organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1,5-Bis(4-chlorophenyl)-3-(4-methylphenyl)pentane-1,5-dione

R. Chithiravel,^a A. Thiruvalluvar,^b* S. Muthusubramanian^c and R. J. Butcher^d

^aPostgraduate Research Department of Chemistry, Rajah Serfoji Government College (Autonomous), Thaniavur 613 005, Tamilnadu, India, ^bPostgraduate Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, ^cDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamilnadu, India, and ^dDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA

Correspondence e-mail: thiruvalluvar.a@gmail.com

Received 29 August 2013; accepted 1 September 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.050; wR factor = 0.146; data-to-parameter ratio = 17.0.

In the title molecule, $C_{24}H_{20}Cl_2O_2$, the central methylbenzene ring forms dihedral angles of 42.47 (10) and 34.34 $(10)^{\circ}$ with the terminal 4-chlorophenyl fragments. The dihedral angle between the chlorobenzene rings is $34.45 (11)^{\circ}$. A weak intramolecular C-H···O interaction generates an S(6) ring motif. The crystal packing exhibits weak C-H···O hydrogen bonds and $C-H \cdots \pi$ interactions.

Related literature

For the synthesis of 1,5-diketones, see: Yang et al. (2005); Hirsch & Bailey (1978). For the crystal structures of related compounds, see: Qiu et al. (2006); Insuasty et al. (2006); Jasinski et al. (2007); Huang et al. (2008); Lei & Bai (2009); Dutkiewicz et al. (2010); Fun et al. (2011). For the applications of delocalized π -systems, see: Burroughes *et al.* (1990); Smith et al. (2005); Li et al. (2004); Sariciftci et al. (1992). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bondlength data, see: Allen et al. (1987).

Monoclinic, $P2_1/c$

a = 18.6794 (11) Å

Crystal data C24H20Cl2O2 $M_r = 411.30$

```
b = 7.5477 (4) Å
c = 15.5196 (8) Å
\beta = 103.622 \ (5)^{\circ}
V = 2126.5 (2) Å<sup>3</sup>
Z = 4
```

Data collection

Agilent Xcalibur Ruby Gemini	14252 measured reflections
diffractometer	4341 independent reflections
Absorption correction: multi-scan	3735 reflections with $I > 2\sigma(I)$
(CrysAlis PRO; Agilent, 2012)	$R_{\rm int} = 0.024$
$T_{\min} = 0.443, T_{\max} = 1.000$	

Mo $K\alpha$ radiation

 $0.51 \times 0.42 \times 0.37 \text{ mm}$

 $\mu = 0.32 \text{ mm}^{-1}$

T = 296 K

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.050$	255 parameters
$wR(F^2) = 0.146$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 0.33 \text{ e} \text{ Å}^{-3}$
4341 reflections	$\Delta \rho_{\rm min} = -0.37 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C31-C36 methylbenzene ring.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} \hline C4-H4A\cdots O1\\ C16-H16\cdots O5^{i}\\ C55-H55\cdots Cg2^{ii} \end{array}$	0.97	2.56	3.130 (3)	118
	0.93	2.44	3.270 (3)	149
	0.93	2.97	3.629 (2)	129

Symmetry codes: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) x, y + 1, z.

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: DIRDIF2008 (Beurskens et al., 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2013 and PLATON.

RJB acknowledges the NSF-MRI program (grant No. CHE0619278) for funds to purchase the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2174).

References

- Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Beurskens, P. T., Beurskens, G., de Gelder, R., Smits, J. M. M., García-Granda, S. & Gould, R. O. (2008). DIRDIF2008. Crystallography Laboratory, Radboud University Nijmegen, The Netherlands.
- Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., Burns, P. L. & Holmes, A. B. (1990). Nature (London), 347, 539-541.
- Dutkiewicz, G., Chidan Kumar, C. S., Yathirajan, H. S., Narayana, B. & Kubicki, M. (2010). Acta Cryst. E66, 0816.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Fun, H.-K., Suwunwong, T., Boonnak, N. & Chantrapromma, S. (2011). Acta Cryst. E67, 03416-03417.
- Hirsch, S. S. & Bailey, W. J. (1978). J. Org. Chem. 43, 4090-4094.
- Huang, X., Xin, F., Shi, Q.-L., Wang, Y. & Wei, G.-D. (2008). Acta Cryst. E64, 02454.

- Insuasty, B., Torres, H., Cobo, J., Low, J. N. & Glidewell, C. (2006). *Acta Cryst.* C62, 039–041.
- Jasinski, J. P., Butcher, R. J., Yathirajan, H. S., Narayana, B. & Swamy, M. T. (2007). Acta Cryst. E63, 04808–04809.
- Lei, X. & Bai, X. (2009). Acta Cryst. E65, 0514.
- Li, Y. N., Ding, J. F., Day, M., Tao, Y., Lu, J. P. & D'iorio, M. (2004). Chem. Mater. 16, 2165–2173.
- Qiu, X.-Y., Ma, J.-L. & Liu, W.-S. (2006). Acta Cryst. E62, 04565-04566.
- Sariciftci, N. S., Smilowitz, L. & Heeger, A. J. (1992). Science, 258, 1474–1476.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Smith, C. B., Raston, C. L. & Sobolev, A. N. (2005). *Green Chem.* 7, 650–654. Spek, A. L. (2009). *Acta Cryst.* D65, 148–155.
- Yang, J.-X., Tao, X.-T., Yuan, C. X., Yan, Y. X., Wang, L., Liu, Z., Ren, Y. & Jiang, M. H. (2005). J. Am. Chem. Soc. 127, 3278–3279.

supplementary materials

Acta Cryst. (2013). E69, o1508-o1509 [doi:10.1107/S1600536813024355]

1,5-Bis(4-chlorophenyl)-3-(4-methylphenyl)pentane-1,5-dione

R. Chithiravel, A. Thiruvalluvar, S. Muthusubramanian and R. J. Butcher

1. Comment

A simplified green chemistry approach to the Michael-addition reaction using the "Grindstone Chemistry" method for conducting exothermic reactions in the solvent-free mode has been described (Yang *et al.* 2005). We tested energy saving procedures developed in our laboratory for the preparation of 1,5-diketones starting from fragrant aldehydes and fragrant ketones in the presence of NaOH under solvent-free conditions. Using this method, we obtained the title compound, (I) (Fig. 1). The synthesis of many heterocyclic compounds (Hirsch & Bailey, 1978) form an important synthetic intermediate compounds of 1,5-Diketones. Further, compared to existing methods, the main advantages of the present procedure is fast reaction times, solvent-free, mild, simple, moderately high yields and no side product formation.

The structures of related compounds *viz.*, 3-(2-Chlorophenyl)-1,5-bis(4-nitrophenyl)pentane-1,5-dione (Qiu *et al.* 2006), 1,5-Bis(4-chlorophenyl)-3- (2-chlorophenyl)-1,5-bis- (4-chlorophenyl)pentane-1,5-dione (Jasinski *et al.* 2007), 1,5-Bis(4-chlorophenyl)-3-(2-thienyl)pentane-1,5-dione (Huang *et al.* 2008), 1,5-Bis(4-chlorophenyl)-3-[4-(dimethylamino)phenyl]pentane-1,5-dione (Lei & Bai, 2009), 3-(3-Bromo-4-methoxyphenyl)-1,5-diphenylpentane-1,5-dione (Dutkiewicz *et al.* 2010) and 1,5-Bis(thiophen-2-yl)-3-(2,4,5-trimethoxyphenyl) pentane-1,5-dione (Fun *et al.* 2011) have been reported. Many promising applications from linear π -conjugated organic molecules and polymers have attracted considerable interest for organic light-emitting diodes, non-linear optical properties, conductivity, photocells, field effect transistors, and so on due to their delocalized π systems (Burroughes *et al.*, 1990; Smith *et al.*, 2005; Li *et al.*, 2004; Sariciftci *et al.*, 1992). A new title compound was synthesized and the crystal structure is reported here.

In the title molecule, $C_{24}H_{20}Cl_2O_2$, (Fig. 1), the pentane-1,5-dione unit (C1—C5/O1/O5) is puckered with the torsion angles C1—C2—C3—C4 = 72.49 (19)° and C2—C3—C4—C5 = -179.02 (16)°, making the two ketone groups pointing towards opposite directions. The central methylbenzene ring forms dihedral angles of 42.47 (10) and 34.34 (10)° with the two terminal 4-chlorophenyl fragments. The dihedral angle between the two chlorobenzene rings is 34.45 (11)°. A weak intramolecular C4—H4A···O1 interaction (Table 1) which generates an S(6) ring motif (Bernstein *et al.*, 1995) helps to stabilize this conformation. The crystal packing exhibits weak intermolecular C16—H16···O5 hydrogen bonded C(9) chains (Bernstein *et al.*, 1995) and C55—H55···*π* interactions involving (C31—C36) methylbenzene ring (Table 1, Fig. 2 & Fig. 3). The C—C, C_{ar} — C_{ar} , C—C1 and C=O bond lengths in (I) are within their normal ranges (Allen *et al.*, 1987).

2. Experimental

The title compound was synthesized according to a modified solvent-free greener approach method (Yang *et al.*, 2005). 4-Chloroacetophenone (0.5 g, 3 mmol), 1-(4-chlorophenyl)-3-(4-methylpenyl)prop-2-ene-1-one (0.8 g, 4 mmol) and commercial powdered NaOH (0.06 g, 1.5 mmol) were crushed together for 20 mt s, using a pestle and mortar. Recystallization from methanol gave colourless crystals. Yield: 1.1 g (90%).

3. Refinement

All H-atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 (aromatic), 0.97 (methylene group) and 0.98 Å (methine), with $U_{iso}(H) = 1.2U_{eq}(C)$; 0.96 Å, $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl group.

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO* (Agilent, 2012); data reduction: *CrysAlis PRO* (Agilent, 2012); program(s) used to solve structure: *DIRDIF2008* (Beurskens *et al.*, 2008); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL2013* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius. The dashed line indicates a weak C—H…O intramolecular hydrogen bond.

Figure 2

The partial packing of the title compound, viewed along the b axis. Dashed lines indicate hydrogen-bonded C(9) chains along the c axis. H atoms not involved in hydrogen bonding have been omitted for clarity.

Figure 3

Crystal structure of the title compound, showing the formation of a C—H $\cdots \pi$ interaction. Symmetry code (ii): *x*, *y* + 1, *z*.

1,5-Bis(4-chlorophenyl)-3-(4-methylphenyl)pentane-1,5-dione

Crystal data	
$C_{24}H_{20}Cl_2O_2$	F(000) = 856
$M_r = 411.30$	$D_{\rm x} = 1.285 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Melting point: 327(2) K
Hall symbol: -P 2ybc	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 18.6794 (11) Å	Cell parameters from 5569 reflections
b = 7.5477 (4) Å	$\theta = 3.3 - 75.4^{\circ}$
c = 15.5196 (8) Å	$\mu = 0.32 \text{ mm}^{-1}$
$\beta = 103.622(5)^{\circ}$	T = 296 K
V = 2126.5 (2) Å ³	Prism, colourless
Z = 4	$0.51 \times 0.42 \times 0.37 \text{ mm}$

Data collection

Agilent Xcalibur Ruby Gemini diffractometer Radiation source: Enhance (Cu) X-ray Source Graphite monochromator Detector resolution: 10.5081 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2012) $T_{\min} = 0.443, T_{\max} = 1.000$	14252 measured reflections 4341 independent reflections 3735 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$ $\theta_{max} = 26.5^{\circ}, \theta_{min} = 2.2^{\circ}$ $h = -23 \rightarrow 21$ $k = -9 \rightarrow 8$ $l = -19 \rightarrow 15$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.146$ S = 1.07 4341 reflections 255 parameters 0 restraints Hydrogen site location: inferred from neighbouring sites	H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0627P)^2 + 0.5487P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.33$ e Å ⁻³ $\Delta\rho_{min} = -0.37$ e Å ⁻³ Extinction correction: <i>SHELXL2013</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² \lambda ³ /sin(2 θ)] ^{-1/4} Extinction coefficient: 0.0227 (17)

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cl14	0.50733 (5)	0.76817 (14)	0.95387 (6)	0.1283 (4)
C154	0.08862 (5)	1.03187 (11)	0.11762 (5)	0.1154 (3)
01	0.32422 (10)	0.76750 (19)	0.53035 (12)	0.0873 (6)
05	0.27979 (11)	0.3043 (2)	0.26076 (12)	0.0939 (7)
C1	0.32982 (10)	0.6468 (3)	0.58359 (14)	0.0638 (6)
C2	0.29189 (10)	0.4711 (2)	0.55773 (13)	0.0621 (6)
C3	0.25188 (9)	0.4591 (2)	0.46011 (12)	0.0555 (5)
C4	0.30797 (10)	0.4435 (3)	0.40126 (13)	0.0647 (6)
C5	0.27264 (11)	0.4342 (3)	0.30405 (14)	0.0644 (6)
C11	0.37394 (9)	0.6711 (3)	0.67653 (14)	0.0626 (6)
C12	0.40855 (12)	0.8328 (3)	0.70082 (17)	0.0809 (8)
C13	0.44906 (13)	0.8624 (4)	0.7860 (2)	0.0933 (10)
C14	0.45523 (12)	0.7294 (4)	0.84725 (17)	0.0838 (9)
C15	0.42146 (13)	0.5692 (3)	0.82660 (16)	0.0813 (8)
C16	0.38072 (11)	0.5404 (3)	0.74081 (14)	0.0705 (7)
C31	0.19689 (9)	0.3081 (2)	0.44168 (11)	0.0525 (5)
C32	0.21576 (10)	0.1365 (2)	0.46994 (12)	0.0596 (5)
C33	0.16507 (11)	0.0008 (3)	0.45037 (13)	0.0649 (6)
C34	0.09424 (12)	0.0296 (3)	0.40097 (13)	0.0676 (6)
C35	0.07564 (11)	0.1993 (3)	0.37249 (15)	0.0754 (7)
C36	0.12561 (10)	0.3367 (3)	0.39251 (14)	0.0668 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C37	0.04025 (16)	-0.1219 (4)	0.3772 (2)	0.1036 (10)
C51	0.22673 (10)	0.5860 (2)	0.25994 (12)	0.0591 (6)
C52	0.17530 (13)	0.5558 (3)	0.18151 (14)	0.0766 (8)
C53	0.13217 (14)	0.6916 (4)	0.13849 (15)	0.0844 (9)
C54	0.14217 (13)	0.8596 (3)	0.17322 (14)	0.0739 (7)
C55	0.19288 (12)	0.8948 (3)	0.25063 (14)	0.0701 (7)
C56	0.23502 (11)	0.7562 (2)	0.29495 (13)	0.0619 (6)
H2A	0.25663	0.45128	0.59369	0.0745*
H2B	0.32834	0.37735	0.57095	0.0745*
Н3	0.22450	0.56978	0.44428	0.0666*
H4A	0.34075	0.54492	0.41221	0.0776*
H4B	0.33758	0.33800	0.41830	0.0776*
H12	0.40425	0.92255	0.65885	0.0970*
H13	0.47188	0.97108	0.80159	0.1118*
H15	0.42573	0.48107	0.86937	0.0975*
H16	0.35758	0.43174	0.72612	0.0846*
H32	0.26327	0.11248	0.50255	0.0714*
H33	0.17890	-0.11285	0.47092	0.0778*
H35	0.02834	0.22220	0.33896	0.0905*
H36	0.11120	0.45041	0.37267	0.0802*
H37A	0.01457	-0.13765	0.42342	0.1553*
H37B	0.06642	-0.22851	0.37049	0.1553*
H37C	0.00548	-0.09558	0.32250	0.1553*
H52	0.16976	0.44229	0.15749	0.0920*
H53	0.09667	0.66994	0.08653	0.1012*
H55	0.19902	1.00942	0.27314	0.0842*
H56	0.26892	0.77754	0.34828	0.0742*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl14	0.1032 (5)	0.1647 (9)	0.1004 (5)	-0.0240 (5)	-0.0091 (4)	-0.0387 (5)
C154	0.1193 (6)	0.1104 (6)	0.1139 (6)	0.0419 (4)	0.0225 (4)	0.0407 (4)
01	0.0932 (11)	0.0590 (8)	0.0993 (11)	-0.0099 (8)	0.0019 (9)	0.0133 (8)
05	0.1211 (14)	0.0656 (9)	0.1022 (12)	0.0217 (9)	0.0405 (11)	-0.0103 (8)
C1	0.0529 (9)	0.0552 (10)	0.0820 (12)	0.0002 (8)	0.0131 (8)	0.0033 (9)
C2	0.0566 (10)	0.0565 (10)	0.0712 (11)	-0.0045 (8)	0.0112 (8)	0.0022 (8)
C3	0.0497 (8)	0.0505 (9)	0.0668 (10)	0.0040 (7)	0.0150 (7)	0.0062 (7)
C4	0.0532 (9)	0.0616 (10)	0.0823 (12)	0.0055 (8)	0.0222 (9)	0.0091 (9)
C5	0.0671 (11)	0.0552 (10)	0.0787 (12)	0.0025 (8)	0.0326 (9)	0.0011 (9)
C11	0.0463 (9)	0.0605 (10)	0.0822 (12)	-0.0050 (8)	0.0174 (8)	-0.0064 (9)
C12	0.0711 (13)	0.0719 (13)	0.1003 (16)	-0.0206 (10)	0.0214 (11)	-0.0078 (12)
C13	0.0734 (14)	0.0910 (17)	0.115 (2)	-0.0313 (13)	0.0215 (13)	-0.0300 (15)
C14	0.0568 (11)	0.1059 (18)	0.0862 (15)	-0.0097 (11)	0.0121 (10)	-0.0243 (14)
C15	0.0712 (13)	0.0886 (15)	0.0796 (14)	-0.0029 (11)	0.0088 (10)	-0.0025 (12)
C16	0.0611 (11)	0.0675 (12)	0.0801 (13)	-0.0088 (9)	0.0109 (9)	-0.0048 (10)
C31	0.0515 (8)	0.0530 (9)	0.0538 (9)	0.0018 (7)	0.0142 (7)	0.0021 (7)
C32	0.0578 (9)	0.0564 (9)	0.0618 (10)	0.0035 (8)	0.0088 (7)	0.0024 (8)
C33	0.0763 (12)	0.0512 (9)	0.0673 (11)	-0.0017 (8)	0.0174 (9)	0.0012 (8)
C34	0.0693 (11)	0.0680 (11)	0.0656 (11)	-0.0139 (9)	0.0161 (9)	-0.0065 (9)

supplementary materials

C35	0.0532 (10)	0.0831 (14)	0.0836 (14)	-0.0055 (10)	0.0034 (9)	0.0072 (11)
C36	0.0554 (10)	0.0615 (10)	0.0802 (12)	0.0041 (8)	0.0094 (9)	0.0126 (9)
C37	0.0965 (18)	0.0865 (16)	0.120 (2)	-0.0326 (15)	0.0096 (15)	-0.0107 (15)
C51	0.0632 (10)	0.0577 (10)	0.0627 (10)	0.0011 (8)	0.0274 (8)	0.0007 (8)
C52	0.0894 (15)	0.0721 (13)	0.0706 (12)	0.0036 (11)	0.0232 (11)	-0.0134 (10)
C53	0.0842 (15)	0.1014 (17)	0.0645 (12)	0.0120 (13)	0.0116 (10)	-0.0041 (12)
C54	0.0799 (13)	0.0783 (13)	0.0691 (12)	0.0179 (11)	0.0291 (10)	0.0167 (10)
C55	0.0856 (13)	0.0558 (10)	0.0752 (12)	0.0018 (9)	0.0313 (10)	0.0071 (9)
C56	0.0692 (11)	0.0561 (10)	0.0632 (10)	-0.0044 (8)	0.0214 (8)	0.0026 (8)

Geometric parameters (Å, °)

Cl14—C14	1.736 (3)	C51—C56	1.389 (2)
Cl54—C54	1.741 (2)	C52—C53	1.376 (4)
01—C1	1.218 (3)	C53—C54	1.373 (4)
O5—C5	1.214 (3)	C54—C55	1.369 (3)
C1—C2	1.513 (3)	C55—C56	1.390 (3)
C1-C11	1.495 (3)	C2—H2A	0.9700
C2—C3	1.526 (3)	C2—H2B	0.9700
C3—C4	1.548 (3)	С3—Н3	0.9800
C3—C31	1.516 (2)	C4—H4A	0.9700
C4—C5	1.499 (3)	C4—H4B	0.9700
C5—C51	1.497 (3)	C12—H12	0.9300
C11—C12	1.391 (3)	C13—H13	0.9300
C11—C16	1.387 (3)	C15—H15	0.9300
C12—C13	1.378 (4)	C16—H16	0.9300
C13—C14	1.369 (4)	С32—Н32	0.9300
C14—C15	1.367 (4)	С33—Н33	0.9300
C15—C16	1.386 (3)	С35—Н35	0.9300
C31—C32	1.386 (2)	С36—Н36	0.9300
C31—C36	1.387 (3)	С37—Н37А	0.9600
C32—C33	1.379 (3)	С37—Н37В	0.9600
C33—C34	1.381 (3)	С37—Н37С	0.9600
C34—C35	1.373 (3)	С52—Н52	0.9300
C34—C37	1.512 (4)	С53—Н53	0.9300
C35—C36	1.381 (3)	С55—Н55	0.9300
C51—C52	1.381 (3)	С56—Н56	0.9300
01—C1—C2	121.06 (19)	C1—C2—H2B	109.00
01—C1—C11	120.2 (2)	C3—C2—H2A	109.00
C2-C1-C11	118.76 (18)	C3—C2—H2B	109.00
C1—C2—C3	113.88 (15)	H2A—C2—H2B	108.00
C2—C3—C4	110.43 (15)	С2—С3—Н3	108.00
C2—C3—C31	112.56 (14)	С4—С3—Н3	108.00
C4—C3—C31	110.75 (14)	С31—С3—Н3	108.00
C3—C4—C5	113.49 (16)	C3—C4—H4A	109.00
O5—C5—C4	121.0 (2)	C3—C4—H4B	109.00
O5—C5—C51	119.42 (19)	C5—C4—H4A	109.00
C4—C5—C51	119.57 (18)	C5—C4—H4B	109.00
C1-C11-C12	119.0 (2)	H4A—C4—H4B	108.00

C1—C11—C16	122.9 (2)	C11—C12—H12	119.00
C12—C11—C16	118.1 (2)	C13—C12—H12	119.00
C11—C12—C13	121.2 (2)	C12—C13—H13	120.00
C12—C13—C14	119.0 (3)	C14—C13—H13	121.00
Cl14—C14—C13	118.4 (2)	C14—C15—H15	121.00
Cl14—C14—C15	119.8 (2)	C16—C15—H15	121.00
C13—C14—C15	121.8 (2)	C11—C16—H16	119.00
C14—C15—C16	118.9 (2)	C15—C16—H16	119.00
C11—C16—C15	121.0 (2)	C31—C32—H32	120.00
C3—C31—C32	122.17 (15)	С33—С32—Н32	120.00
C3—C31—C36	120.46 (15)	С32—С33—Н33	119.00
C32—C31—C36	117.34 (17)	С34—С33—Н33	119.00
C31—C32—C33	120.93 (18)	С34—С35—Н35	119.00
C32—C33—C34	121.6 (2)	С36—С35—Н35	119.00
C33—C34—C35	117.5 (2)	C31—C36—H36	119.00
C33—C34—C37	120.9 (2)	С35—С36—Н36	119.00
C35—C34—C37	121.6 (2)	С34—С37—Н37А	109.00
C34—C35—C36	121.5 (2)	С34—С37—Н37В	109.00
C31—C36—C35	121.2 (2)	С34—С37—Н37С	109.00
C5—C51—C52	118.80 (17)	H37A—C37—H37B	110.00
C5—C51—C56	122.00 (17)	H37A—C37—H37C	109.00
C52—C51—C56	119.20 (17)	Н37В—С37—Н37С	109.00
C51—C52—C53	120.8 (2)	С51—С52—Н52	120.00
C52—C53—C54	119.2 (2)	С53—С52—Н52	120.00
Cl54—C54—C53	119.08 (18)	С52—С53—Н53	120.00
Cl54—C54—C55	119.21 (18)	С54—С53—Н53	120.00
C53—C54—C55	121.7 (2)	С54—С55—Н55	121.00
C54—C55—C56	118.8 (2)	С56—С55—Н55	121.00
C51—C56—C55	120.30 (18)	С51—С56—Н56	120.00
C1—C2—H2A	109.00	С55—С56—Н56	120.00
O1—C1—C2—C3	3.7 (3)	C12-C13-C14-Cl14	179.28 (19)
C11—C1—C2—C3	-177.04 (16)	C12-C13-C14-C15	-1.0 (4)
O1-C1-C11-C12	-0.3 (3)	Cl14—C14—C15—C16	-179.36 (18)
O1-C1-C11-C16	178.2 (2)	C13—C14—C15—C16	0.9 (4)
C2-C1-C11-C12	-179.59 (18)	C14-C15-C16-C11	-0.1 (3)
C2-C1-C11-C16	-1.1 (3)	C3—C31—C32—C33	-178.41 (17)
C1—C2—C3—C4	72.49 (19)	C36—C31—C32—C33	-0.6 (3)
C1—C2—C3—C31	-163.18 (15)	C3—C31—C36—C35	177.69 (18)
C2—C3—C4—C5	-179.02 (16)	C32—C31—C36—C35	-0.1 (3)
C31—C3—C4—C5	55.6 (2)	C31—C32—C33—C34	1.0 (3)
C2—C3—C31—C32	-51.0 (2)	C32—C33—C34—C35	-0.6 (3)
C2—C3—C31—C36	131.25 (18)	C32—C33—C34—C37	177.7 (2)
C4—C3—C31—C32	73.1 (2)	C33—C34—C35—C36	-0.2 (3)
C4—C3—C31—C36	-104.60 (19)	C37—C34—C35—C36	-178.4 (2)
C3—C4—C5—O5	-117.3 (2)	C34—C35—C36—C31	0.5 (3)
C3—C4—C5—C51	61.6 (2)	C5—C51—C52—C53	-179.7 (2)
O5—C5—C51—C52	20.8 (3)	C56—C51—C52—C53	-0.5 (3)
O5—C5—C51—C56	-158.4 (2)	C5-C51-C56-C55	178.05 (19)

supplementary materials

C4—C5—C51—C52	-158.1 (2)	C52—C51—C56—C55	-1.1 (3)
C4—C5—C51—C56	22.7 (3)	C51—C52—C53—C54	1.8 (4)
C1-C11-C12-C13	179.2 (2)	C52—C53—C54—Cl54	178.90 (19)
C16—C11—C12—C13	0.6 (3)	C52—C53—C54—C55	-1.4 (4)
C1-C11-C16-C15	-179.2 (2)	Cl54—C54—C55—C56	179.52 (17)
C12—C11—C16—C15	-0.7 (3)	C53—C54—C55—C56	-0.1 (4)
C11—C12—C13—C14	0.2 (4)	C54—C55—C56—C51	1.4 (3)

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the (C31-C36) methylbenzene ring.

D—H···A	D—H	H···A	D···A	D—H··· A
C4—H4 <i>A</i> …O1	0.97	2.56	3.130 (3)	118
C16—H16…O5 ⁱ	0.93	2.44	3.270 (3)	149
С55—Н55…Сд2 ^{іі}	0.93	2.97	3.629 (2)	129

Symmetry codes: (i) *x*, –*y*+1/2, *z*+1/2; (ii) *x*, *y*+1, *z*.