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The product of the lactoperoxidase system (LPOS) has been developed as a preservative agent to inhibit foodborne bacteria, but
its action was, heretofore, limited to several original compounds in milk. This research was conducted to analyze the application
of the lactoperoxidase system against Escherichia coli in fresh bovine milk and its derivative products to determine the strength of
antibacterial activity. Lactoperoxidase was purified from bovine whey using the SP Sepharose Big Beads Column. The enzymatic
reaction involving lactoperoxidase, thiocyanate, and hydrogen peroxide was used to generate the antibacterial agent from LPOS.
This solution was then added to milk, skimmed milk, untreated whey, reduced-LPO whey, reduced-lactose whey, and high-lactose
solution containing E. coli at an initial count of 6.0 log CFU/mL. LPOS showed the greatest reduction of bacteria (1.68 ± 0.1
log CFU/mL) in the reduced-lactose whey among the products tested. This result may lead to a method for enhancement of the
antimicrobial activity of LPOS in milk and derived products.

1. Introduction

Lactoperoxidase (LPO) was developed to inhibit the growth
of foodborne pathogens in various foods and thus improve
their shelf life [1, 2]. Lactoperoxidase derived from bovine
milk has been shown to generate beneficial effects as a
bactericidal and bacteriostatic agent [1, 3]. The lactoper-
oxidase system consists of three primary components: lac-
toperoxidase enzyme, thiocyanate, and hydrogen peroxide.
This system generates hypothiocyanite, an active compound
againstGram-positive andGram-negative bacteria, including
Escherichia coli [4, 5]. The lactoperoxidase system (LPO
system) has attracted the attention of scientists as a natural
biopreservative with generally recognized as safe (GRAS)
status [6]. Hypothiocyanite, a product of LPOS, has been

recognized as a safe antibacterial agent without negative
effects on human health [7, 8].

Biopreservation using the LPO system could offer an
additional hurdle to improve the shelf life of various food
products such as fruit [9], chicken meat [10], duck meat
[11], cheese [12], and local food products such as dangke
[2, 13]. However, slight inhibition of pathogenic bacteria
also appeared in fresh milk. Other researchers reported the
slight reduction of below 1 log CFU/ml in fresh milk treated
with the lactoperoxidase system [14]. It was understood that
lactoperoxidase antimicrobial activity might be enhanced
using lysozyme [2], beta carotene [15, 16], ectoine [17], alpha
tocopherol [18], and chitosan [19], but it was inhibited by
several compounds such as hydrogen peroxide and thio-
cyanate in excess amounts [20–22] and indigenous milk
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compounds such as casein [23] and saccharides [24]. It was
then presumed that the removal of casein and lactose from
the milk enabled the use of lactoperoxidase to reduce the
population of bacteria in fresh milk.

It was reported that lactose reduces LPO activity by 38%
because the sugar molecules interact with the heme cavity
of the LPO [24, 25]. The association of sugar molecules
with the heme cavity physically blocked the substrate-binding
site, thereby resulting in the prevention of the interaction of
substrate with the heme iron [21]. This research aims to use
LPOS to reduce pathogenic bacteria in milk and its derived
products after removal of lactose and casein from milk. This
research will provide beneficial information to apply LPOS in
milk and derived products.

2. Materials and Methods

2.1. Materials. SP Sepharose� Big Beads (Lot No. 10081054)
was purchased from GE Healthcare Bio-Sciences AB, Swe-
den.Microbial rennet was purchased fromProdinvest Group,
Russia. Deoxycholate hydrogen sulfide lactose agar (DHL)
(Lot No. 395-00461) was obtained from Shinnihonseiyaku
Co., Ltd., Japan. ABTS was purchased from Wako Pure
Chemical Industry, Japan. Bovine milk was freshly obtained
from the experimental farm at the Faculty of Animal
and Agricultural Science, Diponegoro University, Semarang,
Indonesia. Culture stock of Escherichia coli FNCC 0009
was purchased from the Faculty of Agricultural Technology,
Gadjah Mada University, Yogyakarta, Indonesia. A spec-
trophotometer (Mini UV-1240, Shimadzu, Japan) was used
for the Bradford protein analysis and enzyme activity. Sterile
syringe filters (Lot No. SF2030813) were purchased from
Axiva Sichem Biotech Delhi, India. All chemicals used in this
study were of analytical grade.

2.2. Preparation of Whey, Reduced-Lactose Whey, and High-
Lactose Solution. Wheywas obtained using fresh bovinemilk
that was treated with 0.02% (w/v) rennet. Through these
treatments, 1 L of fresh bovine milk was converted into 800
mL of whey. Casein was removed using a sterile filter cloth;
lactose removal of wheywas carried out by dialysis. Untreated
whey was dialyzed to produce reduced-lactose whey, and the
solution eluted from the dialysis membrane was collected as
high-lactose solution.

2.3. Purification of LPO from Whey. The procedure for
immobilization of LPO from whey was conducted according
to the method of previous researchers [25], with minor
modifications. SP Sepharose� Big Beads (SPBB) was used
as the matrix for LPO purification from bovine whey. Whey
was applied on a glass column (2 x 17 cm) filled with 17 g
of SPBB. Preparation of SPBB was initiated by washing with
300 mL pure water and 300 mL of 0.1 mM phosphate buffer
(PB) of pH 6.8 containing 1 M NaCl to remove unnecessary
compounds. After the whey was applied to the column, the
resin was washed with 100 mL 0.4 mM NaCl in 0.1 mM
phosphate buffer of pH 7.0 using a fraction collector (10 mL
per tube). The purity of the derived LPO was checked by

SodiumDodecyl Sulfate-Polyacrylamide Gel Electrophoresis
(SDS-PAGE), using the method of a previous researcher [26].
The protein solution was filtered through a 0.22 𝜇m syringe
filter unit. The purified LPO was stored at –20∘C. The LPO
purification was done for multiple times until the band of
LPO showed a clear image using the SDS-PAGE analysis.

2.4. Determination of Protein Concentration. Protein content
was analyzed using the Coomassie Brilliant Blue reagent [27].
The protein standard was determined using bovine serum
albumin.

2.5. Inoculum Preparation. The inoculum was prepared fol-
lowing the method of Lang [28] with minor modifications.
Before each experiment, stock cultures of E. coli FNCC 0009
were streaked onto Nutrient Broth. Cultures were incubated
at 39∘C for 24 h.

2.6. Determination of LPO Activity. LPO activity was assayed
using the method of Al-Baarri [24]. A 450 𝜇l aliquot of 1.0
mM ABTS in 10 mM acetate buffer (pH 4.4) and 450 𝜇l
0.55 mM H

2
O
2
in pure water were poured into the cuvette.

Immediately, 50 𝜇l of LPO was added to the cuvette. The
increase in absorbance at 412 nm was measured for 1 minute.
One unit of LPO enzymatic activity was expressed as the
amount of enzymeneeded to oxidize 1𝜇molABTSmin−1 .The
molar extinction coefficient of ABTS at 412 nm was 32,400
min−1 cm−1.

2.7. Determination of Antibacterial Activity. Antibacterial
activity wasmeasured using the method previously described
byTouch [10]withmodifications.TheLPO system, composed
of 3.0 U/ml LPO, 0.9 mM KSCN, and 0.9 mM H

2
O
2
, was

incubated for 1 hour at room temperature to generate the
antibacterial compound. The LPOS solution was then added
to themilk and its derivative products, whichwere inoculated
with E. coli at approximately 107CFU/mL. Each mixture was
incubated in a water bath shaker at 30∘C. Controls with 0.1
mM PB of pH 7.0 instead of the milk were subjected to the
same treatment as the samples. Serial dilutions in sterilized
pure water were prepared to obtain countable numbers of
bacteria. Counts were obtained by spreading 100 𝜇L of
each mixture onto triplicate plates of DHL. The plates were
incubated at 37∘C for 24 h. Colony forming units (CFU) were
enumerated in plates containing 30–300 colonies, and cell
concentration was expressed as log CFU/mL.

2.8. Determination of Lactose Content in Whey. Lactose con-
tent in whey was determined by using a refractometer. The
ability of the refractometer to provide accuratemeasurements
was indicated by how closely the test results matched those
obtained with the MilkoScan. This method was adapted from
Chigerwe [29]. Whey obtained by the previously mentioned
method of whey purification was analyzed by means of the
MilkoScan 203 and refractometer, resulting in a mean bias
of 94 ± 1.92%. Lactose concentrations were determined by
comparing the value obtained by the refractometer with
a standard curve generated with lactose. The regression
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equation with R2 = 0.97 was used to determine lactose
concentration.

2.9. Data Analysis. The analyses for antimicrobial activity
and lactose content were carried out in triplicate from 3
independent experiments; then they were analyzed using
descriptive analysis to explain their changes. Data are showed
asmeans ± standard error of the mean. Statistical significance
was calculated using the GraphPad Prism statistical software
(San Diego, USA). The ANOVA analysis was used to decide
the significance at P values of less than 0.05.

3. Result and Discussion

3.1. Purification of LPO and Characteristics of the Purified
Protein. Lactoperoxidase is known as an antimicrobial agent
in milk, saliva, and tears because of its inhibitory action on
bacteria through the oxidation reaction involving thiocyanate
and hydrogen peroxide [30, 31]. LPO is a glycoprotein
consisting of a single polypeptide chain with a molecular
weight of 78 kDa (Golhefors and Marklundi, 1975; Jacob et
al., 2000).The purification process of LPO from bovine whey
was conducted at 10∘C to provide optimum binding of LPO
to the SP Sepharose matrix [30].Therefore, this research used
SP Sepharose to bind LPO in whey.

A high peak of LPO activity was detected from fraction
numbers 1–5, with values in the range of 80–93 units
(Figure 1). No significant LPO activity was detected in
fractions 6–9. Each fraction was then applied to SDS-PAGE
to determine its purity. As a result, several bands were
detected in fractions 1–3 (Figure 2). However, fractions 4
and 5 showed a single band with minor other proteins,
indicating that purity of LPO was high in these fractions.
Therefore, fractions 4 and 5 were mixed and their activity
was calculated, obtaining 94 and 93 U/ml, respectively. Since
previous application of LPO for reducing S. enteritidis only
required 4.5 U/ml [16], the lactoperoxidase obtained by this
purified LPO sufficiently fulfills the need for LPO application
in the next set of experiments. Prior to enzyme collection in a
1.5 ml tube, the mixed fraction was sterilized using a 0.22 𝜇m
syringe filter, and then the enzyme was stored at -20∘C.

3.2. Antibacterial Activity of the LPO System from Bovine
Milk. This research used 7.0 ± 0.10 log CFU/ml of E. coli
as the initial population. The incubation times were set to
1 and 4 hours at 30∘C (Figure 3). It can be seen that LPOS
remarkably reduced the population of E. coli in PB from
the initial count to 5.58 ± 0.10 log CFU/mL, indicating
a reduction of 1.42 ± 0.03 log CFU/mL after 4 hours of
incubation. These findings imply that inhibitory effects on
the antibacterial activity of LPO tend to increase with the
higher duration of incubation. However, statistical analysis
showed that there were no significant differences (P <0.05)
in the antibacterial activity among treatments. This might
be due to the high population of initial bacteria that was
used in this research. The incubation time plays a remarkable
role in bacterial reduction that could be seen by the increase
in the antibacterial activity at 4 h of incubation. As can be
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Figure 1: LPO activity in nine fractions obtained from the elution of
0.4 mMNaCl in 0.1 mM phosphate buffer of pH 7.0 through column
containing Sepharose� Big Beads.

Figure 2: SDS-PAGE profile of nine fractions that were eluted
from column packing Sepharose� Big Beads. Lanes 1 to 8 were the
samples from fractions 1 to 8.

seen in control, antibacterial activity showed less than 0.1
log CFU/mL in the sample with a 1-hour incubation and
then elevated to 1.42±0.04 CFU/mL at 4 h incubation. Opstal
[32] reported a greater reduction of E. coli by LPOS (2.2
log CFU/mL) from the initial count of 6.0 CFU/mL during
6 hours of incubation at 20∘C. These differences between
studies might have been due to differences in the bacterial
load and incubation time.

Bacterial reductions in whole milk, skimmed milk, and
untreated whey were less than in the control (<1.0 log
CFU/mL), possibly due to the presence of casein and lactose
in milk and whey. Casein is the abundant component in milk
protein that might protect substrate microorganisms from
absorption of the antimicrobial component, thus weakening
the inhibitory effect on bacteria [23]. It is known that
bactericidal effects of OSCN– compounds from LPOS are
key to kill bacteria by disrupting sulfhydryl groups (-SH)
on proteins from the bacterial cytoplasmic membrane [24],
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Figure 3: Antibacterial effect of LPOS against E.coli in milk and
derivative products. This number was calculated from the initial
population of 7.0±0.10 log CFU/ml. The solution containing E. coli
and LPOSwas incubated for 1 and 4 hours in 30∘C. Values aremeans
± SE (n = 3).

so the interaction between the sulfhydryl group and OSCN–

might be hindered, resulting in theweakening of antibacterial
action. Inhibition of LPOS action could also occur due to
hydrogen peroxide released from bacteria [23].

The lactose content in untreated whey was 1.82 ± 0.20%,
and after dialysis, it was reduced to 0.69 ± 0.10% (Table 1).
Results from the statistical study showed that the reduction
exhibited no significant difference (P <0.05), but it showed
62% reduction resulting in the 2.7 times antibacterial activity
enhancement of LPO from 0.62 ± 0.20 to 1.68 ± 0.10 that
clearly indicated inhibition of antibacterial activity of LPOS
by lactose (Figure 3).These resultswere corroborated by those
of previous researchers [10], finding that LPOS was unable
to reduce the significant amount of S. enteritidis in whole
milk. Saccharides including lactose were potent inhibitors of
lactoperoxidase activity and showed kinetic inhibition of 3.20
± 0.52 [24].Therefore, the reduction of the lactose amount in
milk might increase the action of LPOS against the growth of
bacteria. The inhibition of LPOS by lactose might be due to
theweakening of enzymatic activity of LPO, since saccharides
are a nonspecific stabilizer of protein that allows for direct
interaction between carbohydrate and protein molecules
through hydrogen bond formation, resulting in the reduction
of enzymatic activity [33]. In addition, as reported by previous
researchers [34], the carboxylic group might bind to the side
chain of 2-Glu258 to form a strong hydrogen bond resulting
in the inability of a natural substrate such as thiocyanate to
bind to LPO.

It was described that lactose had performed as an
LPO inhibitor; therefore the lactose conversion into another
compound was suggested. Previous researchers [35] applied
lactose reduction using lactose oxidase to generate an H

2
O
2

compound resulting in the enhancement of antimicrobial

Table 1: Lactose content in untreated whey, reduced-lactose whey,
and high-lactose solution.

Materials Lactose content (%)
Untreated whey 1.82±0.20
Reduced-lactose whey 0.69±0.10
High-lactose solution 2.05±0.30
Values are means ± SE (n = 5).

function of LPOS; however the avoidance of lactose bind-
ing to the specific site of LPO might be required since
lactose may still provide beneficial effect to the nutri-
ent content of a dairy product. However, in order to
achieve the practical application in the dairy industry, this
research may provide the novelty with clear explanation
that the reduction of lactose content is strongly suggested
to exhibit the beneficial impact on the shelf life of dairy
products.

4. Conclusion

This research indicated that LPOS hadmoderate antibacterial
effects onE. coli inwholemilk, skimmedmilk, andwhey. Lac-
tose reduction from whey remarkably enhanced bactericidal
activity. LPOS can effectively act as an antibacterial reagent in
reduced-lactose dairy products.
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