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Abstract

Independent component analysis (ICA) is a ubiquitous method for decomposing complex

signal mixtures into a small set of statistically independent source signals. However, in

cases in which the signal mixture consists of both nongaussian and Gaussian sources, the

Gaussian sources will not be recoverable by ICA and will pollute estimates of the nongaus-

sian sources. Therefore, it is desirable to have methods for mixed ICA/PCA which can sepa-

rate mixtures of Gaussian and nongaussian sources. For mixtures of purely Gaussian

sources, principal component analysis (PCA) can provide a basis for the Gaussian sub-

space. We introduce a new method for mixed ICA/PCA which we call Mixed ICA/PCA via

Reproducibility Stability (MIPReSt). Our method uses a repeated estimations technique to

rank sources by reproducibility, combined with decomposition of multiple subsamplings of

the original data matrix. These multiple decompositions allow us to assess component sta-

bility as the size of the data matrix changes, which can be used to determinine the dimension

of the nongaussian subspace in a mixture. We demonstrate the utility of MIPReSt for signal

mixtures consisting of simulated sources and real-word (speech) sources, as well as mixture

of unknown composition.

Introduction

Trying to infer underlying source signals present in a complex signal mixture is a ubiquitous

problem in signal processing with applications across science and engineering. The classic

example is the so-called “cocktail party problem,” in which the goal is to recover the voices of

individuals speaking simultaneously using recordings from ambient microphones placed

throughout the room [1]. In most cases, very little information about the underlying source

signals is known; algorithms to attempt to solve this problem go under the heading of blind

source separation [2]. Independent Component Analysis (ICA) is a blind source separation

method that uses statistical independence of the sources as a criterion for solving the unmixing

problem. The sources and mixing coefficients produced by ICA when multiplied together

recover the data matrix. This is similar to the kind of matrix decomposition obtained via
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principal component analysis (PCA) [3], which is not surprising given that ICA reduces to

PCA if the assumption of statistical independence of the sources is relaxed to the weaker con-

dition of linear decorrelation. PCA is so widely used that is has been reinvented multiple times

under different names (empirical orthogonal function analysis [4], the Karhunen-Loeve trans-

form [5], and proper orthogonal decomposition [6]). ICA is used in many application domains

[7, 8], particularly in neuroimaging, in which the goal is to decompose electroencephalo-

graphic (EEG) data in temporally independent sources [9] and functional magnetic resonance

imaging (fMRI) data into spatially independent brain networks [10]. Two of the most common

algorithms for ICA are maximum-likelihood [11] and minimization of the between-compo-

nent mutal information [2]. Another frequently used neural network method (infomax [12,

13]) is equivalent to maximum-likelihood [14].

Unfortunately, once Gaussian sources are mixed with nongaussian sources ICA encounters

problems. The unmixing matrix loses uniqueness because of the rotational invariance of the

Gaussian subspace; with only nongaussian sources uniqueness is preserved [15]. Once two or

more Gaussian sources are present in the signal mixture ICA can no longer separate those

sources, and ignoring these sources in the ICA model will result in spurious sparse sources.

This sphericity problem led Woods et al. [15] to propose a model for mixed ICA/PCA. They

maximize an explicit likelihood model that incorporates supergaussian, subgaussian, and

Gaussian sources and use cross-validation to determine the appropriate number of components

of each kind. The method performs well but with a huge computational burden. Cross-valida-

tion alone is computationally expensive, and multiple likelihood maximizations are required

for each model. A combinatorially large number of models must be evaluated, making this

method difficult to use on the kinds of high-dimensional mixtures common in many applica-

tion domains. Concerns about computational efficiency in ICA calculations have made FastICA

[16], a fast fixed-point algorithm for ICA, an extremely popular method for source separation.

Another of its strengths, relative to explicit likelihood maximization, is the fact that it can rela-

tively easily separate mixtures of sources with both positive (subgaussian) and negative (super-

gaussian) kurtosis, without having to specify in advance how many of each are likely present.

RAICAR (Ranking and Averaging Independent Component Analysis by Reproducibility)

[17] is an ICA method that uses repeated FastICA realizations to rank and select components

based on their reproducibility, a measure of realization-to-realization consistency for a partic-

ular extracted source. It forms the basis for BICAR [18, 19], an ICA-based algorithm for multi-

resolution spatiotemporal data fusion. ICA decomposition of Gaussian mixtures produces

purely spurious sparse components that do not stably converge as sample size increases. This

property suggests that what reproducibility may be measuring is the degree to which a particu-

lar extracted component is part of a Gaussian subspace. This led Woods et al. [15] to speculate

that a technique like RAICAR could be used to provide information for model selection in

ICA. Unfortunately, as we will show, reproducibility alone is insufficient in determining how

many Gaussian components are present in a complex signal mixture. However, component

reproducibility along with a measure of reproducibility fluctuations across extractions from

many random subsamples of the signal mixture matrix can identify the number of Gaussian

and nongaussian sources in real mixtures.

In what follows, we describe a new algoritm for mixed ICA/PCA which we call MIPReSt:

Mixed ICA/PCA via Reproducibility Stability. Our method has RAICAR at its core, which

allows it to take advantage of the speed and distributional flexibility of FastICA. While RAI-

CAR itself requires multiple ICA runs, this number of decompositions does not grow with the

size of the data matrix and FastICA is much faster than likelihood maximization. We demon-

strate the performance of our algorithm on simulated mixtures of statistical sources, mixtures

of real speech signals, and the famous Iris data of R.A. Fisher [20].
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Methods

Algorithm

RAICAR. MIPReSt has at its core the RAICAR algorithm itself [17]; we use a modified

version described previously [18, 19]. Briefly, in RAICAR the data matrix X is subjected to a K-

fold FastICA [16] decomposition; each of the K FastICA realizations begins with random

unmixing matrices (orthogonalized matrices of random Gaussian elements) and the same

number of sources Ns are extracted in each. Matrices of source-source correlation coefficients

are produced for each of the K(K − 1)/2 pairs of realizations, and components are grouped

according to similarity across realizations. This re-sorts the estimated sources and mixing

matrices from K sets of size Ns into Ns sets of size K. The average inter-group cross-correlation

among the K sources in each of the Ns groups (either over all sources [18] or thresholded [17])

produces a value R, the reproducibility, which can be used to rank sources in descending order

of statistical robustness.

MIPReSt. In MIPReSt, the RAICAR algorithm becomes one step in a multi-step pipeline

(see Fig 1). The key additional step is to perform RAICAR many times over many decimated

versions of the original data. As discussed in the introduction, we expect the Gaussian sub-

space to be randomly oriented from subsample to subsample. We typically use multiple two-

fold decimations only; results are similiar for multiple decimations of increased order (twofold,

fourfold, eightfold, etc.) or multiple fourfold decimations alone. From each RAICAR run, we

obtain ranked reproducibility values for all sources. We use these to compute another quantity

δij that measures decimation-to-decimation variability in the reproducibility, computed as

dij ¼ R Si
j

� �
� R S0

j

� ��
�
�

�
�
�: ð1Þ

Here, i indexes realizations, with a superscript of 0 indicating reproducibility values obtained

from a RAICAR decomposition applied to the parent (non-decimated) data matrix. j indexes

sources, of which there will be N in all RAICAR runs.

Once we have used the decimation results to identify the dimension N0 of the sparse sub-

space, we project it out of the parent data matrix via

~X ¼ X � AS; ð2Þ

in which A (size N × N0) and S (size N0 × p) are the portions of the mixing matrix and sources

arising from the RAICAR decomposition of the parent data matrix. The matrix ~X now consists

of only Gaussian components. The dimension of this residual Gaussian subspace will be no

more than N −N0. A basis for the Gaussian subspace can be obtained via singular value decom-

position of ~X , as described below.

Basis for the Gaussian subspace. Estimating the dimension of the Gaussian subspace is

equivalent to deciding how many principal components to retain when performing PCA on

the data matrix [3]. There are a large number of proposed PCA stopping rules, both heuristic

and statistical, which have been reviewed and compared elsewhere [21, 22]. No clear consensus

yet exists as to which (if any) rule is superior, likely because the ability of a particular rule to

stop at the correct number of true components depends on the correlation structure in the

data and size of the data matrix [22]. We therefore compare dimensionality estimates from six

different rules, described below. Unless otherwise noted we begin with a singular value decom-

position of the sample covariance matrix C = YYT/(p − 1), where Y is a row-centered version of

~X and p is the column dimension of ~X . Eigenvalues λ1, . . ., λn are assumed ordered from larg-

est to smallest.

An algorithm for separation of mixed sparse and Gaussian sources
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Fig 1. Schematic for MIPReSt. MIPReSt runs the RAICAR algorithm on both the original data matrix X and many

random subsamples of smaller column dimension. Comparison of the reproducibilities from the original data and the

random subsamples determines the size of the sparse subspace. After projecting that subspace out of X, singular value

decomposition ~X , along with an eigenvalue selection rule, produces both the dimension of the Gaussian subspace and a

basis for that subspace. (See Methods for details.).

https://doi.org/10.1371/journal.pone.0175775.g001
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Kaiser-Guttman (KG) Criterion The Kaiser-Guttman selection rule [23] is one of the sim-

plest and most widely-used rules, despite its known shortcomings [24]. To use Kaiser-Gut-

man, calculate �l ¼ ð1=nÞ
P

ili and keep all components for which li > �l.

Joliffe-Modified KG Joliffe has proposed a modification of the KG criterion which accounts

for sampling variance [3]. In Joliffe’s method, retain all components for which li > 0:7�l.

Broken Stick Model The broken stick model began as a resource distribution model in ecol-

ogy [25], and was only later applied to eigenvalue selection in PCA by associating the

resource to apportion with the total variance in the data [26, 27]. Broken stick partitions the

unit interval into n subintervals of random length, using n − 1 division points uniformly

sampled in [0, 1]. If the subintervals are arranged in order of largest to smallest, then the

expected value for the length of the kth subinterval is

lk ¼
1

n

Xn

i¼k

1

i
: ð3Þ

To use the broken stick model for eigenvalue selection, first transform C’s eigenvalues to

fk = λk / ∑λk and then compare fk to the values lk from the broken stick distribution. Compo-

nent k is retained if fk is greater than lk.

Information Dimension Information dimension is a heuristic measure of the number of

“informative” modes in PCA. Full details and motivation can be found elsewhere [21].

Briefly, it begins by converting eigenvalues to “probabilities” via pk = λk/∑k λk. These proba-

bilities are then used to calculate a normalized entropy ~H ¼ �
P

kpk log 2pk= log 2N , where

N is the row (or column) dimension of the covariance matrix. The information dimension

n0 of the data is computed as n0 ¼ N
~H .

Parallel Analysis (PA) Horn’s parallel analysis criterion [28] compares the observed eigenval-

ues to the eigenvalues obtained from random matrices consisting of standard Gaussian ran-

dom variables. First, standardize each variable in ~X so C becomes the correlation (and not

covariance) matrix. Then generate 103 matrices of the same dimensions as ~X with N(0, 1)

entries. Obtain critical values using a predetermined significance level, and stop retaining

components once the real data eigenvalues drop below the critical values. We use a 95% sig-

nificance level to calculate critical values.

Random Lambda This method is a permutation test for each eigenvalue/component [29]. The

values within ~X are randomly shuffled 999 times and eigenvalues are computed each time.

A permutation p-value is computed via p = (n + 1)/1000, where n is equal to the number of

times a random eigenvalue was larger than its corresponding data value. We then discard

any components for which p> 0.05.

Once the dimension of the Gaussian subspace has been computed, a basis (set of sources)

for the Gaussian subspace can be obtained by projection of the data matrix onto the subspace

spanned by the retained eigenvectors. A python package for MIPReSt will be available on

Github (https://github.com/thelahunginjeet); it depends on other packages which are also all

available at the same location.

Data

We used three types of data: simulated sources, speech signals extracted from public-domain

audiobooks, and the famous Fisher’s Iris data [20]. Gaussian sources were always sampled
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from standard unit normal distributions, specifically

pðxÞ ¼
ffiffiffiffiffiffi
1

2p

r

e� x2=2: ð4Þ

Simulated sources. We used several different distributions to generate subgaussian and

supergaussian sources (see Table 1); some of these distributions have been used as test data

previously [15]. All sparse sources were either generated from distributions with zero mean

and unit variance or were standardized after construction.

Speech. We obtained five mp3s of public domain audiobooks from librivox.com [18]. The

works used were “History of the Peloponnesian War”, Book 5 by Thucydides; “Flatland” by

Edwin A. Abbott; “The Adventures of Huckleberry Finn” by Mark Twain; The “Confessions”

of St. Augustine; and “Moby Dick” by Herman Melville. These audiobooks were converted

from stereo to single channel (mono) when appropriate, and then downsampled to 2.75 kHz.

Examples of supergaussian and subgaussian distributions and a histogram of a random five

second audiobook segment are shown in Fig 2.

Iris data. R.A. Fisher’s famous Iris dataset [20] is available for download at the UCI

Machine Learning Repository [30]. With the exception of ignoring the class labels in the data

file no additional processing (beyond standard ICA preprocessing) of this data was peformed.

Results

Full rank extraction

As we discussed in the introduction, the Gaussian subspace in a mixture of sparse and Gauss-

ian signals should randomly orient as the number of samples increases. To motivate the MIPR-

eSt algorithm, we performed the following numerical experiment. We generated a five-

dimensional signal mixture consisting of one supergaussian source (Inverse Cosh), one sub-

gaussian source (Double Cosh), and three Gaussian sources (see Table 1 for these super- and

subgaussian distributions). Each source consisted of 5 × 105 standardized iid samples, and we

mixed them using a random 5 × 5 orthogonal matrix. We then randomly subsampled this par-

ent signal mixture to obtain signal mixtues consisting of between 5 × 103 and 5 × 105 samples.

We applied the RAICAR algorithm to each of the signal mixtures, and we calculated reproduc-

ibilities for each RAICAR source in every mixture. In order to match each of the five RAICAR

sources to a unique known input source to which it was most similar, we solved the linear

assignment problem [31] using Munkres’ version of the Hungarian algorithm [32]. The cross

Table 1. Simulated sparse sources used in this study.

Name Distribution Type

Inverse Cosh 2 cosh px
2

� �� �� 1 super

Laplace 1ffiffi
2
p e�

ffiffi
2
p
jxj super

Logistic p

4
ffiffi
3
p sech2 px

2
ffiffi
3
p

� �
super

Exponential ArcSinh 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pa2ð1þx=aÞ2
p exp � arcsinh2 x

a

� �
=2

� �
super

Double Cosh 1ffiffiffiffi
ep
p e� x2=2 cosh x

ffiffiffi
2
p� �

sub

Exponential Sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þsinh2ðxÞ

2p

q

exp � sinh2ðxÞ
2

� �
sub

Generalized Gaussian b

2Gð1=bÞ
e� jxj

b super for 0 < β < 2, sub for β > 2

https://doi.org/10.1371/journal.pone.0175775.t001
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correlations between the RAICAR sources and the known sources were used as the basis of the

cost matrix for the assignment problem.

Fig 3 shows the results of these calculations. In each set of five reproducibilities, one set

per decimated data set, the blue point corresponds to the best assignment match to the

known supergaussian source, the red point corresponds to the best match to the subgaussian

source, and all the Gaussian sources are shown in black. The inset shows the RAICAR

sources from the parent data set of 5 × 105 samples plotted against their best assigment

match. There are several things of note in this figure. First, RAICAR finds that the nongaus-

sian subspace is highly, and usually perfectly, reproducible even at far more modest sample

sizes than in the parent data. Secondly, the Gaussian subspace does orient randomly, as

shown by the fluctuating Gaussian reproduciblities. Third, the Gaussians sometimes have

extremely high reproducibility, which indicates that reproducibility alone cannot discriminate

Fig 2. Examples of super- and subgaussian sources. Shown here are histograms for a Gaussian source (black), a subgaussian

source (the generalized Gaussian), and a supergaussian source (Laplace). Also shown is a histogram for one of the speech signals

used in this study. The speech signal is far more leptokurtic than the Laplace source; without truncating the y-axis the massive spike

near zero of the speech signal obscures the shapes of the other distributions.

https://doi.org/10.1371/journal.pone.0175775.g002
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the Gaussian subspace from the nongaussian subspace. These three observations motivate the

core of the MIPReSt algorithm. We perform RAICAR on many subsampled versions of the

input data. We monitor not only the distribution of reproducibilities R, but also the decima-

tion-to-decimation variations in reproducibility δij defined in Eq 1. True sparse sources will

tend to have uniformly high R and low δij, while Gaussian sources may sometimes have high

R but also larger δij.

Overextraction

In most cases, the total signal dimension—the total number of true sources of any kind—is

unknown and must be either estimated from the data matrix or guessed. We have previously

found that repeated estimation methods like RAICAR and BICAR [18, 19] are relatively robust

to overestimation of the data dimension. For example, if the signal mixture is seven dimen-

sional but the number of true sources is five, extracting seven sources yields two sources

(which we will call spurious) with extremely low reproducibility. This suggests a simple proto-

col when confronted with a real signal mixture: extract as many sources as possible, up to the

Fig 3. Full rank extraction. We constructed a simulated data matrix with five sources: one supergaussian, one subgaussian, and three Gaussian

sources. The simulated data matrix had 5 × 105 samples. The main panel shows the results of RAICAR extractions at different levels of decimation,

including the parent data. The best assignment match to the supergaussian source is shown in blue and to the subgaussian source in red. While the

Gaussian sources may sometimes have extrememly high reproducibility, they show poor stability when the data is decimated, in constrast to the

sparse sources. The top panel shows scatter plots of the estimated sources from the parent data against their best assignment match; the sparse

sources are recovered perfectly by RAICAR.

https://doi.org/10.1371/journal.pone.0175775.g003
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row dimension of the data matrix, and then use source reproducibility to estimate the total

source content.

We performed a test to determine how MIPReSt performs for overextraction. Specifically,

we wanted to know if spurious sources were clearly distinguishable in R, δij space from both

Gaussian and nongaussian sources. We therefore generated five input sources; two supergaus-

sians (both Inverse Cosh) and three Gaussian sources, each of which had 5 × 105 samples.

(Using two subgaussians or one subgaussian and one supergaussian yielded identical results.)

These were then mixed with a 10 × 5 Gram-Schmidt orthogonalized mixing matrix to obtain a

ten dimensional data matrix which consists of only five real sources, Gaussian or otherwise.

We applied MIPReSt to this mixture; in each case we used an ensemble of fifteen random

2-fold subsampled data matrices.

Fig 4 shows the results of this experiment. Based on the R and δij values the extracted

sources sort themselves into three categories: (i) signals with near unit reproducibility and

zero delta, (ii) signals with high reproducibility but also high subsample-to-subsample fluc-

tuations, and (iii) signals with very low reproducibiliy that does not fluctuate very much

from subsample to subsample. Comparison of these three sets of sources to the known input

sources by solving the assignment problem shows that the nongaussian sources are con-

tained in the first group, all the Gaussian sources are in the second, and all spurious sources

are completely unreproducible. In some subsamples, FastICA exhausts the variance in this

data with fewer than five spurious sources; these missing spurious sources are assigned a

reproducibility of zero. When we project out the recovered sparse sources and estimate the

dimension of the Gaussian subspace, all PCA stopping rules arrive at the correct dimension

of three (see Table 2). Based on this analysis, MIPReSt can recover the true sparse sources

and the correct basis dimension for the Gaussian subspace even if the extraction dimension

is larger than the true data dimension.

Fig 4. Reproducibility (R) and reproducibility fluctuations (δij) from overextraction. Only five sources (Gaussian or otherwise) are present, but

the mixture dimension is ten. Horizontal bars are located at the median value. There are clearly three groups of sources here. Two sources (the

recovered sparse sources) have near-perfect R that does not fluctuate from decimation-to-decimation. Three sources have occasionally high

reproducibility, but also significant δij; these are the Gaussian subspace. The remaining five sources have very low reproducibility that fluctuates very

little; these sources are spurious sources resulting from overextraction.

https://doi.org/10.1371/journal.pone.0175775.g004
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Separation of complex, real-world signals

Next, we wanted to see if MIPReSt was still successful in recovering the dimension of the

sparse subspace when that subspace consisted of sources with more realistic structure. We

therefore continued to use simulated mixtures, but the nongaussian subspace was constructed

from random sections of the public domain audiobooks described in Methods. Each nongaus-

sian source consisted of 2 × 104 contiguous audio samples, starting at a random location. At

2.75 kHz (see Methods) this consists of 7.3 seconds of audio. Each speech source was standard-

ized. The simulated data matrices we constructed consisted of five such speech sources and

five Gaussian sources. These were overmixed using a Gram-Schmidt orthogonalized random

mixing matrix to a fifteen dimensional data matrix. We used fifty two-fold subsampled data

matrices for MIPReSt calculations of R and δij.
Fig 5 shows the results of running MIPReSt on the overmixed speech examples. Again, as in

Fig 4, one can see three distinct categories of sources, corresponding to the speech signals

(high R, low δij), the five-dimensional Gaussian subspace (variable R but high δij), and the five

spurious sources resulting from overmixing (low or zero R and low δij). This is the same pat-

tern we saw in our previous experiments using simulated sparse sources. The sparse sources

are near-perfectly reproducible and highly stable. The Gaussian components are occasionally

Table 2. Results for estimated dimension of Gaussian subspaces.

N (matrix/Gaussian sources) Overextraction Speech Fisher

10/3 15/5 4/?

KG 3 5 3

Joliffe KG 3 5 3

Broken Stick 3 5 3

Inf. Dim. 2.93 4.98 2.01

PA 3 5 2

Random Lambda 3 5 1

https://doi.org/10.1371/journal.pone.0175775.t002

Fig 5. Reproducibility (R) and reproducibility fluctuations (δij) for speech signals mixed with Gaussian sources. For each of the fifteen

extracted sources, R is shown in red and δij in black. For both quantities, values for each of the fifty subsampled data matrices are shown as points and

the median value as a horizontal bar. The sources clearly group into three categories: high R with low δij (true sparse sources), variable R with high δij

(Gaussian sources), and low R and δij (spurious sources).

https://doi.org/10.1371/journal.pone.0175775.g005
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very reproducible, but as before quite unstable to decimation. Finally any spurious sources

related to overextraction have almost no reproducibility whatsoever. We performed multiple

iterations of this experiment and the results were consistent every time. Contaminating each

speech signal with Gaussian noise of varying signal-to-noise ratio had no effect on estimation

of any of the subspace dimensions. This is expected; the added noise had identical characteris-

tics to the signals making up the Gaussian subspace and hence caused no difficulties in extrac-

tion. As before, all PCA stopping rules agreed that the Gaussian subspace had a dimension of

five.

Fisher’s Iris data

Finally, we examined the performance of MIPReSt on Fisher’s famous Iris data set [20], origi-

nally introduced in the manuscript in which Fisher developed the linear discriminant. Fisher’s

Iris data is probably the most famous classification dataset in existence; a partial list of papers

which cite the Iris data, maintained on the UCI Machine learning Repository [30], contains

over 200 papers. The Iris data has 150 samples measured on four dimensions (features): petal

length, petal width, sepal length, and sepal width. In order to use MIPReSt on the Iris data, we

subjected it to eighty random two-fold decimations. We emphasize that this data could be

quite challenging for our method, as it has far fewer samples (by two or more orders of magni-

tude) than the test data we have considered previously.

Fig 6 shows that there is one and only one sparse component present in the data. When we

examine the RAICAR sources from the parent data in Fig 7 the nongaussianity of the high Rij,

low δij source is obvious (far left panel in the figure). We note that our estimate of a single

sparse source in the Iris data agrees with that obtained by the algorithm of Woods et al. [15].

The fourth coulumn of Table 2 shows the estimates for dimension of the residual (after

Fig 6. Reproducibility plot for the Iris data. The format and color scheme for this figure is identical to that used in Figs 4 and 5. Based on this

information and related discussion in the text, it appears that there is one (and likely only one) sparse source present in the iris data.

https://doi.org/10.1371/journal.pone.0175775.g006
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projection) Gaussian subspace. Here, there is less of a consensus than in the simulated mixture

cases. The stopping rules indicate there are anywhere between 1 and 3 Gaussian sources pres-

ent. Our reasons for including the Kaiser-Guttman criterion (and its modification by Joliffe)

are its simplicity, speed, and wide use by practitioners. It has, however, been roundly criticized

[24]. In a detailed simulation study, Peres-Neto and colleagues give high marks to PA and Ran-

dom Lambda (along with four other rules we did not consider) [22]; these methods tend to

produce the correct number of relevant components for the widest variety of correlation struc-

tures in the data. In addition, in a study of several stopping rules applied to microarray data

[21] find similar disagreement and recommend a consensus approach based on multiple rules.

If we exclude KG and Joliffe’s KG and simply average the results from the remainder of the

rules, we obtain a Gaussian subspace dimension of two.

We therefore find that the Iris data, despite having a potentially problematic number of

samples, did not pose a significant challenge to MIPReSt. We are able to unambiguously find

only a single sparse source, a result that agrees with a previous mixed ICA/PCA method that

requires a full likelihood model for the data [15]. These results, along with our decompositions

of the audiobook speech signals above, strongly indicate MIPReSt will be a valuable algorithm

for a variety of real-world data.

Discussion

We have presented MIPReSt, a new algorithm for mixed ICA/PCA and demonstrated its util-

ity for both simulated mixtures and empirical data. MIPReSt performs many repeated ICA

realizations on both the original, parent data matrix X as well as a number of derived data

matrices obtained from X via randomly dropping some fraction of the samples in X. Using a

combination of component reproducibility and a measure of subsample-to-subsample fluctua-

tions in reproducibility, we are clearly able to separate a complex mixture into sparse and

Gaussian subspaces, as well as flag potentially spurious sources resulting from extraction of

more sources than are actually present in the data. Even on data matrices with an extremely

limited number of samples (150 for the Iris data), MIPReSt still obtains results consistent with

other algorithms which are more heavily parameterized and much more computationally

expensive [15]. In addition, MIPReSt’s use of FastICA allows it to recover both supergaussian

and subgaussian sources without any need to specify the relative numbers of each.

As currently stands, MIPReSt uses a very basic version of FastICA. A single nonlinearity

(logcosh) was used for all the data matrices we decomposed, and for every extracted source

Fig 7. Histograms of extracted sources from the Iris data. Each panel shows a histogram (bars) and kernel density estimate (Gaussian kernel,

solid line) for one of the four RAICAR sources extracted from the iris data. The nongaussianity of the most reproducible source (upper left) is clearly

evident.

https://doi.org/10.1371/journal.pone.0175775.g007
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within those data matrices. Given that the sparse subspaces of real mixtures may be composed

of sources with a variety of shapes, the use of a single nonlinearity may be questionable. Pre-

cisely these concerns have led others to develop a “reloaded” deflationary FastICA method that

tries to adaptively find the optimal nonlinearity for each extracted source as the algorithm pro-

gresses [33]. This method showed improved performance over traditional FastICA when

sources with varying distributional shapes were mixed together. It would be interesting and

valuable to compare the performance of MIPReSt with this adaptive FastICA method to what

we have used here. However, we should note that while gains could be made, they are not likely

to be dramatic, given the performance of MIPReSt in this study. Using multiple estimations,

we were able to recover non-Gaussian subspaces to high accuracy even when they consisted of

a mixture of both super-Gaussian and sub-Gaussian components.

When dealing with datasets of much larger dimension, say those typical in ICA analyses of

electroencephalographic [9] or functional magnetic resonance imaging [10] data, some sparse

components may have reproducibility further from unity than we see here. This could cause a

potential problem, since then the RAICAR averaged mixing matrix columns corresponding to

these sources deviate from orthogonality. In these cases, it should be possible to either correct

the mixing matrix to orthogonality via Gram Schmidt, or more simply use a single ICA realiza-

tion on the parent data X in which we identify the true sparse sources and corresponding mix-

ing matrix columns solving the assignment problem between the RAICAR/MIPReSt sources

and the single-run ICA sources. As above, the cross-correlation matrix between the two sets of

sources gives the cost matrix for the assignment problem.

Our method for estimation of the dimension of the Gaussian subspace relies on using one

or more PCA stopping rules, an area in which there is guidance but not very much consensus

[21, 22, 24]. We find very consistent results for dimension estimation in simulated mixtures,

even when those mixtures contain real-world sources (speech). On Fisher’s Iris data, the

results are less clear. The best approach would be to obtain a dimension estimate from a com-

bination of stopping rules [21] that have proven to work well under a variety of correlation

structures in the data [22]. However, we should point out here that for the applications consid-

ered here, obtaining the exact dimension for the Gaussian subspace is not really a concern. All

we can recover is a basis for the Gaussian subspace, not the individal sources which compose it

(which is impossible). In this case, it may actually be desirable to underestimate the dimension

of the Gaussian subspace in order to obtain some amount of data compression.

In other cases, more careful evaluation of eigenvalue selection criteria will be warranted. If

the Gaussian subspace were to consist of signals with non-identical power spectra—for exam-

ple AR/ARMA models with nonidentical coefficients—then by using algorithms like SOBI

[34] or AMUSE [35] we should be able to recover the constituent Gaussian processes and not

just a basis for the subspace. In this case, estimation of the dimension of the residual data

matrix ~X becomes much more important, and a comprehensive study of the performance of

eigenvalue selection algorithms for simulated mixtures of sparse and Gaussian sources will be

necessary. We are currently working on a version of MIPReSt tailored to unmixing of time

series and investigating this issue.

It has recently become much easier to collect EEG data from within an MRI scanner [36,

37], leading to the possibility of combining EEG and fMRI data during a cognitive task to

obtain a single view of human brain activity with simultaneously high spatial and temporal res-

olution. Many methods have been proposed for this problem [38–46], and use of ICA as some

part of the analysis or processing pipeline is a feature of many of these methods [18, 19, 36, 47–

51]. However, none of these methods deal with the problem of nongaussian components in

the data and the possible contamination of sparse sources during the ICA steps. We are
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currently working to integrate MIPReSt into BICAR, an ICA-based method for producing

reproducible joint components from concurrent EEG-fMRI data [18, 19]. This should produce

fewer spurious joint maps, and enhance the interpretability of the real ones.
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related EEG/fMRI information fusion in a variational Bayesian framework. Neuroimage. 2007; 36:69–

87. https://doi.org/10.1016/j.neuroimage.2007.01.044 PMID: 17408972

47. Eichele T, Calhoun V, Moosmann M, Specht K. Unmixing concurrent EEG-fMRI with parallel indepen-

dent component analysis. Int J Pyschophysiol. 2008; 67:222–234. https://doi.org/10.1016/j.ijpsycho.

2007.04.010 PMID: 17688963

48. Eichele T, Calhoun VD, Debener S. Mining EEG–fMRI using independent component analysis. Int J

Pyschophysiol. 2009;.

49. Moosmann M, Eichele T, Nordby H, Hugdahl K. Joint independent component analysis for simulta-

neous EEG–fMRI: Principle and simulation. Int J Pyschophysiol. 2008; 67:212–221.

50. Brown KS, Ortigue S, Grafton ST, Carlson JM. Improving human brain mapping via joint inversion of

brain electrodynamics and the BOLD signal. Neuroimage. 2010 Feb; 49(3):2401–2415. https://doi.org/

10.1016/j.neuroimage.2009.10.011 PMID: 19833215

51. Brookings T, Ortigue S, Grafton S, Carlson J. Using ICA and realistic BOLD models to obtain joint EEG/

fMRI solutions to the problem of source localization. Neuroimage. 2009; 44:411–420. https://doi.org/10.

1016/j.neuroimage.2008.08.043 PMID: 18845263

An algorithm for separation of mixed sparse and Gaussian sources

PLOS ONE | https://doi.org/10.1371/journal.pone.0175775 April 17, 2017 16 / 16

https://doi.org/10.1007/s10334-009-0196-9
http://www.ncbi.nlm.nih.gov/pubmed/20101434
https://doi.org/10.1093/brain/awr156
http://www.ncbi.nlm.nih.gov/pubmed/21752790
https://doi.org/10.1016/j.neuroimage.2012.02.031
http://www.ncbi.nlm.nih.gov/pubmed/22381593
http://www.ncbi.nlm.nih.gov/pubmed/12501818
https://doi.org/10.1016/j.clinph.2006.03.031
http://www.ncbi.nlm.nih.gov/pubmed/16765085
https://doi.org/10.1007/s10548-010-0140-3
http://www.ncbi.nlm.nih.gov/pubmed/20364434
https://doi.org/10.1016/j.pbiomolbio.2010.11.003
https://doi.org/10.1016/j.pbiomolbio.2010.11.003
http://www.ncbi.nlm.nih.gov/pubmed/21094179
https://doi.org/10.1016/j.neuroimage.2010.01.075
http://www.ncbi.nlm.nih.gov/pubmed/20116435
https://doi.org/10.1016/j.neuroimage.2009.07.038
https://doi.org/10.1016/j.neuroimage.2009.07.038
http://www.ncbi.nlm.nih.gov/pubmed/19632339
https://doi.org/10.1016/j.neuroimage.2007.01.044
http://www.ncbi.nlm.nih.gov/pubmed/17408972
https://doi.org/10.1016/j.ijpsycho.2007.04.010
https://doi.org/10.1016/j.ijpsycho.2007.04.010
http://www.ncbi.nlm.nih.gov/pubmed/17688963
https://doi.org/10.1016/j.neuroimage.2009.10.011
https://doi.org/10.1016/j.neuroimage.2009.10.011
http://www.ncbi.nlm.nih.gov/pubmed/19833215
https://doi.org/10.1016/j.neuroimage.2008.08.043
https://doi.org/10.1016/j.neuroimage.2008.08.043
http://www.ncbi.nlm.nih.gov/pubmed/18845263
https://doi.org/10.1371/journal.pone.0175775

