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Simple Summary: Although pathologic complete response (pCR) to neoadjuvant chemoradiation
(nCRT) in locally advanced rectal cancer (LARC) is associated with better outcomes, a subset of tumors
exhibit resistance to nCRT. Therefore, there is a need of biomarkers to predict the nCRT response and
increment efforts for personalized therapeutic options. To this end, we analyzed pretreatment plasma
proteome of a mouse model of rectal cancer treated with concurrent chemoradiation, resulting in
identification and validation of plasma VEGFR3 as a potential predicting biomarker. In addition,
plasma levels of EGFR and COX2, previously validated tissue-based predicting biomarkers, were
significantly higher in non-pCR than pCR LARC patients, indicating that EGFR and COX2 can also
serve as blood-based biomarkers. The performance of the biomarker panel combining VEGFR3,
EGFR, and COX2 were significantly improved compared to that of each marker alone, providing a
rationale for further integration and refinement of the biomarker panel and validation in the larger
sample sets.

Abstract: The current standard of care for patients with locally advanced rectal cancer (LARC) is
neoadjuvant chemoradiation (nCRT) followed by total mesorectal excision surgery. However, the
response to nCRT varies among patients and only about 20% of LARC patients achieve a pathologic
complete response (pCR) at the time of surgery. Therefore, there is an unmet need for biomarkers that
could predict the response to nCRT at an early time point, allowing for the selection of LARC patients
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who would or would not benefit from nCRT. To identify blood-based biomarkers for prediction of
nCRT response, we performed in-depth quantitative proteomic analysis of pretreatment plasma from
mice bearing rectal tumors treated with concurrent chemoradiation, resulting in the quantification
of 567 proteins. Among the plasma proteins that increased in mice with residual rectal tumor after
chemoradiation compared to mice that achieved regression, we selected three proteins (Vascular
endothelial growth factor receptor 3 [VEGFR3], Insulin like growth factor binding protein 4 [IGFBP4],
and Cathepsin B [CTSB]) for validation in human plasma samples. In addition, we explored whether
four tissue protein biomarkers previously shown to predict response to nCRT (Epidermal growth
factor receptor [EGFR], Ki-67, E-cadherin, and Prostaglandin G/H synthase 2 [COX2]) also act as
potential blood biomarkers. Using immunoassays for these seven biomarker candidates as well
as Carcinoembryonic antigen [CEA] levels on plasma collected before nCRT from 34 patients with
LARC (6 pCR and 28 non-pCR), we observed that levels of VEGFR3 (p = 0.0451, AUC = 0.720), EGFR
(p = 0.0128, AUC = 0.679), and COX2 (p = 0.0397, AUC = 0.679) were significantly increased in the
plasma of non-pCR LARC patients compared to those of pCR LARC patients. The performance
of the logistic regression model combining VEGFR3, EGFR, and COX2 was significantly improved
compared with the performance of each biomarker, yielding an AUC of 0.869 (sensitivity 43% at 95%
specificity). Levels of VEGFR3 and EGFR were significantly decreased 5 to 7 months after tumor
resection in plasma from 18 surgically resected rectal cancer patients, suggesting that VEGFR3 and
EGFR may emanate from tumors. These findings suggest that circulating VEGFR3 can contribute to
the prediction of the nCRT response in LARC patients together with circulating EGFR and COX2.

Keywords: rectal cancer; neoadjuvant chemoradiation; mouse model; proteomics; biomarkers

1. Introduction

The current standard of care for patients with clinical stage II or III locally advanced
rectal cancer (LARC), defined as T3–T4 or node-positive non-metastatic disease, is neoad-
juvant chemoradiation (nCRT) followed by total mesorectal excision (TME) surgery to
improve resectability, anal sphincter preservation, and long-term outcome [1,2]. However,
the response to nCRT in LARC varies among patients. After nCRT, about 20% of LARC pa-
tients achieve a pathological complete response (pCR), which is associated with favorable
5-year disease-free survival compared to those without complete response (non-pCR) [3,4].
Conversely, while ~40% of LARC patients achieve a wide range of partial responses, a
subset (~20%) of tumors exhibit resistance to nCRT, demonstrating either progression or
only minimal regression/stable disease [5].

Given the achievement of pCR in a significant proportion of patients undergoing nCRT
and the adverse effects of major TME surgery such as perioperative mortality, anastomotic
leak, stoma-related complications, and long-term urinary and sexual dysfunction [6–8],
there is a growing interest in organ preservation for LARC patients who achieve a clinical
complete response (cCR) after nCRT. Since 2004, a series of studies have reported the
promising potential of a watch-and-wait strategy to avoid major TME surgery [9–12].
Recent large datasets from meta-analyses and registry studies indicated that 5-year overall
survival did not differ between patients treated with a watch-and-wait and those with
surgery [13,14], suggesting that the watch-and-wait strategy can be an alternative to TME
surgery with low oncological risk. However, the significant limitation of the watch-and-
wait strategy is the poor concordance between pCR and cCR, which can result in local
regrowth after nCRT [13–15]. Therefore, there is an immense need for biomarkers for safe
adoption of the watch-and-wait strategy to predict pCR and identify patients who may
potentially avoid surgery after completion of nCRT.

A wide variety of clinical, pathologic, and radiologic factors, including tumor size,
differentiation, clinical T and N stages, and tumor regression rates, have been associated
with nCRT response [16–19]. Several potential tissue- or blood-based molecular biomarkers
to predict the nCRT response, including DNA methylation, protein, miRNA, and cfDNA,
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have also been described [20–23]. As carcinoembryonic antigen (CEA) is routinely used for
disease monitoring in colorectal cancer, the relationship of CEA and the nCRT response has
been most widely studied. A recent meta-analysis suggest that pretreatment CEA levels
were significantly and inversely correlated with the rate of pCR [24]. However, to date,
none of these clinicopathological, radiological, or molecular biomarkers have yet reached
the clinic due to inadequate sensitivity and specificity.

In this study, we sought to identify blood-based biomarkers that can differentiate
patients who will achieve a pCR versus non-pCR by analyzing the plasma proteome of
a mouse model with rectal cancer that recapitulate molecular and biological features of
human rectal cancer [25]. This approach allows minimization of extraneous variability
and blood sampling at defined pre-therapeutic time points during the course of tumor
progression [26]. In addition, we investigated whether previously validated tissue-based
biomarkers for nCRT response [20] can also serve as blood-based biomarkers for predict-
ing pCR.

2. Materials and Methods
2.1. Mouse Model

All animal experiments were conducted in accordance with institutional and national
guidelines and regulations with approval by the Institutional Animal Care and Use Com-
mittee at The University of Texas MD Anderson Cancer Center. At 8 weeks of age, mice
were administered with a 4-hydroxytamoxifen (4-OHT) enema (1 mg/mL) and doxycy-
cline [25]. Beginning at 4 weeks post-induction, tumor size was measured as the percentage
of tumor occlusion of the lumen by weekly colonoscopy. Once the percentage of tumor
occlusion of the lumen reached 50%, intraperitoneal injection of 5-FU (30 mg/kg) and
concurrent radiation (5 Gy per fraction) were administered to four mice with rectal tumors
for 5 consecutive days, resulting in two mice showing complete tumor regression and two
mice with residual tumors. Four control mice at the same age without Cre DNA recombi-
nase were also treated with the same regimen. Five days prior to the treatment, plasma was
collected, and Magnetic resonance imaging (MRI) was performed to assess rectal tumors.
Mice were euthanized a week after chemoradiation and response to chemoradiation was
pathologically evaluated.

2.2. Mass Spectrometry Analysis of Pretreatment Mouse Plasma Samples

An independent pool of pretreatment plasmas from two mice with rectal tumors
achieving regression, two mice with residual rectal tumors after chemoradiation, and
four control mice were created. Each pool of mouse plasma was subjected to immunode-
pletion, whereby the top three abundant proteins (albumin, IgG, and transferrin) were
removed using an Immunodepletion column (Agilent Technologies, Santa Clara, CA,
USA). The remaining low abundant proteins in each sample were treated with 25 mM
tris(2-carboxyethyl)phosphine (TCEP) for Cys reduction and subsequently labeled with
Iodoacetyl Tandem Mass Tag (IodoTMT) sixplex isobaric label reagent (Thermo Fisher
Scientific, Waltham, USA). The mixture of labeled samples was separated by an orthogonal
two-dimensional high-performance liquid chromatography (2D-HPLC) system (Shimadzu,
Kyoto, Japan) with eight fractions of anion-exchange (Agilent Technologies, Santa Clara,
USA) as the first dimension followed by 12 reversed-phase fractions by RPGS reversed-
phase column (4.6 mm I.D. × 150 mm, 15 µm, 1000 Å, Column Technology Inc, Fremont,
CA, USA) as the second dimension. Collected protein fractions were lyophilized, digested
with trypsin, and analyzed by nano LC–high definition MSE (HDMSE) with Synapt G2Si
ion-mobility quadrupole time-of-flight (Q-TOF) mass spectrometry (Waters, Milford, USA).

The 2 h gradient elution was performed in a capillary column (C18, 3 µm 120 Å,
75 µmID × 25 cmL, Column Technology, Inc., Fremont, USA) at 500 nl/min with the
mobile phase A 0.1% formic acid (FA) in 2% acetonitrile (ACN) and B 0.1% FA in 98% ACN.
The mass spectrometer was operated with a resolving power of at least 20,000 full width
at half maximum (FWHM) at m/z 785.843 (+2, Glu1-fibrinopeptide B) nano electrospray
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ionization (ESI) source with a NanoLockSpray. The lock mass channel was sampled every
60 s.

Accurate LC-HDMSE data were acquired in an alternating low energy (HDMS) and
high energy (HDMSE) mode with mass scan range from m/z 50 to 1800 under a capillary
voltage of 2.8 kV, a source temperature of 100 ◦C, and a cone voltage of 30 V. The spec-
tral acquisition in each mode is 1.0 s with a 0.1 s inter-scan. In HDMS mode, data are
collected at a collision energy of 2 eV in both Trap and Transfer cell. In HDMSE mode,
the collision energy is ramped up from 25 to 55 eV in the Transfer cell. The acquired data
were processed through ProteinLynx Global Server (PLGS, WATERS, Milford, USA) and
searched against the Uniprot mouse database at 4% false discovery rate (FDR). The identi-
fied proteins were filtered with ≤ 5 ppm mass accuracy of sequenced peptides. Quantile
normalization approach was used to normalize the peak intensities of reporter ions before
protein quantification.

2.3. Human Plasma Samples

All human plasma samples were obtained following Institutional Review Board
approval and informed consent. Plasma samples were collected from 34 treatment-naïve
LARC patients undergoing neoadjuvant chemoradiation (50.4 Gy in 28 daily fractions
of 1.8 Gy with concurrent capecitabine (an oral prodrug of 5-fluorouracil)) at the MD
Anderson Cancer Center, and used for validation of biomarker candidates (pretreatment
LARC set). After completion of chemoradiation, patients underwent surgical excision, and
standardized pathological procedures were followed for the assessment of residual disease.
An independent set of plasma samples collected at the time of diagnosis and 5 to 7 months
after surgery from 18 surgically resected rectal cancer patients at the Aichi Cancer Center
was used to assess the association between biomarker candidates and surgical resection
(pre-and post-surgery RC set). All patients in the pre- and post-surgery RC set were treated
by surgery alone.

2.4. Luminex Assays

Levels of Vascular endothelial growth factor receptor 3 (VEGFR3), Insulin like growth
factor binding protein 4 (IGFBP4), Carcinoembryonic antigen (CEA), Epidermal growth fac-
tor receptor (EGFR), and E-cadherin were measured using the Luminex kit (HANG2MAG-
12K, HIGFBMAG-53K, HCCBP1MAG-58K, and HSCRMAG-32K from Millipore, and
EPX010-12315-901 from Life Technologies), according to the manufacturer’s instructions.
Each sample was assayed in duplicate, and the absorbance was measured with a calibrated
Bio-Plex machine (Bio-Plex MAGPIX System, Bio-Rad, Hercules, CA, USA).

2.5. ELISA Assays

Levels of Cathepsin B (CTSB), Ki-67, and Prostaglandin G/H synthase 2 (COX2)
were determined using enzyme-linked immunosorbent assay (ELISA) kits (ab119584 from
Abcam, Cambridge, UK; DY7617-05 from R&D Systems, Minneapolis, MN, USA; and
RAB1034-1KT from Sigma-Aldrich, St. Louis, MO, USA) and according to the manufac-
turer’s protocol. For all ELISA experiments, each sample was assayed in duplicate, and
the absorbance was measured with a FLUOstar Omega microplate reader (BMG Labtech,
Ortenberg, Germany).

2.6. Statistical Analysis

Categorical data were compared by Fisher’s exact test or a chi-square test using Prism
7.05/e software (GraphPad). For all Luminex and ELISA assays, an internal control sample
was run in every plate, and each value of the samples was divided by the mean value of the
internal control in the same plate to correct the interplate variability. Individual biomarker
performance was assessed using the Welch’s t-test or the paired t-test. Sensitivity, specificity,
and the area under the curve (AUC) were determined by a receiver operating characteristic
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analysis. The likelihood ratio test was employed to assess the significance of the model
based on the biomarker panel combining VEGFR3, EGFR, and COX2.

3. Results
3.1. Proteomic Profiling of Pretreatment Plasmas from a Mouse Model of Rectal Cancer Treated
with Chemoradiation

To faithfully recapitulate the development of human locally advanced rectal cancer
(LARC), we utilized a genetically engineered mouse model of colorectal cancer, which
harbors a Doxycycline (Dox)-inducible oncogenic Kras allele and conditional null alleles of
Apc and Trp53 (iKAP) [25]. Approximately 25% of iKAP mice are expected to develop only
rectal tumors by colon-specific activation of Cre DNA recombinase with rectal enema of
4-OHT. Occurrence of rectal tumors in Dox-treated iKAP mice was confirmed by endoscopy,
MRI, and biopsy (Figure 1A). iKAP mice with rectal tumors and control mice without Cre
DNA recombinase received intraperitoneal injection of 5-FU (30 mg/kg) and concurrent
radiation (5 Gy per fraction) for 5 consecutive days (Figure 1B). To assess the response
to chemoradiation, mice were sacrificed a week after the treatment. Figure 1C depicts
macroscopic images of colons of iKAP mice with residual tumors (non-regression) (#1) and
with complete tumor regression (Regression) (#2), while rectal tumors of #1 and #2 mice
were not distinctively different before chemoradiation (Figure 1A).

To identify plasma proteins that can predict pCR before chemoradiation, plasma
samples were collected 5 days prior to chemoradiation from iKAP mice with rectal tumors
and control mice (Figure 1B). For mass spectrometry analysis, plasma samples from two
Regression mice, two Non-regression mice, and four control mice were respectively pooled.
In-depth quantitative proteomic analysis with using tandem mass tags (TMT) labeling
resulted in quantification of 567 proteins (393 unique genes). To gain insights into the
underlying biological difference of increased plasma proteins in Regression mice and Non-
regression mice, we performed a pathway analysis of proteins with more than a two-fold
increase in the plasma of either Regression mice or Non-regression mice compared to con-
trol mice using WebGestalt (http://www.webgestalt.org/, accessed on 25 March 2020) [27].
Over-Representation Analysis based on KEGG (https://www.genome.jp/kegg/, accessed
on 25 March 2020) [28] resulted in identification of 5 and 13 pathways that were significantly
associated with increased proteins in the plasma of Regression mice or Non-regression mice
compared to control mice, respectively (p values < 0.05, hypergeometric test, and with three
or more overlapping proteins) (Figure 2A and Supplementary Table S1). While four path-
ways commonly identified in the comparison of Regression vs. control and Non-regression
vs. control were associated with metabolism, nine pathways that were uniquely identi-
fied in the comparison of Non-regression vs. control were associated with the immune
system and infectious disease (Complement and coagulation cascades; Antigen processing
and presentation; Staphylococcus aureus infection; Pertussis), intracellular transport and
catabolism (Lysosome; Phagosome), focal adhesion (Focal adhesion; Proteoglycans in
cancer), and the endocrine system (Thyroid hormone synthesis) (Figure 2A,B).

http://www.webgestalt.org/
https://www.genome.jp/kegg/
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Figure 1. Chemoradiation treatment of iKAP mice with rectal tumors. (A). Endoscopic images (top)
and MRI scans (bottom) of rectal tumors. Red arrows in MRI scans indicate rectal tumors. (B). Outline
of the experimental design for intraperitoneal injection of 5-FU and concurrent radiation. (C). Macro-
scopic images of colons of iKAP mice with residual tumor (Non-regression) (#1) and with complete
tumor regression (Regression) (#2). A red arrow indicates residual tumors. CRT: chemoradiation.
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Figure 2. Proteomic analysis of pretreatment plasmas from iKAP mice with complete tumor regression and with residual
tumors. (A). Venn diagrams of pathways are significantly associated with more than a two-fold increase of proteins in the
plasma of Regression mice or Non-regression mice compared to control mice. (B). Pathways uniquely identified in the
comparison of Non-regression vs. control. p values were calculated by hypergeometric test. (C). Schema of mouse Vegfr3,
Ctsb, and Igfbp4. Gray bars indicate peptides identified in mouse plasma. Numbers indicate mass spectra counts for each
peptide. The amino acid sequences are based on P35917-1 for Vegfr3, P10605-1 for Ctsb, and P47879-1 for Igfbp4.

To determine biomarker candidates for prediction of pCR, we applied the following
criteria: (1) the number of quantified peptides ≥ 10, (2) Non-regression/Control ratio > 3,
and (3) Non-regression/Regression ratio > 3. Nine proteins passed these criteria (Table 1),
and intriguingly, Collagen type I alpha 1 chain (Col1a1), Cathepsin B (Ctsb), and Vascular
endothelial growth factor receptor 3 (Vegfr3) were included in the pathways uniquely asso-
ciated with increased plasma proteins in Non-regression mice (Supplementary Table S1),
suggesting a possible biological link between these proteins and rectal tumors resistant
to chemoradiation. In addition, Insulin like growth factor binding protein 4 (Igfbp4) is of
interest, as it can bind to and modulate the function of Insulin-like growth factor I (Igf1) [29],
which is also included in two pathways associated with focal adhesion (Supplementary
Table S1). Our mass spectrometry analysis yielded substantial peptide coverage for Vegfr3,
Ctsb, and Igfbp4 (Figure 2C and Table 1), and therefore, we selected these three proteins
for validation in human plasma samples.

3.2. Validation of Protein Biomarker Candidates in a Set of LARC Plasma Samples

VEGFR3, CTSB, and IGFBP4, as well as Carcinoembryonic antigen (CEA) were assayed
in the pretreatment LARC set consisting of plasma samples collected prior to nCRT from
34 patients with LARC. In the pretreatment LARC set, 6 (17.6%) patients achieved pCR
(pCR) and 28 (82.4%) patients had residual tumors after nCRT (non-pCR). While non-pCR
LARC patients had more advanced T stages, clinical factors did not show a statistically
significant difference between pCR and non-pCR LARC patients (Table 2).
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Table 1. Plasma proteins increased in Non-regression iKAP mice.

Protein Total Number of
Peptides

Non-Regression/Control
Ratio

Non-Regression/Regression
Ratio

Igfbp4 38 9.9 3.6
Col1a1 13 8.1 3.7
Prdx6 10 6.4 5.2
Park7 13 4.9 5.0
F13b 138 4.2 3.7
Flna 20 4.1 3.4
Ctsb 44 4.0 3.0

Vegfr3 91 3.8 3.7
Blvrb 14 3.3 4.4

Igfbp4: Insulin like growth factor binding protein 4, Col1a1: Collagen type I alpha 1 chain, Prdx6: Peroxiredoxin-6,
Park7: Parkinson disease protein 7, F13b: Coagulation factor XIII B chain, Flna: Filamin-A, Ctsb: Cathepsin B,
Vegfr3: Vascular endothelial growth factor receptor 3, Blvrb: Biliverdin reductase B.

Table 2. Subject characteristics in the pretreatment LARC set.

Characteristics pCR
(n = 6)

Non-pCR
(n = 28) p Value

Gender
Female 3 13 >0.9999
Male 3 15

Age (years)
Mean (range) 56.0 (45–67) 56.5 (28–74)

<56 3 12 >0.9999
≥56 3 16

T stage
T2 3 3 0.0603
T3 3 21
T4 0 4

N stage
N0 0 1 0.2528
N1 6 18
N2 0 8

Stage
IIa 0 1 0.1379
IIIa 3 3
IIIb 3 22
IIIc 0 2

Tumor length (cm)
<4.5 2 13 0.6722
≥4.5 4 15

Distance from anal verge (cm)
<6.5 4 13 0.6562
≥6.5 2 15

p values were calculated by Fisher’s exact test or a chi-square test.

In addition to three selected biomarker candidates, as many potential tissue-based
biomarkers have been associated with nCRT response [20], we sought to determine whether
tissue-based protein biomarkers in blood also can have the potential to predict pCR.
According to prior studies, we selected four proteins, including Epidermal growth factor
receptor (EGFR), Ki-67, Prostaglandin G/H synthase 2 (COX2), and E-cadherin, for testing
in the pretreatment LARC set.

Plasma levels of VEGFR3, EGFR, and COX2 were significantly higher in non-pCR
LARC compared to pCR LARC (VEGFR3: p = 0.0451, EGFR: p = 0.0128, COX2: p = 0.0397,
Welch’s t-test) (Figure 3A). CEA and other four biomarker candidates were not significantly
different between pCR and non-pCR LARC patients (CEA: p = 0.1940, CTSB: p = 0.7894,
IGFBP4: p = 0.3469, Ki-67: p = 0.1547, E-cadherin: p = 0.3836, Welch’s t-test).
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Figure 3. Validation of biomarker candidates in the pretreatment LARC set. (A). Levels of VEGFR3,
CTSB, IGFBP4, CEA, EGFR, Ki-67, COX2, and E-cadherin in plasmas collected before nCRT from
LARC patients who achieved pCR (pCR; n = 6) and LARC patients who had residual tumors after
nCRT (non-pCR; n = 28). Horizontal lines indicate mean and standard deviation. p values were
calculated using Welch’s t-test. (B). Receiver operating characteristic curves for VEGFR3, EGFR,
COX2, and their combination in the pretreatment LARC set. CEA: Carcinoembryonic antigen, EGFR:
Epidermal growth factor receptor, COX2: Prostaglandin G/H synthase 2, AUC: the area under
the curve.
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We explored whether a combination rather than individual biomarkers allows for
better discrimination of pCR and non-CR. The combination of VEGFR3, EGFR, and COX2
using logistic regression yielded an area under the curve (AUC) of 0.869 with a sensi-
tivity of 43% at 95% specificity in the comparison of pCR and non-pCR LARC patients,
which was significantly higher than AUC of each marker alone (VEGFR3: AUC = 0.720,
p = 0.0152, likelihood ratio test; EGFR: AUC = 0.679, p = 0.0160, likelihood ratio test; COX2:
AUC = 0.679, p = 0.0151, likelihood ratio test) in the pretreatment LARC set (Figure 3B).

3.3. Correlation of VEGFR3, EGFR, and COX2 in the Plasma of Rectal Cancer Patients Before and
After Surgery

We next determined whether plasma levels of VEGFR3, EGFR, and COX2 are associ-
ated with surgical resection of rectal cancer. For this analysis, VEGFR3, EGFR, and COX2
were assayed in an independent set of plasma consisting of samples collected from 18 rectal
cancer patients at the time of diagnosis and 5 to 7 months after surgical resection (pre-and
post-surgery RC set; Figure 4A). All these rectal cancer patients remained disease-free for
five years after surgery. Plasma levels of VEGFR3 and EGFR were significantly decreased
after tumor resection (VEGFR3: p = 0.0119, EGFR: p = 0.0058, paired t-test) (Figure 4B).
Levels of plasma COX2 did not change significantly after surgery compared to presurgical
levels (p = 0.1867, paired t-test).

Figure 4. Correlation of plasma VEGFR3, EGFR, and COX2 with surgical resection in patients with
rectal cancer. (A). Subject characteristics in the pre-and post-surgery RC set. (B). Levels of VEGFR3,
EGFR, and COX2 in plasmas collected at the time of diagnosis (Before) and 5 to 7 months after
surgery (After) from 18 rectal cancer patients. p values were calculated by paired t-tests.



Cancers 2021, 13, 3642 11 of 14

4. Discussion

In this study, we profiled the pretreatment plasma proteome of a mouse model of
rectal cancer treated with concurrent chemoradiation to identify potential blood-based
biomarkers for predicting pCR in LARC patients. Among plasma protein signatures associ-
ated with Non-regression, proteins involved in focal adhesion are of particular interest, as
deregulation of integrin-mediated focal adhesion has been shown to lead to therapeutic
resistance [30]. We found that levels of Vegfr3, one of the proteins in the “Focal adhesion”
pathway, was significantly increased in the pretreatment plasma of Non-regression mice
compared to Regression mice and control mice. Increased levels of circulating VEGFR3
were validated in plasma collected prior to nCRT from non-pCR LARC patients compared
to pCR LARC patients. We also demonstrated that plasma VEGFR3 levels were signif-
icantly decreased after surgical resection of rectal tumors. Yeh et al. recently showed
a significant correlation between circulating VEGFR3 levels and expression of VEGFR3
in tumor tissues [31]. These findings suggest that circulating VEGFR3 emanated from
tumor tissues. VEGFR3 is crucial for the development and maintenance of blood and
lymphatic vascular systems [32]. While VEGFR3 is primarily expressed in lymphatic
endothelial cells, VEGFR3 and its main ligand VEGF-C are expressed in tumor cells of
various types of cancer, including colorectal cancer [33]. Higher expression of VEGFR3
in tumor tissues has been also associated with advanced TNM stages, the occurrence of
metastasis, and poor prognosis in colorectal cancer [31,34]. Recent studies have revealed
that activation of VEGF-C/VEGFR3 signaling promotes tumor growth and invasion by
disrupting the lymphatic endothelial barrier and by recruiting and inducing immunosup-
pressive tumor-associated macrophages in colorectal cancer [34,35]. Given the emerging
evidence suggesting crucial roles of VEGF-C/VEGFR3 axis in cancer progression, multiple
therapeutic strategies for VEGF-C/VEGFR3-targeted therapies, including small molecule
VEGFR3 inhibitors, monoclonal antibodies targeting VEGF-C, and neutralizing antibodies
or peptides that block VEGFR3 signaling, have been developed [33]. Therefore, while our
findings indicated the potential of circulating VEGFR3 as a biomarker for nCRT response,
circulating VEGFR3 may also serve as a biomarker for the prediction of prognosis and
response to VEGF-C/VEGFR3-targeted therapies.

In this study, we also explored whether tissue-based biomarkers that have been associ-
ated with nCRT response can serve as blood-based biomarkers for pCR prediction. Among
four tissue-based biomarkers selected for testing, we observed significantly increased levels
of circulating EGFR and COX2 in plasmas collected prior to nCRT from non-pCR LARC
patients compared to pCR LARC patients.

Several studies have reported the significant association of tissue EGFR expression
and response to nCRT in LARC [36]. A recent study indicated that higher expression
of EGFR in the nucleus is associated with poor survival in LARC patients treated with
nCRT [37]. While we demonstrated for the first time that circulating EGFR could be used
as a potential biomarker for predicting pCR in rectal cancer, circulating EGFR has been
associated with response to therapy in several types of cancer [38]. Interestingly, Okada
et al. demonstrated that downregulation of EGFR in tumor tissue after treatment with
anti-EGFR antibodies was significantly correlated with therapeutic response in patients
with colorectal cancer [39]. Although a recent meta-analysis indicated the addition of
EGFR inhibitors did not improve the efficacy of neoadjuvant therapy in KRAS-wild type
LARC patients [40], monitoring circulating EGFR may help determine whether to continue
EGFR-targeted therapy or not.

Regarding tissue COX2 expression in LARC, previous studies have reported an asso-
ciation of COX2 overexpression and poor response to nCRT [20]. While we demonstrated
that circulating COX2 was significantly increased in the plasma of non-pCR LARC pa-
tients compared to pCR LARC patients, surgical resection of rectal tumors did not affect
circulating COX2 levels. As COX2 is induced by various inflammation mediators [41],
increased levels of circulating COX2 in LARC patients may be due to cancer-associated sys-
temic inflammation or some other physiological stress, such as infection. However, given
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that development of cancer-associated systemic inflammation is associated with a poorer
outcome [42] and that a recent phase II clinical trial of nCRT combining COX2 inhibitor
celecoxib in LARC improved efficacy and decreased toxicity [43], it would be interesting to
determine whether circulating COX2 levels can predict prognosis and response to nCRT
combined with COX2 inhibitors.

The logistic regression model combining circulating VEGFR3, EGFR, and COX2
yielded a significantly higher AUC in differentiating pCR and non-CR compared to that of
each marker alone. However, blood contains a wide variety of measurable molecules and
cellular materials, including exosomes, tumor-derived DNAs, microRNAs, autoantibodies,
and metabolites, making blood a rich resource of biomarkers. Therefore, it is critical to
determine the relevance and relative contributions of the different types of biomarkers
in the same samples [20], allowing to further refine the biomarker panel with integrating
other previously or newly identified biomarkers. In addition, due to a small sample size
in the current study, the performance of these three blood-based biomarkers will need to
be assessed in larger sample sets, and the biomarker panel will need to be further refined
with integrating other previously validated biomarkers.

5. Conclusions

In conclusion, we identified circulating VEGFR3 as a novel biomarker for predicting
pCR through proteomic analysis of plasmas from a mouse model of rectal cancer, and
further confirmed increased VEGFR3 levels in pretreatment plasmas from non-pCR LARC
patients compared to pCR LARC patients. We also demonstrated that levels of circulating
EGFR and COX2, known tissue-based biomarkers for nCRT response, were significantly
increased in pretreatment plasma of non-pCR LARC patients. Our findings provide a
rationale for further studies to safely adopt the watch-and-wait strategy with using blood-
based biomarkers in LARC patients.
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