and highly sequence-specific targeting of appro-
priate sequences within dsDNA. In combination with
surface RCA, the method makes possible the specific and
sensitive detection of viral dsDNA, as demonstrated for
two model genomes. We chose this solid-support detection
format for our proof-of-principle experiments because it
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allowed us to simultaneously analyze labeled samples and
appropriate controls under identical amplification condi-
tions. However, with regard to the practical utility of the
assay for viral dsDNA detection, other detection formats
may prove to be advantageous. These may consist in the
use of other reporter systems [e.g. Invader-type amplifica-
tion reactions (43,44)] or in the use of single molecule
detection methods similar to those used by others in
conjunction with other labeling techniques (3,4,10,11).
Finally, we should note that the proposed labeling method
may be useful in other areas of research such as DNA
repair, as it provides with a convenient procedure for the
site-specific incorporation of modified nucleic acids within
long dsDNA duplexes.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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