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ABSTRACT

Endogenous metabolite levels describe the molecular phenotype that is most downstream from chemical exposure.
Consequently, quantitative changes in metabolite levels have the potential to predict mode-of-action and adversity, with
regulatory toxicology predicated on the latter. However, toxicity-related metabolic biomarker resources remain highly
fragmented and incomplete. Although development of the S1500þ gene biomarker panel has accelerated the application of
transcriptomics to toxicology, a similar initiative for metabolic biomarkers is lacking. Our aim was to define a publicly
available metabolic biomarker panel, equivalent to S1500þ, capable of predicting pathway perturbations and/or adverse
outcomes. We conducted a systematic review of multiple toxicological resources, yielding 189 proposed metabolic
biomarkers from existing assays (BASF, Bowes-44, and Tox21), 342 biomarkers from databases (Adverse Outcome Pathway
Wiki, Comparative Toxicogenomics Database, QIAGEN Ingenuity Pathway Analysis, and Toxin and Toxin-Target Database),
and 435 biomarkers from the literature. Evidence mapping across all 8 resources generated a panel of 722 metabolic
biomarkers for toxicology (MTox700þ), of which 462 (64%) are associated with molecular pathways and 575 (80%) with
adverse outcomes. Comparing MTox700þ and S1500þ revealed that 418 (58%) metabolic biomarkers associate with
pathways shared across both panels, with further metabolites mapping to unique pathways. Metabolite reference
standards are commercially available for 646 (90%) of the panel metabolites, and assays exist for 578 (80%) of these
biomarkers. This study has generated a publicly available metabolic biomarker panel for toxicology, which through its
future laboratory deployment, is intended to help build foundational knowledge to support the generation of molecular
mechanistic data for chemical hazard assessment.
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The measurement of endogenous metabolite levels to predict
toxicity, whether by untargeted metabolomics or targeted me-
tabolite assays, has received increasing attention over the last
decade (Johnson et al., 2016; Kamp et al., 2012; Ramirez et al.,
2013; Sperber et al., 2019; Viant et al., 2019). Metabolic measure-
ments describe the most downstream molecular phenotype,
providing insights into a substance’s mode-of-action (MoA) and,
critically, biomarker profiles that are strongly associated with

adverse (or apical) endpoints upon which regulatory toxicology
is predicated (Hines et al., 2010; Taylor et al., 2018). Some individ-
ual metabolic biomarkers are already measured as part of inter-
national regulatory test guidelines, such as triiodothyronine
and thyroxine hormones, to predict thyroid toxicity in rodent
repeated-dose 90-day studies (OECD 2018). Other metabolic bio-
markers, discovered via untargeted metabolomics, have been
deployed in targeted screening assays, including ornithine and
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cystine for predicting developmental toxicity (Zurlinden et al.,
2020). The regulatory application of a broader panel of more
than 200 metabolic biomarkers, predictive of multiple MoAs,
has been extensively demonstrated by BASF, in particular for
category formation to support read-across (Kamp et al., 2012;
Mattes et al., 2014; Sperber et al., 2019; Van Ravenzwaay et al.,
2015). Although these examples collectively demonstrate the
value of metabolic biomarkers in regulatory toxicology, their
implementation remains limited. This is in part because
toxicity-related metabolic biomarker resources for human
health remain highly fragmented and incomplete.

In 2013, the U.S. National Toxicology Program (NTP)
launched an initiative that utilized data- and knowledge-driven
approaches to create a human transcriptomics biomarker panel,
the S1500þ targeted gene set, to enable cost-effective, high-
throughput measurements that are predictive of pathway per-
turbations (Mav et al., 2018). By establishing this gene biomarker
panel on the TempO-Seq gene expression platform (Yeakley
et al., 2017), the application of targeted transcriptome profiling
in toxicology has increased substantially and rapidly (Bushel
et al., 2018). In contrast, no equivalent study has been reported
that interrogates information from multiple resources to derive
a panel of metabolic biomarkers that have the potential to pre-
dict pathway perturbations and/or adversity. Yet, there are sev-
eral justifications to creating such a panel, not least as it could
circumvent the challenge of metabolite identification that
plagues untargeted metabolomics studies in toxicology. In addi-
tion, it could improve harmonization of the analytical
approaches used and accelerate the generation of informatics
resources that describe levels of identified metabolites in the
context of predicting toxicity endpoints. Such resources are
sorely lacking in metabolomics compared with transcriptomics
(Igarashi et al., 2015; Lamb et al., 2006; Richard et al., 2016), argu-
ably another factor underlying the limited implementation of
metabolomics into regulatory toxicology. Defining robust mech-
anistic associations between metabolic biomarkers and adverse
outcomes (AOs) would increase the acceptance of this New
Approach Methodology into hazard assessment frameworks.

The overall aim of this work was to define for the first time a
metabolic biomarker panel for toxicology, similar to the defini-
tion of the S1500þ gene biomarker panel. This was achieved by
mining multiple toxicological resources—including existing
multiplexed molecular assays, databases, and the literature—to
identify a panel of human health-relevant metabolites associ-
ated with disease, toxicity, and other AOs in humans. The first
objective was to create a universal list of detectable human
metabolites (“metabolite master list [MML]”), derived from the
Human Metabolome Database (HMDB), for facile and rigorous
filtering of metabolites through all subsequent phases in the
project. Next, multiple toxicological resources containing infor-
mation on metabolic biomarkers were identified, and data were
extracted from each of these, including 3 multiplexed assays, 4
databases, and the published literature. To maximize confi-
dence in the predictivity of these biomarkers and hence their
utility in regulatory decision making, further information was
gathered to assign one or more disease and/or AOs to each me-
tabolite. To help provide guidance on the context of use of the
metabolic biomarkers, the type(s) of samples in which the bio-
markers have previously been measured was collected.
Furthermore, pathway sources were interrogated to link the bio-
markers to molecular mechanisms, allowing pathway comple-
mentarity to the S1500þ gene biomarker panel to be assessed.
The availability of analytical assays and reference standards for
each metabolic biomarker was investigated to assess the

community’s capability to measure the biomarkers routinely.
This first version of the proposed metabolic biomarker panel for
predictive toxicology is termed MTox700þ, which is made avail-
able at https://michabo.co.uk/resources/mtox (version 1,
updated on 12/01/2022).

MATERIALS AND METHODS

Creation of MML From HMDB and MetaboLights
An “MML” of detectable human-relevant metabolites was created
based on the HMDB (Wishart et al., 2007; version 4.0 [Wishart et al.,
2018], release date—July 9, 2018) and MetaboLights data repository
(Haug et al., 2013; downloaded on February 29, 2020; identifiers
were converted from ChEBI to HMDB using The Chemical
Translation Service—CTS [Wohlgemuth et al., 2010]). The MML was
created for multiple reasons: to ensure consistency in naming
metabolites throughout the study; to ensure consistency in filter-
ing across each of the individual metabolite resource lists; to facili-
tate removal of all drugs, solvents, and other exposure-related
chemicals from these lists; and to assess whether metabolites are
analytically detectable according to HMDB (version 4.0)/
MetaboLights, as only detectable metabolites were listed in the
MML. To remove several unwanted groups of chemicals from the
MML, various types of ontology were used to create ontology filters,
which were applied to the combined HMDB/MetaboLights MML as
described in Figure 1. These ontology filters used both the HMDB
4.0 hierarchical ontology and the chemical ontology from
ClassyFire (Djoumbou Feunang et al., 2016). First, drug metabolites
were removed using the “biological role” HMDB ontology filter.
Then drugs, personal care products, cosmetics, and laboratory
chemicals were removed using the “industrial application” HMDB
ontology filter. Environmental pollutants/contaminants were re-
moved using the “environmental role” HMDB ontology filter. In ad-
dition, chemical ontology filters were applied to remove any
remaining drug and food exposure-related chemical groups, which
comprised the removal of inorganics, organometallic compounds,
alkaloids and derivatives, hydrocarbons, organic 1,3-dipolar com-
pounds, organic polymers, organohalogen compounds, biphenyls,
naphthalenes, fluorenes, phenanthrenes and derivatives, tetralins,
organic dithiophosphoric and thiophosphoric acids, oxepanes, iso-
thiocyanates, sulfoxides, flavonoids, isoflavonoids, phenylpropa-
noic acids, and diarylheptanoids.

Extraction, Filtering, and Merging of Metabolite Resource Lists to
Create Proposed Metabolic Biomarker Panel—MTox7001

Eight existing toxicological resources were selected for interroga-
tion, including 3 multiplexed assays, 4 databases, and the pub-
lished literature. A short description of each resource, together
with a justification for its inclusion, is presented below. For each
resource, a list of metabolites was either directly extracted or the
resource was searched manually, filtering was then applied to en-
sure only high-data quality was retained, and a metabolite re-
source list was produced; see Figure 2 for an overview of the steps.

Multiplexed assays. “BASF” developed a metabolic biomarker panel
for toxicology studies of rat, which has been used to create the
MetaMap Tox database containing the responses of the plasma
metabolome to more than 1000 chemicals (Sperber et al., 2019). The
database associates changes in metabolite levels with rodent toxic-
ity outcomes and hence the metabolic biomarker panel has high
relevance to the current study. The BASF assay comprises 202 met-
abolic biomarkers (most are identified, some remain unknown)
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and was imported from Sperber et al. (2019). Where possible, HMDB
IDs were assigned to metabolites using CTS.

“Bowes-44 (or SafetyScreen-44)” is a pharmacological bio-
marker panel originally developed by a consortium of pharma-
ceutical companies (Bowes et al., 2012) and now commercially
available via Eurofins. The 44 targets represent a minimal panel
that provides a broad early assessment of potential human
health hazards in drug development. It was selected for this
study due to its high toxicological relevance and the availability
of the assay. The panel currently comprises 47 measured end-
points. All gene biomarkers were removed and HMDB IDs were
assigned to the metabolite entries using CTS.

“Toxicology in the 21st Century (Tox21)” program is a joint
initiative between 3 U.S. agencies, the National Center for
Advancing Translational Sciences, NTP, and the Food and Drug
Administration (Thomas et al., 2018). Tox21 aims to improve
toxicity assessment methods and provide a rapid and robust as-
sessment of a chemical and its potential human health effects.
Due to the high human toxicological relevance of the bio-
markers measured in the Tox21 assays, they were considered
for inclusion in this study. The Tox21 assay list was examined
for metabolites, all gene biomarkers were removed, and the

remaining entries containing reference publications were cu-
rated. Metabolites were then assigned HMDB IDs using CTS.

Databases. “Adverse Outcome Pathway (AOP) Wiki” is an open-
source toxicological database, managed by the OECD, that struc-
tures data around a framework connecting a molecular initiat-
ing event to an AO (Ankley et al., 2010). The AOP Wiki organizes
the knowledge of toxicological perturbations into base units—
key events (KEs) and KE relationships—extensively describing
the underlying biological and experimental information.
Currently, there are more than 260 AOPs in this knowledge
base. Data within the AOP Wiki were selected for this study due
to its focus on toxicological perturbations and the linkage of
molecular KEs to AOs. A manual search for metabolites within
all of the AOP KEs was performed. HMDB IDs were assigned to
metabolites using CTS.

“Comparative Toxicogenomics Database (CTD)” is an open-
source database, funded by the U.S. National Institute of
Environmental Health Sciences, that focuses on the environ-
mental exposures affecting human health (Davis et al., 2019;
Mattingly et al., 2003). Although CTD primarily emphasizes the
associations of gene biomarkers with chemicals and disease, it
also contains some metabolic biomarker-chemical connections;
hence, it is a further valuable resource for the current study. A
matrix defining the toxicity-associated biomarkers, including
genes, proteins, drugs, and metabolites, was exported from the
CTD database. All gene and protein biomarkers were removed,
as were all entries for which the detected “stressor” (drug/toxin)
is the “marker.” HMDB IDs were assigned to the remaining
metabolites using CTS.

“QIAGEN Ingenuity Pathway Analysis (IPA, QIAGEN Inc.,
https://digitalinsights.qiagen.com/qiagen-ipa, last accessed
February 2, 2022)” is a commercial knowledgebase that was cre-
ated by compiling a vast amount of information on molecular
mechanisms associated with disease (primarily) and toxicology,
in human, mouse, and rat (Kr€amer et al., 2014). It encompasses
over 7.8 million total findings and approximately 90 000 curated
publicly available datasets, which can be used to predict poten-
tial therapeutic or toxicity targets, and drugs acting on those
targets. With over 16 850 metabolites (including endogenous
metabolites and xenobiotics), and containing a variety of me-
tabolite associations with diseases, biological functions, and/or
pathways, IPA is particularly effective at deriving toxicity
pathway-associated metabolites and therefore of considerable
value to this study. First, IPA was interrogated for any human-
relevant metabolites that were associated with exposure to
“Substances of Very High Concern” (SVHC; list obtained from
European Chemical Agency’s website on August 8, 2019). An
SVHC is a substance of particular concern for human health, in-
cluding carcinogens, mutagens, reproductive toxicants, and
chemicals that are persistent, bioaccumulative, and toxic. This
involved searching for the SVHCs and submitting the findings
to the “Pathway builder” module to assign any molecular asso-
ciations. Second, a search to find relevant metabolites associ-
ated with IPA’s toxicity pathways was conducted. The
metabolite lists from both strategies were then refined by keep-
ing only “endogenous chemicals.”

“Toxin and Toxin-Target Database (T3DB, or Toxic
Exposome Database)” is an open resource developed by The
Metabolomics Innovation Center, Canada, that focuses on pro-
viding mechanisms of toxicity and target molecules for each
toxin (Lim et al., 2010). It is closely linked to the HMDB, Small
Molecule Pathway Database (SMPDB), and PathBank DB. The
T3DB contains 42 374 toxin-toxin target associations (accessed

Figure 1. Workflow to create the metabolite master list (MML). The first 2 boxes

describe the importing of metabolites from the HMDB (Human Metabolome

Database; Wishart et al., 2007) and MetaboLights data repository (Haug et al.,

2013). The third to fifth boxes represent the filters that were used to refine the

metabolite list based on HMDB ontology, and in the sixth box further filters

based on chemical ontology were applied. This process yielded the MML of de-

tectable human-relevant metabolites.
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on January 6, 2020). Due to its large and broad information con-
tent (chemical information, ontologies, origin, pathways, expo-
sure, health effects, etc.), and despite regarding metabolites as
“toxins,” T3DB contains considerable relevant data on metabo-
lites and therefore was selected for inclusion in this study. The
initial matrix with abundant toxicological information was
sourced from T3DB “toxin” matrix file. Metabolites with HMDB
IDs (which were already present in this matrix) were selected
for further curation.

Published literature. To provide a broader strategy to identify met-
abolic biomarkers of toxicity beyond those derived from the 3
multiplexed assays and 4 database resources, an extensive
search of the published literature was undertaken. This strategy
also helped to ensure the latest scientific discoveries were in-
cluded in the proposed metabolic biomarker panel. With our fo-
cus on biomarkers for human health, publication abstracts in
the PubMed repository (Sayers et al. 2022) were curated using
Abstract Sifter (Baker et al., 2017). Abstract Sifter is a Microsoft
Excel-based application that was developed by the U.S.
Environmental Protection Agency to enhance existing search
capabilities of PubMed. It allows keyword searching, effective
organization and visualization of publication lists, and ranking
of the processed references. Our structured search was per-
formed using the query “metabolite and toxicity and bio-
marker.” All publications meeting these search criteria, but
which contained only gene or protein biomarkers, provided no
evidence of substance toxicity, or were nonmammalian, were
considered as false positives and therefore rejected.
Publications that contained metabolic biomarkers of exposure

(such as drugs and drug metabolites) were also rejected. If the
abstract referred to nonspecific or partial metabolite names, the
full text of the publication was then examined. The metabolite
resource list from the published literature was manually pre-
pared using the results from the Abstract Sifter. Finally, HMDB
IDs were assigned to the metabolites using CTS.

Following the export of 8 individual resource lists, above,
each list was filtered against the MML to ensure it contained
only biological, human-relevant metabolites with unique HMDB
IDs assigned to each metabolite (Figure 2). Any metabolites that
were found to occur in a resource list, but not in the MML, were
manually re-inspected before deciding whether to accept or re-
move them from the resource list. This was necessary because
some biologically relevant metabolites were listed as
“undetected” in HMDB, but are “analytically detectable” accord-
ing to the other toxicological resources that were examined
(assays, databases, or publications), and these metabolites were
therefore retained in this study. Furthermore, all metabolite
entries were manually reviewed to identify any remaining
errors, ie, to ensure that all metabolites were of biological origin
by ensuring all drugs, drug metabolites, environmental pollu-
tants/contaminants, and laboratory chemicals were removed.
In addition, due to varying levels of confidence in metabolite
identification, we derived metabolite identification levels
(where possible) from each of the resources; ie, as based upon
the Metabolomics Standards Initiative (MSI) guidelines (Sumner
et al., 2007)—MSI level (1) Identified compounds, MSI level, (2)
Putatively annotated compounds, MSI level, (3) Putatively char-
acterized compound classes, and MSI level (4) Unknown com-
pounds. The type of sample (eg, type of tissue, biofluid, and/or

Figure 2. Workflow to create 8 individual metabolite resource lists. These include 3 multiplexed assay lists—BASF metabolic biomarker panel (workflow 1, labeled on

the arrows), Bowes-44 pharmacological biomarker panel (workflow 2), and Tox21 assays (Toxicology in the 21st Century, workflow 3); 4 databases—AOP (Adverse

Outcome Pathway Wiki, workflow 4), CTD (Comparative Toxicogenomics Database, workflow 5), IPA (Ingenuity Pathway Analysis, workflow 6), and T3DB (Toxin and

Toxin-Target Database, workflow 7); and the list of metabolites from the published literature (workflow 8). *Reference publications were examined in the resource or

the Abstract Sifter.
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cells) in which each of the metabolites was measured (where
the information was available) was also extracted.

The next step was to merge all 8 resource lists to produce
the proposed metabolic biomarker panel for toxicology—
MTox700þ. This was achieved through the use of HMDB IDs
that were assigned to all metabolites in all of the resource lists.

Associating Disease and/or AOs With Each Metabolite in the
Proposed MTox7001 Panel
Associations between each metabolite in the proposed
MTox700þ panel with disease and/or AOs were derived using
further data extracted from 4 AO sources—HMDB, IPA, AOP
Wiki, and publications. Specifically, HMDB (version 4.0) con-
tained metabolite-disease associations that were derived from
the Online Mendelian Inheritance in Man (OMIM) database
(Hamosh et al., 2000). Using IPA, a “metabolomics core (enrich-
ment) analysis” was conducted employing all of the metabolites
in the MTox700þ panel as input, in order to extract “disease and
biological function” associations for each metabolite. The AOP
Wiki was manually searched to extract any relevant associa-
tions between metabolic KEs and AOs. Publications were exam-
ined in Abstract Sifter and AOs associated with the publications
containing metabolites of interest were extracted manually.

Associating Molecular Pathways With Each Metabolite in the
Proposed MTox7001 Panel
Molecular pathway associations with the metabolites in the pro-
posed MTox700þ panel were derived from 4 pathway sources
(Figure 3)—IPA (Kr€amer et al., 2014), Kyoto Encyclopedia of Genes
and Genomes (KEGG; Kanehisa and Goto, 2000), Reactome
(Joshi-Tope et al., 2005), and PathBank (Wishart et al., 2020).

In “IPA,” similar to the disease workflow, all of the
MTox700þ panel metabolites were used as input and
“metabolomics core (enrichment) analysis” was conducted to
extract pathway associations for each metabolite.

KEGG and Reactome were selected due to their rich pathway
content and S1500þ panel compatibility. “KEGG” (by Kanehisa
Laboratories, Japan) is an open-source pathway database for un-
derstanding high-level functions and utilities of biological sys-
tems (cells, organisms, and ecosystems) from molecular-level
information. To extract pathway associations from KEGG, iden-
tifiers from the MTox700þ panel were first converted from
HMDB to KEGG using CTS (Wohlgemuth et al., 2010). The metab-
olites were then submitted into KEGG Mapper and pathway-
metabolite associations were derived from the database.

“Reactome” (developed by Ontario Institute for Cancer
Research, New York University School of Medicine, European
Molecular Biology Laboratory’s European Bioinformatics
Institute, and Oregon Health & Science University) is an open
source, manually curated, and peer-reviewed pathway data-
base. It provides bioinformatics tools for the visualization, inter-
pretation, and analysis of pathway knowledge to support basic
and clinical research using omics data. Using Reactome, all of
the pathway-metabolite associations were extracted, and iden-
tifiers were converted from ChEBI to HMDB using CTS. The
metabolites with associations were then filtered against the
MTox700þ panel metabolites yielding panel-specific pathway-
metabolite associations.

“PathBank” (closely connected to SMPDB and HMDB, by The
Metabolomics Innovation Centre, Canada) is an open-source in-
teractive pathway database with more than 100 000 pathways.
Its primary focus is metabolomics, and it therefore contains a
set of unique pathways not found in other databases. Using
PathBank, all the pathway-metabolite associations were
imported, and the metabolites with associations were filtered
against the MTox700þ panel yielding panel-specific pathway-
metabolite associations.

For reliability of the interrogated pathways and consistency
with the Tox21 S1500þ methodologies, after obtaining pathway
association data from all 4 pathway sources, each pathway list
was reviewed and only pathways with 3 or more participating
metabolites (termed “reliable” molecular pathways) were
retained. The list of metabolites associated with these reliable
pathways was collated and described in the results.

Furthermore, the reliable molecular pathways (associated
with metabolic biomarkers from the KEGG and Reactome data-
bases) were compared with the pathways associated with the
S1500þ gene biomarker panel (Mav et al., 2018) to determine the
overlap of pathways between the MTox700þ and S1500þ bio-
marker panels.

Associating Each Metabolite in the Proposed MTox7001 Panel With
Analytical Assays and Reference Standards
The MTox700þ panel metabolites were assigned an analytical
assay type based upon information from several resources: all 3
multiplexed assay resources (BASF, Bowes-44, and Tox21), 1
database resource (CTD), and publications. Specifically, analyti-
cal assay types for measuring metabolites of interest (such as
Liquid Chromatography–Mass Spectrometry (LC-MS), Gas
Chromatography–Mass Spectrometry (GC-MS), Nuclear Magnetic
Resonance (NMR), etc.) were obtained from Sperber et al. (2019)
for the BASF panel, from Bowes et al. (2012) for the Bowes-44
panel, and from Kleinstreuer et al., (2011) for the Tox21 panel. Of
the multiple databases interrogated in this project, only the CTD
resource provided assay information, which was extracted from

Figure 3. Workflow for connecting metabolites from the MTox700þ panel to mo-

lecular pathways. The pathway sources used include IPA (Ingenuity Pathway

Analysis, 1–3), KEGG (Kyoto Encyclopedia of Genes and Genomes, A–E),

Reactome (a–c), and PathBank (I–II). *Human Metabolome Database (HMDB) IDs

were converted to KEGG IDs in KEGG workflow and ChEBI IDs were converted to

HMDB IDs in Reactome workflow. **Enrichment analysis was performed in IPA

and metabolite mapping was performed in KEGG.
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the “exposure events” file, and then nonanalytical methods
such as questionnaires, predictions, and computational analyses
were removed from the final assay list. Analytical assay types
were also extracted from publications, which were manually cu-
rated in Abstract Sifter (Baker et al., 2017); the full text was
reviewed if the assay was not provided in the abstract. All assays
were then merged into a single list, providing an overview of
how each panel metabolite can be measured.

The availability of reference standards was first assessed by
checking against 2 large metabolomics libraries—IROA
Technologies Mass Spectrometry Metabolite Library of
Standards and MetaSci COMPLETE Metabolite Library, followed
by a manual search for the remaining metabolites from other
vendors including ABI Chem, Avanti, CaymanChem, Enzo Life
Sciences, MedChemExpress, MolPort, Sigma Aldrich (Merck),
TargetMol, and Thermo Fisher.

Ranking the Importance of Metabolites in the Proposed MTox7001

Panel
To aid the ranking of metabolites in the MTox700þ panel based
on their perceived importance in toxicological responses, sev-
eral criteria were developed. Three separate scores were
assigned to each metabolite in the panel based upon each of 3
properties: (1) total coverage in toxicological resources, AO sour-
ces, and pathway sources, (2) pathway consistency with the
S1500þ gene panel, and (3) measurement feasibility.

The first ranking score for each metabolite was based on its
“total coverage in toxicological resources, AO sources, and path-
way sources”, considering whether the metabolite featured in
the original 8 resources (described in Extraction, Filtering, and
Merging of Metabolite Resource Lists to Create Proposed
Metabolic Biomarker Panel—MTox700þ section; score of 1–8),
whether the metabolite was present in the sources of AO infor-
mation (described in Associating Disease and/or AOs With Each
Metabolite in the Proposed MTox700þ Panel section; score of 0–
4), and whether the metabolite was present in the pathway
sources (described in Associating Molecular Pathways With
Each Metabolite in the Proposed MTox700þ Panel section; score
of 0 to 4). The total coverage score was calculated as: Score(total

coverage %) ¼ [(toxicological resource count/8*100þAO source
count/4*100þpathway source count/4*100)]/3. Finally, the total
coverage score was categorized into 3 levels—low (score below
33%), medium (score 33–66%), and high (score above 66%).

The second ranking score for each metabolite described the
“pathway consistency with the S1500þ gene panel,” either as
consistent (score of 1) or not (0), with consistency defined as the
metabolite being present in a reliable molecular pathway (see
definition in Associating Molecular Pathways With Each
Metabolite in the Proposed MTox700þ Panel section), where
that pathway is also measured by genes in the S1500þ panel.

Finally, the third ranking score was based on “measurement
feasibility,” based on the availability of an analytical assay
(score of 1, if available) and a reference standard (score of 1, if
available); total score of 0–2.

RESULTS

Creation of MML From HMDB and MetaboLights
Multiple international data resources utilize their own identi-
fiers for individual metabolites. Since the principal objective of
this work was to integrate data from multiple toxicological
resources, we first established a core list of consistently named
metabolites against which we could map each of the metabolite

resource lists of proposed biomarkers. The HMDB was selected
as the primary source of metabolites and their identifiers for
the master list as it is the most extensive human-relevant me-
tabolite resource internationally. This was complemented by
metabolites reported in the European Bioinformatics Institute’s
MetaboLights database, the most extensive repository of experi-
mental metabolomics data in Europe.

The HMDB unfiltered metabolite list contained 9052 detect-
able (quantified or nonquantified) metabolites. In addition, the
MetaboLights database was imported to ensure that any (newly)
detected metabolites missing from the HMDB were included,
yielding 822 metabolites that could be assigned HMDB IDs (con-
verted from ChEBI IDs using CTS). Of these, 121 were not pre-
sent in the 9052 HMDB metabolite list, hence were added to
form a master list with 9173 metabolites. After ontology filtering
(Figure 1, boxes 3–6), 8658 metabolites remained (42 of those
lacked any ontology terms, but were retained), forming the final
MML, all with HMDB IDs (see Supplementary Material 1 MML
and resource lists, tab “MML”).

Creation of Metabolite Resource Lists and Proposed Metabolic
Biomarker Panel—MTox7001

To create the metabolite resource lists of proposed biomarkers,
multiple existing toxicological resources were interrogated in-
cluding 3 multiplexed assays—BASF, Bowes-44, and Tox21, 4
databases—AOP Wiki, CTD, IPA, and T3DB, and the published
literature, as introduced in the Materials and Methods section.

Curation of the BASF assay yielded a total of 202 metabolite
entries, of which 21 were labeled as “unknown” in Sperber et al.
(2019), and a further 27 metabolites lacked a sufficiently specific
name to allow their identification, eg, “phosphatidylcholine No.
02” and “TAG (C16:0, C16:1).” Of the remaining 154 metabolite
names, 147 were each assigned a unique HMDB ID, whereas 7 of
the metabolite names were each assigned multiple possible HMDB
IDs. This was necessary as the unsaturated bond configurations
for these 7 lipids were unknown; hence, all possible HMDB IDs
were retained for ease of filtering and comparison of lists.
However, in the figures below, only the unique 154 (147þ 7) metab-
olites are presented (Figure 4A; see Supplementary Material 1, tab
“BASF”). Importing the biomarkers from the Bowes-44 assay
resulted in a list of 10 metabolites, all with HMDB IDs (Figure 4A;
see Supplementary Material 1, tab “Bowes-44”). Curation of the
Tox21 assays yielded a total of 37 metabolite entries, of which 35
were assigned HMDB IDs; 2 entries lacked specificity and could not
be identified (Figure 4A; see Supplementary Material 1, tab
“Tox21”).

Next, the 4 database resources were interrogated. After per-
forming a manual search of the AOP Wiki, 40 metabolites were
extracted and all were assigned HMDB IDs (Figure 4A; see
Supplementary Material 1, tab “AOP Wiki”). A total of 601 me-
tabolite entries were extracted from the CTD, of which 287 were
assigned HMDB IDs (Figure 4A; see Supplementary Material 1,
tab “CTD”). Of the large number of rejected entries majority
were xenobiotics, mainly biphenyls, diphenylethers, diphenyl-
methanes, phthalates, naphthalenes, halogenated, and inor-
ganic compounds. Furthermore, 2 strategies were used to
extract relevant metabolite information from the IPA database
(described in Extraction, Filtering, and Merging of Metabolite
Resource Lists to Create Proposed Metabolic Biomarker Panel—
MTox700þ section). The first strategy comprised searching for
the SVHCs and submitting the findings to the “Pathway builder”
module to assign any molecular associations. Of the 203 SVHC
that were searched for by CAS number in the IPA knowledge-
base, 71 were present. Of these, IPA’s “Pathway builder” module
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discovered endogenous metabolic associations for 22 of them,
resulting in 68 SVHC-associated metabolites. The second strat-
egy involved inspecting 26 of IPA’s toxicity pathways and
extracting the pathway-associated metabolites. Employing the
second search approach resulted in 17 of IPA’s toxicity path-
ways with metabolite associations, corresponding to 77 metabo-
lites. The lists from both search approaches were combined to
produce a single IPA resource list of 130 unique metabolites, of
which 108 metabolites had HMDB IDs (Figure 4A; see
Supplementary Material 1, tab “IPA”). Finally, for the T3DB data-
base, a total of 3533 small molecule entries were identified of
which 1119 had HMDB IDs (Figure 4A; see Supplementary
Material 1, tab “T3DB”). The majority of the rejected small mole-
cule entries arose from xenobiotics.

The initial query search of published literature using the
Abstract Sifter returned 935 papers that were published be-
tween 1983 and 2020, and each abstract was examined manu-
ally for information on metabolic biomarkers. When the
abstract was not sufficiently clear, the publications were stud-
ied in greater detail. From the 935 papers examined, 83 (pub-
lished between 1991 and 2020) were retained. Curation of the
retained publications yielded 511 metabolite entries, of which
439 were metabolites with HMDB IDs (Figure 4A; see
Supplementary Material 1, tab “Publications”).

Having compiled the 8 metabolite resource lists, all with
HMDB IDs, the next step was to filter these against the HMDB/
MetaboLights MML. In conjunction with manual inspecting and
filtering, this ensured that the proposed biomarkers were

Figure 4. Number of metabolites (A) extracted from each of 8 selected toxicological resources as possible metabolic biomarkers of toxicity (all with Human Metabolome

Database IDs); (B) selected for inclusion in the proposed MTox700þ panel following their extraction, filtering, and manual review from 8 resources; (C) intersection of

the 722 unique metabolites included in the proposed MTox700þ panel highlighting the importance of extracting knowledge from all 3 types of resources including mul-

tiplexed assays (BASF metabolic biomarker panel, Bowes-44 pharmacological biomarker panel, and Tox21 assays), databases (AOP [Adverse Outcome Pathway] Wiki,

CTD [Comparative Toxicogenomics Database], IPA [Ingenuity Pathway Analysis knowledgebase], T3DB [Toxin and Toxin Target Database]), and the published litera-

ture. Graphical representation was obtained using UpSetR (Lex et al., 2014).
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human-relevant and that all drugs and xenobiotics were re-
moved. Metabolites from the resource lists that were not pre-
sent in the MML were individually reviewed to determine their
origin, with only human-relevant metabolites retained.
Figure 4B shows the number of potential metabolic biomarkers
of toxicity, after filtering, for each of the 8 metabolite resource
lists.

All 8 resource lists were then combined to produce the pro-
posed MTox700þ panel for toxicology, which comprised a total
of 722 unique metabolites (see details in Ranking the
Importance of Metabolites in the Proposed MTox700þ Panel sec-
tion). The metabolite resource lists shared common metabo-
lites, although the extent of overlap was relatively low
(Figure 4C) with 525 (73%) metabolites being derived from a sin-
gle resource. This highlights the importance of combining infor-
mation from multiple toxicological resources, as reported here
for the first time.

Associating Disease and/or AOs With Each Proposed Metabolic
Biomarker in the MTox7001 Panel
To maximize the confidence in the predictivity of the bio-
markers, it was important to attempt to assign 1 or more dis-
ease and/or AOs to each of the proposed 722 metabolites.
According to information extracted from HMDB, 492 of the pro-
posed metabolic biomarkers are associated with at least 1 dis-
ease, based on the disorder classification from OMIM (see
Supplementary Material 2 AOs and Pathways, tab “Disease AO
ToxFunction”). Interrogating IPA revealed that 178 of the pro-
posed biomarkers are linked to 1 or more “toxicity functions.” A
manual search of the AOP Wiki showed that 33 of the proposed
metabolic biomarkers (or molecular KEs in this case) are associ-
ated with 37 AOs. In addition, curation of publications revealed
that 208 of the proposed biomarkers are linked to 1 or more
AOs.

In total, 80% (578 out of 722) of the proposed metabolic bio-
markers are associated with at least 1 disease or AO, with 8 of
the proposed biomarkers having a recognized adverse pheno-
type in all 4 AO sources (Figure 5). Of the 578 metabolites with

AO associations, 453 were linked to multiple AOs (with 70% of
those metabolites being associated with 10 or fewer AOs), and
125 metabolites were linked to a single AO.

Associating Molecular Pathways With Each Proposed Metabolic
Biomarker in the MTox7001 Panel
To increase the informative value of the biomarkers, it was
attempted to assign 1 or more reliable molecular pathways to
each of the proposed 722 metabolites (see Supplementary
Material 2 AOs and Pathways). Interrogating IPA revealed that
263 of the metabolites are linked to 1 or more canonical path-
ways. Examining KEGG revealed that 401 of the proposed meta-
bolic biomarkers are associated with at least 1 canonical
pathway. The data extracted from Reactome demonstrated that
301 proposed biomarkers are linked to 1 or more pathways.
Although at least one of the PathBank pathways was associated
with 342 of the metabolites. In total, 64% (465 out of 722) of the
proposed metabolic biomarkers are associated with at least 1
molecular pathway, with 192 of these participating in pathways
from all 4 pathway sources (Figure 6).

Next, we sought to address the question whether the mea-
surement of the proposed MTox700þ panel would add value to
an experiment that is already applying the S1500þ gene panel.
The reliable molecular pathways associated with both panels
(MTox700þ and S1500þ) were compared, first based on KEGG
pathways and then those in Reactome (see Supplementary
Material 2, tab “S1500þ pathways”). Metabolite and gene-
associated pathways exhibited a moderate overlap in KEGG,
with 80 out of 186 S1500þ associated pathways also identified
as reliable metabolite-associated pathways (Figure 7A). Of the
remaining 106 molecular pathways in S1500þ, 53 are gene spe-
cific, ie, are not metabolic pathways and therefore do not in-
clude any metabolites (a further 37 pathways are associated
with metabolic biomarker metabolites; however, these are not
“reliable” metabolite-associated pathways, ie, did not meet the
minimum threshold of 3 metabolites per pathway). Metabolite
and gene-associated pathways overlapped to a lesser extent in
Reactome, with 215 out of 674 S1500þ associated pathways also
identified as reliable metabolite-associated pathways

Figure 5. Number of proposed metabolic biomarkers within the proposed

MTox700þ panel that are associated with disease and/or adverse outcomes (to-

taling 578 of 722 possible metabolites), derived from 4 different data sources:

HMDB (Human Metabolome Database), IPA (Ingenuity Pathway Analysis), AOP

(Adverse Outcome Pathway) Wiki, and published literature.

Figure 6. Number of proposed metabolic biomarkers within the proposed

MTox700þ panel that are associated with reliable molecular pathways (totaling

465 of 722 possible metabolites), derived from 4 different pathway sources: IPA

(Ingenuity Pathway Analysis), KEGG (Kyoto Encyclopedia of Genes and

Genomes), Reactome, and PathBank.
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(Figure 7B). Of the remaining 459 molecular pathways in
S1500þ, 156 are gene-specific (216 pathways are also associated
with metabolic biomarker panel metabolites, but these meta-
bolic biomarkers are not a part of “reliable” metabolite-
associated pathways).

Considering the findings from the KEGG and Reactome data-
bases together, the 80 KEGG pathways represented on both mo-
lecular panels include 375 MTox700þ panel metabolites, and
the 215 common Reactome pathways encompass 277
MTox700þ panel metabolites. In total, 58% (420 unique metabo-
lites out of 722) of the proposed metabolic biomarkers are asso-
ciated with 295 molecular pathways included in the S1500þ
panel. Of particular note is that measurement of the proposed
MTox700þ panel would also provide information on many reli-
able molecular pathways that are not measured by the S1500þ
panel, specifically 93 additional pathways in KEGG and 540
pathways in Reactome (see Supplementary Material 2, tab
“S1500þ pathways”).

Associating Analytical Assays and Reference Standards With Each
Proposed Metabolic Biomarker in the MTox7001 Panel
To maximize the likelihood that the proposed MTox700þ panel
can be implemented into regulatory testing, the availability of
analytical assays and reference standards was assessed (see
Supplementary Material 3 Ranked MTox700 panel). Reference
standards can serve 2 purposes: first, they are required to
achieve the highest level of confidence in metabolite identifica-
tion, so-called MSI level 1 (Sumner et al., 2007); and they are

required if the absolute quantification of metabolites is sought.
The levels of analytical confidence in both the identification
and quantification of each metabolite measured in metabolo-
mics or targeted metabolite assay will need to be reported
according to the OECD Metabolomics Reporting Framework
(Harrill et al., 2021). Assay types were sourced from BASF,
Bowes-44, Tox21, CTD, and multiple publications. Considering
these sources, the majority of metabolites (432) have previously
been measured using LC-MS, 93 metabolites detected using GC-
MS, a further 164 metabolites were measured using either LC-
MS or GC-MS (it was not clarified by BASF), 56 metabolites using
NMR spectroscopy, and a further 77 metabolites have been mea-
sured using other analytical methods. Many metabolites will be
detectable across multiple assays. In summary, 80% (578 out of
722) of the panel metabolites are measurable using at least 1 as-
say, with LC-MS being the most applicable. Based on our search
criteria, reference standards are available for 90% (649 out of
722) of the panel metabolites.

Metabolic Biomarker Ranking
Several factors were considered to create a biomarker ranking
system that prioritizes metabolites based on the relevance and
reliability of each biomarker in the MTox700þ panel. These in-
cluded the amount of existing information collected from multi-
ple toxicological resources, AO sources, and pathway sources
that indicated a metabolite was already used as a biomarker in
toxicology; pathway consistency with the S1500þ gene panel;
and practical considerations for measuring a metabolite in the
laboratory (see Supplementary Material 3).

The first ranking took into account each metabolite’s total
coverage of 8 toxicological resources, 4 AO sources, and 4 path-
way sources. The results indicated that 406 metabolites had
limited existing information (scoring below 33%), generally be-
ing present in just 1 toxicological resource (typically from recent
publications) and containing scarce information from AO sour-
ces and/or pathway sources. Higher coverage of resources, AO,
and pathway sources was observed for 255 metabolites (me-
dium score of 33–66%), and 61 metabolites scored highly with >

66% coverage in the resources, AO, and pathway sources.
The second ranking considered pathway consistency with

S1500þ gene panel, resulting in 420 proposed metabolic bio-
markers meeting the criteria.

The third ranking was derived based on the measurement
feasibility for each metabolite, including assay and reference
standard availability. Both of these were available for the major-
ity of metabolites (515 of 722), with a further 197 metabolites as-
sociated with either an assay or a reference standard.

DISCUSSION

Although the publicly available S1500þ human biomarker panel
has helped to drive the application of transcriptomics to predict
pathway perturbations (Mav et al., 2018), no equivalent initiative
has been reported to develop a metabolic biomarker panel. Yet,
the need is great, as it is metabolomics that is capable of mea-
suring downstream molecular phenotypes that more closely re-
late to adversity. To date, the only metabolic biomarker panel
for toxicology is commercial, developed by BASF as a corner-
stone of their MetaMapTox database that describes rodent
responses to more than a thousand test chemicals (Van
Ravenzwaay et al., 2015). The success of BASF’s metabolite panel
and database, applied to predict a substance’s MoA and for cate-
gory formation to support read-across, is evidenced by multiple
publications (Sperber et al., 2019; Van Ravenzwaay et al., 2012,

Figure 7. Intersection of molecular pathways associated with MTox700þ panel

metabolites and S1500þ panel genes in (A) KEGG (Kyoto Encyclopedia of Genes

and Genomes) and (B) Reactome. In both (A) and (B), the center of each diagram

represents pathway overlap between the 2 molecular panels (for reliable path-

ways); the medium-sized circles portray the unique pathways for each panel;

and the smallest circle on the right shows pathways with no metabolites.
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2015). Another toxicology resource—the AOP Wiki, is freely
available and hosts some metabolic KE-based AOPs, eg, AOP162
“Enhanced hepatic clearance of thyroid hormones leading to
thyroid follicular cell adenomas and carcinomas in the rat and
mouse” (Dellarco et al., 2006); however, this resource is still rela-
tively small and few metabolic KEs have been documented.
QIAGEN IPA is notable as it contains multiple metabolite associ-
ations with pathways and AOs, though it is primarily a biomedi-
cal database. Most molecular toxicology resources remain gene/
protein focused, with only a few featuring metabolites,
highlighting the importance of the information assimilated in
this study. Here, a metabolic biomarker panel for toxicology has
been proposed by combining knowledge from multiple toxico-
logical resources—including existing multiplexed molecular
assays, databases, and the literature.

Several challenges were encountered while developing
MTox700þ, particularly the lack of consistency in classifying
and naming both metabolites and metabolic pathways. First,
metabolite repositories rarely delineate between drugs, dietary-
derived metabolites, other metabolites arising from environ-
mental exposure (eg, xenobiotics), and endogenous metabolites,
all of which can be part of the detectable human metabolome;
some resources refer to these simply as “chemicals,” lacking im-
portant subclassifications. Even where attempts have been
made to define an appropriate ontology (eg, in HMDB; Wishart
et al., 2018), there is no single filter that allows, eg, clear distinc-
tion between drugs and some endogenous metabolites that are
sometimes labeled as drugs (eg, the amino acids L-arginine and
L-tryptophan, and some vitamins and hormones). Therefore,
metabolites had to be manually curated to resolve these appar-
ent conflicts. The second challenge in assimilating multiple
metabolic resources was the lack of standardized names and/or
identifiers for metabolites. Although this problem can be allevi-
ated using translation tools (van Iersel et al., 2010; Wohlgemuth
et al., 2010), sometimes these tools do not recognize metabolite
names/identifiers leading to manual translation of the identi-
fiers. For metabolomics to grow as a tool for assessing chemical
hazards, it will be important that study authors define metabo-
lite names and identifiers, as recently proposed in the OECD
Metabolomics Reporting Framework (Harrill et al., 2021). A fur-
ther difficulty encountered was incomplete metabolic names,
mainly for lipids, making it impossible to identify some poten-
tial biomarkers. Similar to the difficulties encountered for indi-
vidual metabolites, inconsistent molecular pathway ontologies
were also a major issue when working with multiple pathway
sources. Despite some pathways bearing the same name in
most pathway databases (eg, glycolysis/gluconeogenesis, pyru-
vate metabolism, sphingolipid metabolism, etc.), the pathway
ontologies remain largely inconsistent, ie, similar pathways (in
terms of contents and biological function) can have alternative
pathway names, additional members/reactions between mem-
bers, and/or be separated into multiple subpathways. Hence,
there is a substantial need to standardize pathway ontology
across databases, or minimally to describe the mapping be-
tween these resources.

Another challenge arose during the initial searches for the
information now contained within the MTox700þ panel due to
the relative sparsity of metabolomics data and knowledge in
toxicology. For example, in contrast to the well-documented
associations of metabolic biomarkers with disease outcomes
and/or disease-related molecular pathways (Wishart et al.,
2021), metabolite associations with toxicity-specific AOs and
pathways are surprisingly rare and were available only from the
AOP Wiki, IPA, and some publications. Furthermore, this study

revealed that the intersection of metabolites between toxicolog-
ical resources is low; eg, of the 435 proposed metabolic bio-
markers derived from published literature, 273 (63.6%) were not
included as putative biomarkers in any of the multiplexed
assays or in the database resources. This highlights the consid-
erable importance of recent publications as a source of putative
biomarkers, although the depth of investigation of a biomarker
in a single publication is typically less rigorous than for bio-
markers in the already-established assay panels. This in turn
highlights how AO predictions derived from applying the
MTox700þ panel could potentially be misinterpreted.
Specifically, metabolites that have been extensively researched,
such as ATP and cholesterol, are linked to multiple AOs and can
serve as more universal biomarkers. However, less studied
metabolites that are currently associated with a single AO can
be misinterpreted as being highly specific markers linked to an
adversity, yet upon further investigation these may also prove
to be universal markers. This lack of knowledge could be
addressed by the metabolomics community targeting such bio-
markers in the MTox700þ panel in future toxicology studies. It
is also important to note that a single metabolite is not an ade-
quate representative of an AO or a pathway as it will almost cer-
tainly participate in a number of AOs or pathways, hence only a
combination of set metabolites is likely be specific for an MoA,
and hence better suited to determine adversity.

Similar to the strategy employed here, the 2 main drivers for
gene selection in the S1500þ panel were toxicological/patholog-
ical relevance and pathway representation (Mav et al., 2018). An
important question still to be addressed in the emerging appli-
cations of omics technologies to regulatory toxicology is which
approach(es) can deliver the minimal mechanistic information
required to enable regulatory decision making, eg, whether a
combination of upstream transcriptomics and downstream
metabolomics is required to define a chemical’s MoA and/or ad-
versity. To support this ongoing discussion, the relationship be-
tween the S1500þ and MTox700þ panels was investigated. In
addition to multiple overlapping reliable molecular pathways,
which could be used in a weight-of-evidence approach to iden-
tify the MoA, subsets of both genes and metabolites each partic-
ipate in unique pathways, suggesting a complementarity of the
2 molecular panels. Similar to the importance of new data for
better defining the associations between metabolites and AOs,
the generation of new multi-omics datasets that measure both
molecular panels will help to inform the community on the rel-
ative contributions of transcriptomics and metabolomics to
identifying and characterizing hazards.

Although the practical deployment of the MTox700þ panel
in toxicology studies is a logical next step, this is not without
challenges. As introduced above, a reference standard is re-
quired to identify each metabolite with the highest level of con-
fidence (Sumner et al., 2007). Currently, this is not possible as
only 646 of the metabolites in the panel are commercially avail-
able. Also, not all 722 metabolites will be detectable in all sam-
ple types, with subsets of the full panel applicable to different
tissues and/or biofluids. For instance, metabolites extracted
from the BASF multiplex assay were derived from studies on rat
plasma and therefore will primarily be applicable to this sample
type. Metabolites derived from the AOP Wiki, CTD, T3DB, and
the published literature are applicable to a wider variety of sam-
ple types (tissues, biofluids, and/or cells), while the metabolites
measured using the Bowes-44 and Tox21 multiplexed assays
are of greatest relevance to in vitro cell lines.

The toxicological application of the panel may also dictate
which subset of metabolites to measure, for instance, hazard
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identification may prioritize the measurement of metabolites
associated with AOs. Irrespective of this granularity, we
strongly advocate that the community attempts to measure as
many of the MTox700þ metabolites as possible, to identify
them confidently, and report their relative quantitative changes
in response to chemical exposure, as this will increase the met-
abolic knowledge associated with the panel and increase its
ability to predict downstream biological effects. In particular,
quantitative metabolic measurements will be required to distin-
guish adaptive changes from adverse effects, consistent with
the concept of a quantitative AOP (Conolly et al., 2017). By rank-
ing the MTox700þ panel metabolites, it was determined that
316 metabolites (with medium or high total coverage score)
have substantial toxicological relevance, and 498 metabolites
have an analytical assay and a reference standard available;
hence, the barrier to the community adopting at least part of
the panel is relatively low and could realize a step-change in
the field.

In conclusion, to facilitate the application of metabolomics
data in regulatory toxicology, multiple existing toxicological
resources have been interrogated—including multiplexed
assays, databases, and published literature—to propose a panel
of metabolic biomarkers that have the potential to predict MoA
and adversity. The creation of the human-relevant MML, com-
prising 8658 metabolites, was an important step for enabling
the management of individual metabolite lists. Selection and
subsequent interrogation of the toxicological resources yielded
189 proposed metabolic biomarkers from 3 existing multiplexed
assays (BASF, Bowes-44, and Tox21), 346 proposed biomarkers
from 4 database resources (AOP Wiki, CTD, IPA, and T3DB), and
435 proposed biomarkers from the literature. Merging all
8 resources generated a list of 722 metabolites, representing a
metabolic biomarker panel for toxicology—MTox700þ, of which
578 (80%) of the markers are associated with a disease (or toxic-
ity or AO) and 465 (64%) are associated with reliable molecular
pathways. Assessing the pathway compatibility between the
MTox700þ and S1500þ panels showed that 420 (58%) of the met-
abolic biomarkers are associated with shared reliable molecular
pathways. Through the future use of this panel, it is possible
that some metabolites may be removed (if they do not demon-
strate sufficient predictivity) while further metabolic bio-
markers will be added (discovered via untargeted or hybrid
targeted-untargeted metabolomics), hence the MTox700þ panel
is predicted to evolve over time. Here, we have launched this
metabolic biomarker panel, with the intention to help build
foundational knowledge to support the generation of molecular
mechanistic data for chemical hazard assessments.
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