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Abstract
This study investigated individual differences of conflict monitoring (N2 component), feedback processing (feedback negativity
component), and reinforcement learning in a discrimination learning task using a mock (fictitious) forensic scenario to set
participants in a semantic task context. We investigated individual differences of anxiety-related, impulsivity-related traits and
reasoning ability during trial-and-error learning of mock suspect and nonsuspect faces. Thereby, we asked how the differential
investment of cognitive-motivational processes facilitates learning in a mock forensic context. As learning can be studied by
means of time-on-task effects (i.e., variations of cognitive processes across task blocks), we investigated the differential invest-
ment of cognitive-motivational processes block-wise in N = 100 participants. By performing structural equation modeling, we
demonstrate that conflict monitoring decreased across task blocks, whereas the percentage of correct responses increased across
task blocks. Individuals with higher reasoning scores and higher impulsivity-related traits relied rather on feedback processing
(i.e., external indicators) during reinforcement learning. Individuals with higher anxiety-related traits intensified their conflict
monitoring throughout the task to learn successfully. Observation by relevant others intensified conflict monitoring more than
nonobservation. Our data highlight that individual differences and social context modulate the intensity of information processing
in a discrimination learning task using a mock forensic task scenario. We discuss our data with regard to recent cognitive-
motivational approaches and in terms of reinforcement learning.
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Since the initial publication of the (integrative) conflict mon-
itoring theory (Botvinick, 2007; Botvinick, Braver, Barch,
Carter, & Cohen, 2001; Botvinick, Cohen, & Carter, 2004)
and its cognitive-motivational extensions (Botvinick &
Braver, 2015; Braver et al., 2014), several studies have inves-
tigated the relationship of conflict monitoring and individual
differences (Amodio, Master, Yee, & Taylor, 2008; De
Pascalis, Varriale, & D’Antuono, 2010; Dennis & Chen,
2007; Leue, Lange, & Beauducel, 2012; Leue, Weber, &

Beauducel, 2014). These studies were primarily based on
go/no-go tasks asking participants to suppress a predominant
reaction to no-go stimuli. In addition to the (integrative) con-
flict monitoring theory and models on cognitive control
(Botvinick & Braver, 2015), reinforcement learning has been
conceptually introduced by means of computational and hier-
archical reinforcement learning models (Holroyd & Coles,
2002; Holroyd & Yeung, 2011, 2012; Umemoto,
HajiHosseini, Yates, & Holroyd, 2017). Accordingly, some
studies used learning tasks to investigate individual differ-
ences of conflict monitoring, feedback processing, and rein-
forcement learning (De Pascalis et al., 2010; Lange, Leue, &
Beauduce l , 2012 ; Scheub l e , N i eden , Leue , &
Beauducel,2019). However, systematic investigations of con-
flict monitoring and reinforcement learning in semantically
embedded contexts are rare (but see Nieden, Scheuble,
Beauducel, & Leue, 2020). Therefore, we used neuroscientific
predictions and findings on individual differences of conflict
monitoring and reinforcement learning to investigate the gen-
eralizability of these concepts to a forensic context.
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Conflict monitoring and reinforcement
learning

To study individual differences of conflict monitoring and
reinforcement learning (i.e., feedback-based learning), we re-
fer to reviews (e.g., Botvinick, 2007; Botvinick & Braver,
2015; Holroyd & Coles, 2002; Holroyd & Yeung, 2012) and
studies using simply structured experimental go/no-go tasks
and discrimination learning tasks (Lange et al., 2012; Leue
et al., 2012; Leue et al., 2014; Nieden et al., 2020; Scheuble
et al., 2019). Botvinick (2007) argues that conflict-inducing
stimuli function like “teaching signals” and are more cogni-
tively demanding because conflict-inducing stimuli often re-
quire response adaptation (e.g., no-go stimuli require nonre-
sponses in a series of go responses). When participants obtain
feedback to learn the correct stimulus–response association,
accounts on (hierarchical) reinforcement learning (Holroyd &
Coles, 2002; Holroyd & Yeung, 2012) and mechanisms on
motivation and cognitive control (Botvinick & Braver, 2015)
are useful to explain the cognitive-motivational processes that
are related to differential activations of the anterior cingulate
cortex (ACC). Even when we did not investigate ACC func-
tions directly, we investigate two event-related potentials
(ERP) that have a neural generator in the ACC (Amodio
et al., 2008; Leue et al., 2012; Nieuwenhuis, Yeung, van den
Wildenberg, & Ridderinkhof, 2003) and that have been shown
to reflect cognitive-motivational processes. These ERPs are
the stimulus-locked N2 component and the feedback-locked
FN component.

Van der Helden, Boksem, and Blom (2010) summarized
learning “as the act, process, or experience of gaining knowl-
edge or skill” (p. 1596). Our study starts with a situation of
mock police officers learning to distinguish suspects and
nonsuspects by means of feedback. Some learn under social
observation, whereas others learn without social observation.
We presume that reinforcement learning requires working
memory resources (e.g., investment of cognitive demand) to
perform the task successfully (Shenhav, Botvinick, & Cohen,
2013; Shenhav et al., 2017). Learning implies that people
correctly differ between stimuli and responses or become fa-
miliar with predefined stimulus–response or stimulus–
feedback associations (Holroyd & Coles, 2002; Holroyd,
Pakzad-Vaezi, & Krigolson, 2008; Holroyd & Yeung, 2011,
2012). We presume that stimulus monitoring and response
selection are cognitively demanding processes, resulting in a
more negative N2 component, especially when stimulus–
response differentiations have not yet been successfully
learned (i.e., in the beginning of a learning task). When the
stimulus–response differentiation of mock suspect and
nonsuspect faces has been learned, the stimulus differentiation
is less cognitively demanding, resulting in a less pronounced
N2 component in later task blocks (Nieden et al., 2020).
Moreover, more intense conflict monitoring should be related

to faster learning of the correct stimulus classification.
Accordingly, we presumed that more pronounced conflict
monitoring (frontal N2 component) is related to a more pro-
nounced learning slope (i.e., an increase of the percentage of
correct responses with time on task; Hypothesis 1). When
stimulus–response–feedback associations have been success-
fully learned, participants switch into performance monitor-
ing. “Performance monitoring serves the correction, adapta-
tion and optimization of actions” (Ullsperger, Danielmeier, &
Jocham, 2014, p. 49). One opportunity to measure perfor-
mance monitoring is given with feedback-related negativity
(FRN, or FN; Gehring & Willoughby, 2002; Krigolson,
2018; Miltner, Braun, & Coles, 1997; Walsh & Anderson,
2012) and reward positivity (i.e., the feedback component that
follows correct feedback and was earlier entitled as feedback
correct-related positivity; Baker & Holroyd, 2011; Holroyd
et al., 2008). Previous studies (Bellebaum & Daum, 2008;
Bellebaum, Kobza, Thiele, & Daum, 2010) illustrated that a
reduction of the FN (i.e., less negative amplitude) was related
to having successfully learned in a guess task.

Individual differences of conflict monitoring
and reinforcement learning in a collaborative
context: Previous findings

Nieden et al. (2020) investigated whether individual differences
of conflict monitoring intensity (Botvinick, 2007) and reinforce-
ment learning (Holroyd&Coles, 2002; Holroyd&Yeung, 2011)
generalize to a context that asks participants to learn differentiat-
ing collaborative and noncollaborative faces. Noncollaborative
faces elicited a more intense conflict monitoring than did collab-
orative faces. As time-on-task effects (i.e., variations of cognitive
processes across task blocks) on behavioral and ERP data can be
conceived as indicators of learning, we investigated variations of
conflict monitoring intensity (N2 component) across three task
blocks and feedback processing (FN component). We demon-
strated that the frontal N2 component was most pronounced (i.e.,
more negative) in the initial task block compared with later task
blocks. This finding suggests that participants invest more cog-
nitive resources (e.g., degree of conflict monitoring) while learn-
ing the correct stimulus classification. In addition, they use feed-
back in later task blocks as a second loop of verification of their
responses. With regard to individual differences, we observed a
more pronounced frontal N2 amplitude following collaborative
faces in individuals with higher versus lower trait-BIS scores in
the initial compared with later task blocks. Observation intensi-
fied conflict monitoring more than nonobservation during learn-
ing. The discrimination learning task of Nieden et al. (2020)
combined active learning by means of verbal feedback and ob-
servation versus nonobservation by relevant others (for
reinforcement learning and observation, see Joiner, Piva,
Turrin, & Chang, 2017). The manipulation of the observation
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factor was introduced because discrimination learning takes
place under different observational conditions. In accordance
with Nieden et al. (2020), we expected the N2 to be more pro-
nounced under social observation versus nonobservation
(Hypothesis 2).

Conflict monitoring and reinforcement
learning in a forensic context

For several years, psychophysiological investigations in the
forensic context were mainly based on the Guilty
Knowledge Test, or Concealed Information Test (CIT), and
the related P3 amplitude difference between known, salient
probe stimuli and unknown, less salient, irrelevant stimuli
(Ben-Shakhar & Elaad, 2003; Leue & Beauducel, 2019;
Meijer, Klein Selle, Elber, & Ben-Shakhar, 2014). Conflict
monitoring and reinforcement learning have not yet been re-
lated to forensic experimental settings. However, the cognitive
processes induced in CITs are more complex and are probably
related to the investment and control of cognitive resources
(Leue & Beauducel, 2019). Therefore, we adapted a discrim-
ination learning task (which could also be named as a go/no-
go learning task) that may be more suitable for the investiga-
tion of conflict monitoring and reinforcement learning in a
forensic setting. One forensic setting that requires conflict
monitoring and learning from feedback processing is the con-
text of person identification.

Research on person identification reveals that correct per-
son identification depends on contextual factors (e.g., lighting
conditions, distance between observer and observed suspect)
and individual differences (Noyes, Hill, & O’Toole, 2018;
Sporer, Penrod, Read, & Cutler, 1995). Experimental factors
of lineup presentations and cognitive determinants of neural
processes such as stimulus monitoring, sensitivity to mis-
match, and feedback processing (cf. Larson, Clayson, &
Clawson, 2014) during person identification have not yet been
studied (Valentine & Davis, 2015). Therefore, we investigate
individual differences of the neural processes (e.g., conflict
monitoring, feedback processing, learning) in a mock forensic
context when mock police officers or lawyers differentiate
information provided by witnesses or technical devices (e.g.,
cameras) about mock suspects and nonsuspects based on dif-
ferent modalities of information (e.g., verbal information, fig-
ural information, crime scene data).

Individual differences of conflict monitoring
and reinforcement learning: Previous
findings

Leue et al. (2014) demonstrated that individual differences of
reasoning ability (Burgess & Braver, 2010; Kyllonen &

Christall, 1990; Süß, Oberauer, Wittmann, Wilhelm, &
Schulze, 2002) are linked to N2-related variations of
conflict-monitoring intensity. Individuals with higher reason-
ing ability revealed more intense conflict monitoring (i.e.,
more negative N2 component) in cognitively more demanding
conditions of a go/no-go task. When individuals do not know
the correct stimulus–response association, as in a discrimina-
tion learning task, the task is more difficult in the beginning.
Thus, individuals with higher reasoning ability were thought
to invest more conflict monitoring in the initial compared with
the later task phase and, accordingly, to show a more pro-
nounced learning slope for the correct differentiation of mock
suspect and nonsuspect faces (Hypothesis 3).

Leue and Beauducel (2008) reported meta-analytic evi-
dence for the relationship of behavioral performance parame-
ters in reinforcement-related (learning) tasks with anxiety-
related and impulsivity-related traits. This research is rooted
in the revised reinforcement sensitivity theory (rRST; Corr,
2008; Gray & McNaughton, 2000). In rRST, a behavioral
inhibition system (BIS) is differentiated from a behavioral
approach system (BAS). Subsequently, we refer to trait-BIS
as an anxiety-related trait linked to the BIS and to trait-BAS as
an impulsivity-related trait associated with the BAS. Previous
conflict monitoring studies showed that individuals with
higher trait-BIS scores reveal a more negative N2 amplitude
(e.g., Amodio et al., 2008; Leue et al., 2012). For a discrimi-
nation learning task, where the degree of conflict monitoring
to be invested should decrease with time-on-task, we expected
that higher trait-BIS individuals invest more conflict monitor-
ing in the initial task block and show a more pronounced
learning slope than would individuals with lower trait-BIS
scores (Hypothesis 4). Additionally, in prior research on the
FN component (De Pascalis et al., 2010; Lange et al., 2012),
we observed that individuals with higher versus lower trait-
BIS scores learn more intensely from negative feedback. In
contrast, more reward-sensitive individuals (e.g., higher
scores in trait-BAS or extraversion) compared with fewer
reward-sensitive individuals learn more intensely from posi-
tive feedback (e.g., Lange et al., 2012; Smillie, Cooper, &
Pickering, 2011). Accordingly, we expect that a more pro-
nounced (i.e., more positive) correct FN component predicts
a more pronounced learning slope of higher versus lower trait-
BAS individuals (Hypothesis 5). Relatedly, Scheuble et al.
(2019) provided evidence on trait-BAS differences and inter-
actions of reasoning ability on N2-related monitoring process-
es and reinforcement learning in a digit task, especially when
the context comprised positively motivating cue words.

Aims and hypotheses

In sum, we investigated hypotheses based on the conflict mon-
itoring account, the reinforcement learning theory, and the
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rRST in a discrimination learning task adapted for a forensic
context. Accordingly, we expected that more intense conflict
monitoring (frontal N2 component) is associated with a more
pronounced learning slope (i.e., a more pronounced increase
of the percentage of correct responses across time-on-task;
Hypothesis 1).We predicted that observation in a learning task
intensifies conflict monitoring (i.e., more negative N2 compo-
nent) and learning compared with nonobservation
(Hypothesis 2). Individuals with higher reasoning scores in-
vest more conflict monitoring in the initial task block and
show a more pronounced learning slope for the correct differ-
entiation of mock suspect and nonsuspect faces across all task
blocks (Hypothesis 3). Individuals with higher trait-BIS
scores anticipate negative consequences of erroneous face
classifications. Therefore, they invest more conflict monitor-
ing in the initial block and show a more pronounced learning
slope than individuals with lower trait-BIS scores (Hypothesis
4). Individuals with higher trait-BAS scores learn from posi-
tive feedback. That is why, we presumed that a more pro-
nounced FN component (i.e., more intense surprise of positive
feedback) predicts a more pronounced (i.e., more positively
motivated) learning slope (i.e., higher percentage of correct
responses) of higher versus lower trait-BAS individuals
(Hypothesis 5). Hypotheses 1–5 are summarized in Fig. 1.

Method

Participants

A total of N = 130 subjects participated voluntarily in this
study (another paradigm on conflict monitoring for the

differentiation of collaborative versus noncollaborative faces
is described in Nieden et al., 2020). Almost all (n = 119)
participants were students, n = 6 participants were employees,
n = 4 participants were unemployed on the date of examina-
tion, and n = 1 participant was a freelancer. All participants
gave written informed consent at the beginning of the study.
All participants were right-handed and had normal or
corrected-to-normal vision.

In order to elucidate effects of learning as predicted in our
hypotheses, we analyzed time-on-task effects of the ERP and
behavioral data. Therefore, we divided the discrimination
learning task into three blocks of equal length. Accordingly,
we focused our analyses on participants with a sufficient num-
ber of artifact-free N2, FN, and behavioral data in each block.
For block-wise analyses of the behavioral data, N2 and FN
data, a subsample of the same N = 100 (30 male) participants
was available (age:M = 24.06 years, SD = 3.78, range: 18–41
years) who met for the FN component the lower bound crite-
rion of on average at least 10 epochs across picture type per
block (Marco-Pallares, Cucurelli, Münte, Strien, &
Rodriguez-Fornells, 2011). The descriptives of the artifact-
free epochs for the block-wise N2 and FN components are
summarized in Table 1.

Measures

Participants completed the German version of Carver and
White’s BIS/BAS scales (Strobel, Beauducel, Debener, &
Brocke, 2001). We have chosen the BIS/BAS scales although
meanwhile further valuable questionnaires for the assessment
of trait-BIS and trait-BAS have been published (Pugnaghi,
Cooper, Ettinger, & Corr, 2017; Reuter, Cooper, Smillie,

Fig. 1 Summary of hypotheses
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Markett, & Montag, 2015). As these questionnaires had not
yet been available in a published German translation when we
planned the project, we applied the BIS/BAS scales in the
present study. Moreover, several previous studies on conflict
monitoring and trait-BIS used the BIS/BAS scales (e.g.,
Amodio et al., 2008; Leue et al., 2012) so that the use of these
scales enhances the comparability of results with previous
studies. The BIS scale assesses sensitivity to aversiveness
and comprises seven items (Cronbach’s alpha: .83 for the
block-wise sample of N = 100). The total BAS scale assesses
sensitivity to appetitive reinforcement and comprises 13 items
(Cronbach’s alpha: .71 for the block-wise sample of N = 100).
Handedness was measured with the German version of the
Edinburgh Handedness Inventory comprising 10 items
(Milenkovic & Dragowic, 2013; Oldfield, 1971).

To assess participants’ reasoning ability, we applied three
subtests of the Intelligence-Structure Test 2000 R (I-S-T 2000
R; Beauducel, Liepmann, Horn, & Brocke, 2010; Liepmann,
Beauducel, Brocke, &Amthauer, 2007). Subtest 2, Analogies,
assessed verbal reasoning abilities. Participants chose one out
of four presented words that best represented the relationship
to a given word (e.g., forest : trees = meadow : (a) grass (b)
hay (c) food (d) green (e) grazing land). Subtest 4,
Arithmetics, assessed numerical reasoning abilities.
Participants were asked to solve a number of arithmetic prob-
lems (e.g., 60 − 10 = A; A = ?). Subtest 9, Matrices, assessed
figural reasoning ability. Participants were asked to choose
one out of four figures that should complete a given figure
sequence. Time to report solutions per subtest was limited:
Participants had 7 minutes to complete Subtest 2, 10 minutes
to perform Subtest 4, and 10 minutes for Subtest 9.
Cronbach’s alpha collapsed across the three subtests of the
basic module, Form Awas .75 for N = 100 participants.

Discrimination learning task

The discrimination learning task consisted of 16 face pictures
from the Radboud Faces Database (Langner et al., 2010). We
selected eight faces of neutral affect that were predefined to

represent mock suspects (four male: Rafd090_03,
Rafd090_20, Rafd_090_23, Rafd090_25; four female:
Rafd090_16, Rafd090_18, Rafd090_31, Rafd090_37).
Another subset of eight faces of neutral affect were predefined
to represent mock nonsuspects (four male: Rafd090_28,
Rafd090_36, Rafd090_38, Rafd090_71; four female:
Rafd090_56, Rafd090_57, Rafd090_58, Rafd090_61).
Intensity (Msus = 3.40, SDsus = 0.39, rangesus: 2.82–4.09 vs.
Mnonsus = 3.55, SDnonsus = 0.20, rangenonsus: 3.36–3.92), real-
ness (Msus = 3.91, SDsus = 0.32, rangesus: 3.38–4.26 vs.
Mnonsus = 4.15, SDnonsus = 0.12, rangenonsus: 3.92–4.35) and
valence (Msus = 3.14, SDsus = 0.34, rangesus: 2.52–3.46 vs.
Mnonsus = 3.17, SDnonsus = 0.23, rangenonsus: 2.81–3.50) were
similar for face stimuli of mock suspects versus nonsuspects
(Langner et al., 2010).

The sequence of faces of mock suspects and nonsuspects
was pseudorandomized, so the same sequence of pictures was
presented to each participant. Participants were instructed to
learn which face indicated a mock suspect and which face
indicated a mock nonsuspect. They were asked to respond to
a mock suspect face by pressing the space bar after face pre-
sentation and to withhold responses when a mock nonsuspect
face was presented. Thus, faces that indicated a mock suspect
required a go response, and faces that showed a mock
nonsuspect required a no-go (i.e., withholding) response. We
instructed go responses to mock suspect faces and no-go re-
sponses to mock nonsuspect faces, as this stimulus–response
association is compatible with lineup presentations in person
identification settings (Valentine & Davis, 2015). Each of the
eight mock suspect faces and each of the eight mock
nonsuspect faces were presented 21 times, resulting in a total
of 168 trials, comprisingmock suspect faces that required a go
response and 168 trials of mock nonsuspect faces that required
withholding a response. We have applied an equal number of
go and no-go stimuli because participants performed a learn-
ing task. If one stimulus type had a lower probability than the
other stimulus type, learning might be facilitated to the more
frequently presented stimulus type. Therefore, a 50:50 ratio of
go and no-go stimuli keeps the option to test whether the

Table 1 Means and standard deviations (in parentheses) of the number of artifact-free epochs for the N2 component and FN component (N = 100)

Mock suspect faces Mock nonsuspect faces t test for dependent samples

N2 component

Block 1 43.62 (7.99) 37.09 (8.97) t(99) = 7.80; p = .99

Block 2 47.52 (8.91) 45.93 (8.73) t(99) = 3.44; p = .99

Block 3 48.62 (8.73) 48.16 (8.30) t(99) = 0.55; p = .70

FN component

Block 1 25.36 (12.07) 23.10 (10.81) t(99) = 2.09; p = .98

Block 2 29.68 (12.74) 30.51 (12.07) t(99) = −0.69; p = .25

Block 3 30.16 (12.31) 32.30 (11.80) t(99) = −1.81; p = .04

Note. Artifact-free epochs are reported for correct responses of the respective ERP component
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neural processes are of differential or equal intensity to go
(mock suspect faces) versus no-go (mock nonsuspect faces)
stimuli. Previous go/no-go tasks also applied go and no-go
stimuli equiprobably (Huster, Enriquez-Geppert, Lavallee,
Falkenstein, & Herrmann, 2013; Larson et al., 2014).
However, these articles did not investigate learning tasks with
go versus no-go stimuli. All instructions were presented on a
17-in. TFT screen. The face pictures were 340 pixels wide ×
512 pixels high (2.88 cmwide × 4.33 cm high). All faces were
centrally presented on the screen.

Before the task, participants listened to the description of a
crime vignette via STIM earphones. The vignette is given in
Supplement S1. This crime vignette was applied before task
performance to place participants in the role of the mock po-
lice officers working on the murder case to disentangle mock
suspects and nonsuspects. No further information about mock
suspects versus nonsuspects was given in the task description.
Thus, participants were asked to learn, by trial-and-error re-
sponses, which of the eight faces represented a predefined
mock suspect, and which of the other eight faces represented
no predefined mock suspect.

Each trial started with a fixation cross that was presented in
the center of the screen for 500 ms. Each face was presented
for 700 ms. When the picture disappeared, participants could
respond within 900 ms to indicate whether a face represented
a mock suspect. The screen remained black during the re-
sponse interval. After the response interval, a feedback was
presented on the screen for 1,000 ms, depending on the picture
type and the reaction. Similar to the postidentification

feedback studied in a previous meta-analysis (Douglass &
Steblay, 2006), and in one of our previous reinforcement
learning studies (Nieden et al., 2020), we provided the follow-
ing trial-by-trial feedback: Correct reactions to mock suspect
faces resulted in a positive feedback (“Right, suspect”). The
same was true for nonresponses to mock nonsuspect faces
(“Right, no suspect”). Withholding reactions to mock suspect
faces were associated with a negative feedback (“Wrong, sus-
pect”). Erroneous responses to mock nonsuspect faces also
resulted in negative feedback (“Wrong, no suspect”). The in-
tertrial interval (ITI) varied between 500 and 1,000 ms.
Performing the task took approximately 20 minutes.
Figure 2 gives an example of the four trial sequences that
occurred during the task.

Procedure

Participants were recruited through Facebook student groups
and announcements on bulletin boards. The announcements
included the following selection criteria: Participants should
be right-handed. They should not suffer from neurological
diseases (e.g., epilepsy) and be between 18 and 45 years of
age. Everyone who was interested in taking part in this study
was asked to choose his or her favored examination date in a
doodle questionnaire. Participants received an e-mail includ-
ing the date of the examination and further important informa-
tion concerning the examination (e.g., sleeping as usual the
day before participation, avoiding substance use of coffee,
black tea, and medication the day before of the study).

+ Correct, 
suspect!

Fixa�on Go Correct response Feedback ITI

+ Wrong, 
suspect!

Fixa�on Go Response omi�ed Feedback ITI

+ Correct, 
non-suspect!

Fixa�on Nogo Correct no-response Feedback ITI

+ Wrong, 
non-suspect!

Fixa�on Nogo Response commi�ed Feedback ITI

500 ms 700 ms 900 ms 1000 ms 500-1000 ms

Fig. 2 Trial sequence for mock suspect faces (go stimulus) and mock nonsuspect faces (no-go stimulus) and corresponding responses.
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Each participant was asked to bring a related person the day
of the examination. (A related person was defined as a good
friend, a family member, or a fellow student.) This procedure
was chosen to ensure that half of the sample could be included
in the observation condition. All participants received a re-
minder e-mail the day before the examination to minimize
unexpected cancellations.

After arriving, participants gave written informed consent
in accordance with the revised 2013Helsinki Declaration. The
experimenter gave all important information regarding dura-
tion of the examination, questionnaires, and instructions of the
experimental task. Participants were seated in a comfortable
chair, approximately 80-cm from the screen. They were told to
choose a comfortable seating position to easily tap the space
bar with their right index finger. A subsample of n = 50 of the
N = 100 participants brought a related person with them. The
related person was seated in an adjacent room that was con-
nected to the experiment room through a one-way window.
The related person observed the participant during task per-
formance. The participant was told that he or she would be
observed during task performance.

Presentation V16.5 (Neurobehavioral Systems, Albany,
NY, USA) was used to present the experimental task (all in-
structions were given in white [255, 255, 255], 30-pt Arial
font on a black screen). The experimental task started with
10 examination trials to ensure that the participants had un-
derstood the instructions correctly. Participants were explicitly
requested to ask questions if something remained unclear. By
tapping the space bar, participants started the main part of the
task. The EEG was recorded during task performance. After
performing the experimental task, participants could wash
their hair. The observer was paid and dismissed (€8.50). The
participant who had performed the task changed the room and
completed the I-S-T 2000 R and the BIS/BAS scales. Each
examination lasted about 3 hours. At the end of the examina-
tion, participants were thanked, dismissed, and paid (€25.50).

EEG recording and processing

The EEG was recorded using the ActiveTwo EEG system
(BioSemi, Amsterdam, Netherlands) with 64 scalp active
electrodes. Two electrodes were placed beyond the epicanthi
of both eyes to record the horizontal electrooculogram
(HEOG). Additionally, one electrode was placed approxi-
mately 1 cm below the right eye to measure the vertical elec-
trooculogram (VEOG). ActiView software V7.06 (BioSemi)
was used to digitize all bioelectric signals. The EEG was sam-
pled at 512 Hz. Electrode offsets were kept below 30 mV
during EEG recording. Off-line analysis was performed by
using EEGLAB V13.4.4 (Delorme & Makeig, 2004) based
on MATLAB R2015 (The MathWorks). EEG data were off-
line band-pass filtered (1–15 Hz; cf. Leue, Klein, Lange, &
Beauducel, 2013; Widmann, Schröger, & Maess, 2015) and

re-referenced to averaged P9/P10 electrodes (as in our previ-
ous EEG studies), which are near to the mastoids and probably
capture less muscle noise from the neck (Luck, 2014). One
epoch incorporated a 100-ms baseline and lasted until
1,600 ms after stimulus onset (we present an epoch length of
−100 to 1,000 ms poststimulus). An independent component
analysis (ICA; automated infomax decomposition with adjust
algorithm;Mognon, Jovicich, Bruzzone, & Buiatti, 2011) was
applied to correct for ocular artifacts. Further technical and
muscle artifacts were rejected when the EEG signal exceeded
±85 μV (cf. Leue et al., 2012; Leue et al., 2014). The EEG
data were segmented for correct reactions to mock suspect and
nonsuspect faces. The block-wise grand averages indicate (see
Fig. 3a) that the N2 component occurred for mock suspect and
nonsuspect faces between 190 and 270 ms after stimulus on-
set. The N2 component for correct reactions was quantified
separately for each participant as a mean amplitude in the
190–270 ms interval (Luck, 2014). In addition to the N2 am-
plitude, we quantified the FN. EEG-data were off-line
bandpass-filtered (0.1–20 Hz, referring to prior FN research;
e.g., Leue, Cano Rodilla, & Beauducel, 2015) and re-
referenced to averaged mastoids (P9/P10). One epoch incor-
porated a 100-ms baseline and lasted until 1,000 ms after
feedback onset. An ICA was applied to correct for ocular
artifacts. Further technical and muscle artifacts were rejected
when the EEG signal exceeded ±85 μV.

For block-wise analyses of the N2 and FN, each of the three
task blocks consisted of 112 successive trials. Each block
exclusively included correct reactions to mock suspect and
nonsuspect faces (see Figs. 3a and 4a). The FN epochs were
segmented for correct reactions to mock suspect faces and
correct reactions for mock nonsuspect faces (correct feedback)
as well as for erroneous reactions to mock suspect and
nonsuspect faces (not analyzed here). The mean FN amplitude
following correct feedback was quantified across the three
task blocks between 270 and 330 ms (see Fig. 4a) and sepa-
rately for each participant. As the N2 and the FN component
could be clearly detected in the grand average (as in our pre-
vious contextualized go/no-go task; Nieden et al., 2020), we
quantified both components as mean amplitudes (Luck, 2014)
instead of performing a principal component analysis as in
Scheuble et al. (2019).

Statistical analysis

We investigated a structural equation model for frontal elec-
trodes (collapsed across F3, Fz, F4) and central electrodes
(collapsed across C3, Cz, C4; see Supplement S2) because
the N2 component and the FN component typically have a
frontocentral topography (Amodio et al., 2008; Lange et al.,
2012; Leue et al., 2012). We performed structural equation
modeling in order to calculate latent variables for trait-BIS,
trait-BAS, and reasoning ability in the context of a growth
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model representing the time-on-task effects on the N2 and the
FN. The statistical power for the detection of effects has been
shown to be superior for latent variable modeling when com-
pared with models that are based on sum scales (Scheuble
et al., 2019). We specified one model including block-wise
data of the frontal mean N2 amplitude (collapsed across F3,

Fz, F4), the frontal mean FN amplitude (collapsed across F3,
Fz, F4), and the percentage of correct responses as dependent
variables using Mplus (Muthén & Muthén, 1998–2017,
Version 8). We entered trait-BIS, trait-BAS, and reasoning
ability as latent variables with unit variance that were based
on parcels. Parceling measurement variables allows for a more

Fig. 3 a Grand averages illustrating the stimulus-locked N2 component
with correct responses for (a) mock suspect faces in Task Blocks 1–3 and
for (b) mock nonsuspect faces for Task Blocks 1–3 at Fz, Cz, and Pz (N =

100). b Topographical plots for mock suspect and nonsuspect faces with
correct responses of the N2 time range in Task Blocks 1–3. Legend is
given in microvolt
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robust estimation of latent variables than single items do be-
cause parceling helps to eliminate theoretically unimportant
noise (Matsunga, 2008, p. 289). Each parcel incorporated
three to five items resulting in two parcels for trait-BIS, three
parcels for trait-BAS, and four parcels for verbal, figural, and
numerical reasoning. Each item parcel revealed a corrected
item-total correlation of ≥.10 (leading to exclusion of Parcel
4 for verbal, numerical, and figural reasoning). To test

Hypotheses 1–5 on individual differences of conflict monitor-
ing, feedback processing and learning (i.e., percentage of cor-
rect responses) within one model, we computed a structural
equation model comprising a latent intercept variable and a
latent slope variable for the N2 amplitude containing the fron-
tal N2 amplitude for mock suspect faces and the frontal N2
amplitude for mock nonsuspect faces in each of the three task
blocks as measured variables. Similarly, a latent intercept and

Fig. 4 a Grand averages illustrating the feedback-locked FN component
with correct responses for (a) mock suspect faces in Task Blocks 1–3 and
for (b) mock nonsuspect faces for Task Blocks 1–3 at Fz, Cz, and Pz (N =

100). b Topographical plots for mock suspect and nonsuspect faces with
correct responses of the N2 time range in Task Blocks 1–3. Legend is
given in microvolt
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slope variable of the frontal FN amplitude was performed
containing the frontal FN amplitude for mock suspect faces
and the frontal FN amplitude for mock nonsuspect faces in
each of the three task blocks as measured variables. Thus, in
the growthmodel intercept parameters were estimated in order
to represent the overall magnitude of the dependent variables
(percentage correct responses, N2 amplitude, and FN ampli-
tude), whereas the slope parameter represents the change of
these dependent variables across the three task blocks. We
defined predictions of the three latent intercept and slope var-
iables on the latent trait variables (trait-BIS, trait-BAS, reason-
ing) and on gender (female vs. male) as well as observation
(yes vs. no). The residuals of the followingmeasured variables
were allowed to correlate to fit the model: frontal N2 ampli-
tude for mock suspect faces in Block 3 and Block 2, frontal N2
amplitude for mock suspect faces in Block 1 and Block 2.
Verbal reasoning (Parcel 1) with verbal reasoning (Parcel 3),
figural reasoning (Parcel 1) with figural reasoning (Parcel 2).
The residuals of the percentage of hits were allowed to corre-
late in Blocks 2 and 3 for mock suspect faces and in Blocks 1
and 2 for mock nonsuspect faces.

The test for the multivariate normal distribution of the mea-
sured variables (Prelis 2.80; Jöreskog & Sörbom, 1999) was
significant (χ2 = 122.13, df = 2, p < .001). Therefore, we used
the Satorra–Bentler scaled robust maximum likelihood esti-
mator (MLM) in order to compensate for a nonnormal multi-
variate distribution of the measured variables. For all analyses
we report standardized path coefficients (β). We report the
root mean square error of approximation (RMSEA), the stan-
dardized root mean residual (SRMR), and the comparative fit
index (CFI) as model fit indices with suggested cutoff values
(Beauducel & Wittmann, 2005; Raykov, 1998), indicating a
goodmodel fit (RMSEA ≤ .08, SRMR ≤ .08, CFI > .90) along
with a chi-square (χ2) test of model fit. We applied SPSS 24
for paired t tests of picture classifications (see manipulation
check) and integration of N2, FN, performance data, and trait
variables into one file prior to Mplus analyses.

Results

Manipulation check

Participants were asked to evaluate the pictures as mock sus-
pect versus nonsuspect faces (1 = correct classification, 0 =
incorrect classification) after performing the task to see wheth-
er they had correctly learned the picture classification (eight
mock suspect faces vs. eight mock nonsuspect faces). For
statistical analysis, we included all participants who had
completely evaluated the pictures without missing values.
The t test for paired samples revealed that the correct classifi-
cation of mock suspect and nonsuspect faces, respectively, did
not substantially differ, t(94) = −0.69, p = .49. The sum scores

were highly similar for the correct classifications of mock
suspect faces (M = 7.87, SD = 0.36) and mock nonsuspect
faces (M = 7.90, SD = 0.41), and very close to the maximum
of eight correct mock suspect and eight correct mock
nonsuspect classifications.

To illustrate the learning effect in the present task, we cal-
culated the percentage of correct responses to mock suspect
and nonsuspect faces for each of the three task blocks as fol-
lows: (100% / 112 successive trials per block) × number of
correct responses per block. The repeated-measures ANOVA
including the percentage of correct responses per task block
revealed a significant task block effect, F(2, 198) = 298.33, p
< .01, ε = .64, ηp

2 = .75, with an increasing percentage of
correct responses from Block 1 (M = 78.95%, SE = 1.20) to
Block 2 (M = 93.94%, SE = 0.73), F(1, 99) = 408.46, p < .01,
ηp

2 = .81, and from Block 2 to Block 3 (M = 97.05%, SE =
0.48), F(1, 99) = 36.72, p < .01, ηp

2 = .27 (for individual
learning curves, see Fig. 5).

Results of the frontal N2 amplitude, frontal FN
amplitude, and percentage of correct responses

The model fit criteria suggested an acceptable overall fit (χ2 =
644.41, df = 463, p < .001, RMSEA= .06, SRMR= .10, CFI =
.92). The overall growth model comprises three sets of param-
eter estimates that are relevant for testing Hypotheses 2–5: (1)
beta weights between the latent traits (trait-BIS, trait-BAS,
and reasoning) or the group variable (observation or sex)
and the slope of the latent dependent variable; (2) beta weights
between the latent traits (trait-BIS, trait-BAS, and reasoning)
or the group variable (observation or sex) and the intercept of
the latent dependent variable; and (3) beta weights between
the latent traits (trait-BIS, trait-BAS, and reasoning) or the
group variable (observation or sex) and the dependent mea-
surement variable in Block 1. In addition to the overall growth
model, we performed two separate growth models comprising

Fig. 5 Learning curves for the percentage of correct responses for N =
100 participants in the three task blocks
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either mock suspect faces or mock nonsuspect faces with all
the other variables being equal to the overall model. We de-
scribe all results for Hypotheses 2–5 for slope, intercept and
measurement level of the overall growth model followed by
the results of the separate growthmodels for mock suspect and
nonsuspect faces, respectively. For a complete overview and
summary of the model findings, see Figs. 6 and 7. A summary
of the separate analyses for mock suspect and nonsuspect
faces is given with the figures in Supplements S4 and S5.

Hypothesis 1: A more negative N2 component is
associated with a more pronounced learning slope

Hypothesis 1 presuming that a more pronounced frontal N2
amplitude predicted an increase in percentage of the correct
responses (briefly: %-correct responses) across all task blocks
was confirmed. When the frontal N2 amplitude became more
pronounced (i.e., more negative) across task blocks, the over-
all percentage of correct responses was higher (βslope vs. intercept

= −0.33, p < .01; see Fig. 6c). In addition, when conflict
monitoring was most intense (i.e., most negative N2 ampli-
tude) in the first task block and became less intense in the later
blocks (slope N2), the percentage of correct responses in-
creased with time-on-task (βslope vs. slope = 0.35, p < .01; see
Fig. 6d). As FN findings and learning were not part of
Hypothesis 1, we present these findings in Supplement S3.

Hypothesis 2: We predicted that observation
in a learning task intensifies conflict monitoring (i.e.,
more negative N2 component) and learning
compared with nonobservation

Hypothesis 2 was confirmed. As indicated by Fig. 7a for the
slope effect of the frontal N2 amplitude, observation by rele-
vant others intensified conflict monitoring across task blocks
(βslope = −.30, p < .05). Observation intensified the conflict
monitoring to mock nonsuspect faces in Block 1 (βb1 = −.11,
p < .05) and to mock suspect faces in Block 1 (βb1 = −.11, p <
.05). Effects of observation were not found for the percentage
of correct responses (βintercept = −.00,βslope = .09; see Fig. 7c).
However, observation increased the percentage of correct

responses to suspect faces even in Block 1 (see Fig. 7c, βb1

= −.16, p < .05), but not to nonsuspect faces (see Fig. 7c,βb1 =
.04). When the models were run separately for mock suspect
and nonsuspect faces, the observation effect was significant
exclusively to mock suspect faces for the frontal N2 amplitude
in Block 1 (βsuspect,b1 = −.18, p < .05) and for the percentage of
correct responses in Block 1 (βsuspect,b1 = −.17, p < .05), but
not to mock nonsuspect faces in Block 1 (see Supplement S4a
for mock suspect faces, and Supplement S5 for mock
nonsuspect faces).

Hypothesis 3: Individuals with higher reasoning
scores invest more conflict monitoring in the initial
task block and therefore show a more pronounced
learning slope for the correct differentiation
of suspect and nonsuspect faces across task blocks

Contrary to Hypothesis 3, we did not observe evidence (nei-
ther for the intercept of the frontal N2 nor for the slope of the
frontal N2) that individuals with higher reasoning scores
invested more conflict monitoring within the task (βintercept =
.13) or across task block (βslope = .07; see Fig. 7a). Individuals
with higher reasoning scores revealed a significantly less neg-
ative frontal N2 amplitude in Block 1 for mock nonsuspect
faces (βnonsuspect, b1 = .16, p < .05; see Fig. 7a) and a signifi-
cantly less negative frontal N2 amplitude in Block 1 to mock
suspect faces (βb1 = .13, p < .05; see Fig. 7a). In separate
analyses of mock suspect versus nonsuspect faces, the reason-
ing effect of the frontal N2 in Block 1 was no longer signifi-
cant to mock suspect faces (βsuspect, b1 = .12, p = .22; see
Supplement S4a) and to nonsuspect faces (βnonsuspect, b1 =
.19, p < .10; see Supplement S5a).

In contrast, individuals with higher reasoning scores
showed a more negative frontal FN amplitude in Block 1
following suspect faces (βb1 = −.20, p < .05; see Fig. 7b).
These findings suggest that individuals with higher reasoning
scores intensified the processing of correct feedback, especial-
ly following suspect faces in the initial task phase, and prob-
ably invested less in stimulus monitoring (cf. N2 data). In
separate analyses for suspect versus nonsuspect faces, the rea-
soning effect for the frontal FN amplitude was neither

Fig. 6 Part 1 of the structural equation model, with a completely
standardized solution including the intercept or the slope of the frontal
mean N2 amplitude across all three blocks, and the intercept or the slope
of the percentage of correct responses across all three task blocks
(Hypothesis 1). a Prediction of the %hit intercept (i_%h-blo) by the

intercept of the N2 (i_fN2blo). b Prediction of the %hit slope (s_%h-
blo) by the intercept of the N2 (i_fN2blo). c Prediction of the %hit
intercept (i_%h-blo) by the slope of the N2 (s_fN2blo). d Prediction of
the %hit slope (s_%h-blo) by the slope of the N2 (i_fN2blo). *p < .05.
**p < .01. All ps are reported two-tailed
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significant for the latent slope and intercept frontal FN ampli-
tudes nor for the measurement FN amplitude in Block 1 of
mock suspect faces (see Supplement S4b) and mock
nonsuspect faces (Supplement S5b).

The slope of the percentage of correct responses (i.e., the
increase of correct responses across blocks) did not

significantly differ across the three task blocks in individuals
with higher versus lower reasoning (βslope= −.53, p = .19; see
Fig. 7c). The same was true for the percentage of correct
responses throughout the task (βintercept = .27, p = .55; see
Fig. 7c). The results of the Reasoning effect for the percentage
of correct responses were also nonsignificant in separate
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analyses for mock suspect versus nonsuspect faces (see
Supplement S4c and Supplement S5c).

Hypothesis 4: Individuals with higher trait-BIS scores
invest more conflict monitoring in the initial task
block and show a more pronounced learning slope
than individuals with lower trait-BIS scores

Individuals with higher trait-BIS scores revealed a more neg-
ative frontal N2 amplitude throughout the task (βintercept =
−.30, p < .05; see Fig. 7a) but not in the initial task block (β
= .10, p = .16; see Fig. 7a). Separate analyses of the frontal N2
for mock suspect and nonsuspect faces revealed that the trait-
BIS effect could be traced back to mock nonsuspect faces for
the frontal N2 amplitude (βintercept, separate = −.36, p < .01; see
Supplement S4a). Individuals with higher versus lower trait-
BIS scores did not significantly differ in their FN amplitudes
following correct feedback (βintercept = −.28, p = .12, βslope =
.57, p < .10; see Fig. 7b). Separate analyses for mock suspect
and nonsuspect faces of the frontal FN showed no significant
differences for trait-BIS scores in processing correct feedback
to suspect faces more intensively in the initial task block (cf.
beta weights of slope, intercept, and measurement Block 1;
see Supplement S4b und S5b). A more pronounced learning
effect for the percentage of correct responses was not observed
for trait-BIS across task conditions (βintercept = −.65, p = .25,
βslope = .20, p = .70; see Fig. 7c). Separate analyses for mock
suspect and nonsuspect faces of the percentage of correct re-
sponses did not reveal any significant effects for trait-BIS and
the percentage of correct responses following mock suspect

faces (see Supplement S4c: βintercept = −0.30, p = .40; βslope =
0.16, p = .67) and nonsuspect faces (see Supplement S5c:
βintercept = −0.83, p = .23;βslope = 0.38, p = .58) for individuals
with higher trait-BIS scores.

Hypothesis 5: Amore pronounced FN component (i.e.,
more intense surprise of positive feedback) predicts
a more pronounced (i.e., more positively motivated)
learning slope of higher versus lower trait-BAS
individuals

As indicated in Fig. 7a, individuals with higher versus lower
trait-BAS scores did not significantly differ for the frontal N2
amplitude (βintercept = .23, p = .08). These results were non-
significant also for the frontal N2 amplitude with separate
analyses on mock suspect and nonsuspect faces (see
Supplement S5 and S5a). The frontal FN amplitude slope
following correct feedback was significantly more negative
for individuals with higher versus lower trait-BAS scores with
time on task (βslope = −.64, p < .01; see Fig. 7b) indicating that
individuals with higher trait-BAS scores processed correct
feedback more intensely with time on task. The intercept ef-
fect of the frontal FN amplitude revealed a less pronounced
FN for higher versus lower trait-BAS individuals throughout
the task (βintercept = .37, p < .01; see Fig. 7b). In separate
analyses of mock suspect versus nonsuspect faces, the frontal
FN slope differed significantly for nonsuspect faces with
higher trait-BAS scores coming along with a smaller (i.e., less
positive) correct FN across task blocks (βslope = −.67, p < .01;
see Supplement S5b), but a more pronounced intercept frontal
FN amplitude following nonsuspect faces (βintercept = .33, p <
.01; see Supplement S5b, no significant effects for mock
suspect faces in Supplement S4b).

The percentage of correct responses was significantly
higher for individuals with higher versus lower trait-BAS
scores (βintercept = .86, p < .05; see Fig. 7c). In separate anal-
yses of mock suspect versus nonsuspect faces, the trait-BAS
effect on the percentage of correct responses was neither ob-
served following mock suspect faces (βintercept = .13, βslope =
−.12; see Supplement S4c) nor following mock nonsuspect
faces (βintercept = .79, βslope = −.73; see Supplement S5c).

Discussion

The discussion of the present findings refers to our a priori
hypotheses, and subsequent interpretations serve to describe
the present findings in relation to previous studies. The present
data suggest that more intense conflict monitoring across task
blocks resulted in an increase of the overall percentage of
correct responses indicating successful learning (see Fig. 6c;
Hypothesis 1 was confirmed, but not for the prediction of the
intercept-N2 on the slope percentage of correct responses; see

�Fig. 7 a Part 2 of the structural equation model, with a completely
standardized solution including the intercept and the slope of the frontal
N2 amplitude in Blocks 1, 2, and 3 for mock suspect and nonsuspect faces
(inserted as measurement variables), with trait-BIS, trait-BAS, and
reasoning regressed on the intercept and slopes. b Part 3 of the
structural equation model, with a completely standardized solution
including the intercept and the slope of the frontal FN amplitude in
Blocks 1, 2, and 3 for mock suspect and nonsuspect faces (inserted as
measurement variables), with trait-BIS, trait-BAS, and reasoning
regressed on the intercept and slopes. c Part 4 of the structural equation
model, with a completely standardized solution including the intercept
and the slope of the percentage of correct responses in Blocks 1, 2, and 3
for mock suspect and nonsuspect faces (inserted as measurement
variables), with trait-BIS, trait-BAS, and reasoning regressed on the
intercept and slopes. Trait-BIS and trait-BAS correlated r = −.02, p =
.86. Trait-BIS and reasoning correlated r = −.38, p < .01. Trait-BAS
and reasoning correlated r = .20, p = .07. Trait-BIS correlated with sex
r = .62, p < .01 and with observation r = −.11, p = .25. Trait-BAS
correlated with sex r = −.02, p = .90, and with observation r = −.09, p
= .30. Reasoning correlated with sex r = −.31, p < .01, with observation r
= .08, p = .43. In a, b, and cwe inserted observation (1 = yes, 0 = no) and
sex (1 = male, 2 = female) as measurement variables. Trait-BIS, trait-
BAS, and reasoning were computed as latent variables based on item
parcels. In all figures, we present path coefficients as β (N = 100).
Correlation coefficients are presented between item parcels and latent
trait-variables. *p < .05. **p < .01. (*)p < .10. All ps are reported two-
tailed
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Fig. 6b). That is, conflict monitoring was most intense (more
negative N2) when participants just learned the correct stim-
ulus classification (fewer %-correct responses). Moreover, the
conflict monitoring intensity decreased with time on task
followed by an increase of %-correct responses with time on
task (see Fig. 6d). This finding does not confirmHypothesis 1,
but suggests that successful learning requires a higher degree
of conflict monitoring at the beginning of the task.
Observation by a socially relevant person intensified the con-
flict monitoring compared with nonobservation with time on
task (Hypothesis 2 confirmed for slope, but not for intercept)
and especially in the first task block to both types of faces.
Individuals with higher versus lower reasoning scores proc-
essed correct feedback, especially in Block 1, following sus-
pect faces more intensely, whereas conflict monitoring inten-
sity to suspect and nonsuspect faces was reduced in Block 1.
Thus, Hypothesis 3 was not confirmed for conflict monitor-
ing, but we observed evidence for reasoning-related differ-
ences of feedback processing. Individuals with higher trait-
BIS scores intensified their conflict monitoring throughout
the task (Hypothesis 4 partly confirmed). Moreover, individ-
uals with higher trait-BIS scores did not show a more pro-
nounced FN amplitude following correct feedback throughout
the task, and they did not significantly differ in learning mea-
sured by means of percentage of correct responses. The slope
of the FN amplitude following correct feedback was more
negative in individuals with higher trait-BAS versus lower
trait-BAS scores with time on task (Hypothesis 5 not con-
firmed). This might be due to a less positive valence of our
correct feedback with time on task for higher trait-BAS indi-
viduals. However, throughout the task (FN intercept; see Fig.
7b), the FN amplitude following correct responses was more
pronounced (i.e., more positive FN amplitude) in individuals
with higher trait-BAS scores. Moreover, in line with
Hypothesis 5, the percentage of correct responses (see
intercept, Fig. 7c) were higher for individuals with higher
versus lower trait-BAS scores. According to rRST, higher
trait-BAS is associated with higher sensitivity to reward.
Therefore, the increased positivity of the intercept FN in
higher trait-BAS individuals after correct feedback (which is
probably rewarding) is compatible with the idea that a
feedback-correct-related positivity co-occurs with the FN
(Holroyd et al., 2008).

It is noteworthy, that individuals with higher reasoning
scores revealed less intense conflict monitoring, but more in-
tense feedback processing to predefined suspect faces in
Block 1 to learn the correct stimulus classification as fast as
possible (also at central cites of the FN component; see
Supplement S2). Overall, our results show that individual dif-
ferences of conflict monitoring and reinforcement learning as
they have been obtained in (abstract) discrimination learning
tasks (Scheuble et al., 2019) can also be obtained when the
task is embedded into a forensic context. However,

contextually nonembedded and embedded discrimination
learning tasks evoke differential cognitive functioning (see
also Nieden et al., 2020). Whereas higher reasoning scores
came along with a more intense conflict monitoring (i.e., more
negative N2 component) in Scheuble et al. (2019), we ob-
served a less intense correct feedback processing in Block 1
(FN amplitude; see Fig. 7b) for individuals with higher rea-
soning scores. Moreover, the N2 amplitude in Block 1 was
less intense in individuals with higher reasoning scores in the
present task. Thus, individuals with higher reasoning scores
processed the less frequently correct feedback to suspect faces
in Block 1 more intensely (−.20), and this helped them to learn
the correct stimulus–response relation. Thus, the forensic con-
text modified the results predicted by the integrative conflict
monitoring theory and reinforcement learning theory. Holroyd
(2004) argued that the N2 and the FN component share the
same time curve and topography so that both ERP compo-
nents can be conceived to represent the same phenomenon.
Our data reveal similar but not identical time curves of the N2
and FN, but both components suggest differential implications
for conflict monitoring and cognitive control.

Individuals with higher trait-BIS scores primarily invested
more conflict monitoring for successful trial-and-error learn-
ing than lower trait-BIS individuals. Higher trait-BIS individ-
uals applied conflict monitoring (i.e., stimulus differentiation)
more proactively in advance of the external feedback to learn
the stimulus classification by trial and error in the initial task
block. Thus, our data provide evidence for a proactive mech-
anism of control that facilitates learning in individuals with
higher trait-BIS scores (e.g., Botvinick & Braver, 2015; Leue
et al., 2014). Individuals with higher reasoning scores and
higher trait-BAS scores reactively activated their feedback
processing in order to facilitate learning in a trial-and-error
discrimination learning task. These findings suggest a more
feedback-focused neural process during trial-and-error learn-
ing in higher reasoning and trait-BAS individuals, especially
in the initial learning phase, as the stimuli probably do not
yield sufficient information for stimulus classification based
on conflict monitoring. Higher trait-BIS individuals revealed
evidence for intensified conflict monitoring during trial-and-
error learning. This finding is in line with previous results on
trait-BIS and conflict monitoring obtained in go/no-go tasks
without a mock forensic context (Amodio et al., 2008; Leue
et al., 2012). Moreover, Moser, Moran, Schroder, Donnellan,
and Yeung (2013) reported that an enhanced error-related neg-
ativity (ERN/Ne) in more-anxious individuals yields less effi-
cient error monitoring because more resources for error mon-
itoring are required to successfully perform a task. Our data
correspond to the argument ofMoser et al. (2013) that anxious
individuals invest more cognitive resources to learn the
stimulus–response relation successfully. As reported in
Moser et al. (2013), more-anxious versus less-anxious indi-
viduals did not differ in observable task performance. As
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participants were not instructed in how to best learn the correct
stimulus classification (suspect vs. nonsuspect), we conclude
that more-anxious individuals invested higher conflict moni-
toring intensity proactively to prevent errors (cf. for a similar
argumentation, see Leue, Weber, Elger, Trautner, &
Beauducel, 2018). Cavanagh and Shackman (2015) also high-
light in a meta-analysis that the frontal-midline theta signal,
which reflects activity of the midcingulate cortex, is modulat-
ed by anxiety and predicts behavioral adaptation. Thus, pro-
fessionals in a forensic context (e.g., police officers, lawyers),
with higher anxiety scores, are more likely to apply intensified
conflict monitoring (i.e., use the most initial information avail-
able) to process all or most relevant information correctly. In
contrast, for individuals with higher reasoning and trait-BAS
scores, respectively, the most initial stimulus information
seems to be less informative, so that they focus their informa-
tion processing on feedback to appropriately learn and adapt
behavior (e.g., response type, decisions).

Moreover, our data reveal that stimuli that should be
learned by trial and error do not evoke an internal error signal
until the stimulus–response association has been successfully
learned (cf. first indicator hypothesis). The first indicator hy-
pothesis predicts that errors performed very soon after a re-
sponse interval do not provide an internal error signal that
could be measured by the ERN/Ne, whereas errors that are
made or feedbacked later after a response interval evoke an
external error signal that can be measured by means of FN
(Stahl, 2010). Therefore, we conclude that the more pro-
nounced FN amplitude following correct feedback (see
Supplement S3) served as an external signal that facilitated
learning in our task (Holroyd, Krigolson, Baker, Lee, &
Gibson, 2009; Stahl, 2010). Future research is needed to see
whether our preliminary explanation of the results on the cor-
rect FN and learning holds as an extension of the first-
indicator hypothesis. The learning curves in our study were
similar to the learning curves presented in Bellebaum et al.
(2010) for the three task blocks, and as reported in Sailer,
Fischmeister, and Bauer (2010) for the individual learning
curves of high learners.

Our data provide evidence on the monitoring processes and
on the behavioral adaptation during trial-and-error learning based
on figural stimuli (faces). Thus, results that have been obtained
for trait-BIS, trait-BAS, and reasoning in conventional go/no-go
tasks and discrimination learning tasks could also be obtained
when the task was embedded in a mock forensic context.
Moreover, when police officers and lawyers integrate informa-
tion to reconstruct an offense, they include an even considerably
higher number of information and different types of information
(e.g., verbal, figural, numerical). Therefore, future studies might
aim at replicating our findings and compare verbal, figural, and
numerical monitoring processes during trial-and-error learning in
a forensic context. Moreover, our analyses focus on conflict
monitoring (N2 component) and feedback processing (FN

component) of correctly performed trials, while leaving analysis
of ERN/Ne aside because of too few incorrect responses per task
block. However, other learning studies investigated performance
monitoring by means of ERN/Ne (Thoma & Bellebaum, 2013).
Participants demonstrated a strong learning curve, providing ev-
idence of high motivation to perform the task and high compli-
ance with task instructions. Moreover, the strong increase of the
learning slope, especially in Block 1, resulted in a robust and
good performance in the second and the third task blocks (for
motivational effects and FN, see Yeung, Holroyd, & Cohen,
2005). Therefore, an analysis of the ERN/Ne would have suf-
fered from fewer participants with a reliable number of artifact-
free ERN/Ne epochs (for reliability results, see Meyer, Riesel, &
Hajcak Proudfit, 2013; Olvet & Hajcak, 2009). Finally, future
researchmight clarify the type of trend (e.g., quadratic, nonlinear)
underlying the processing of correct feedback in higher trait-BIS
individuals. The slope for the correct FN revealed that higher
trait-BIS individuals did not yield a linear trend of processing
correct feedback intensity. In this line, future research might elu-
cidate whether the differential effects reported in this study hold
for long-term feedback–behavior relations introduced in hierar-
chical reinforcement learning (Osinsky, Ulrich, Feser,
Gunawardena, &Hewig, 2017). Similarly, the relevance of prob-
abilistic feedback in comparison to deterministic feedback for
individual differences of reinforcement learning should be
probed (e.g., Bakic, De Raedt, Jepma, & Pourtois, 2015;
Eppinger, Kray, Mock, & Mecklinger, 2008; Rustemeier,
Schwabe,&Bellebaum, 2013).Moreover, future research should
investigate the generalizability of the present BIS/BAS data by
means of more recent German psychometric BIS/BAS measure-
ments (Leue, 2015; Pugnaghi et al., 2017; Reuter et al., 2015).

Limitations and future directions

In the present study, we did not control for a diminution of the
N2 amplitude by means of the alpha band, which has been
observed for auditory stimulus material (Barry et al., 2004).
Thus, another study could control for the effect of alpha ac-
tivity on the N2 amplitude in visual stimulus material. In ac-
cordance with studies investigating effects of the high-pass
filter on ERP magnitudes (Tanner, Morgan-Short, & Luck,
2015; Widmann et al., 2015), we aim at applying the same
1 Hz high-pass filter for N2 analyses and FN analyses. N2
processes should also be controlled for motor effects (e.g.,
correct vs. incorrect execution of a correct motor plan) and
functional network effects as indicated for ERN and FN data
(Hewig, Coles, Trippe, Hecht, & Miltner, 2011). Finally, we
used a go/no-go discrimination learning task with an equal
probability of go and no-go stimuli. Thus, we acknowledge
that the results obtained in the present study may not be com-
parable with the results of go/no-go tasks using an equal or
unequal probability of go and no-go stimuli without learning
(e.g., Larson et al., 2014, p. 290).
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Moreover, we denoted our task as a discrimination learning
task, although such tasks are sometimes labeled as equal prob-
ability go/no-go tasks (Barry & De Blasio, 2013; Barry, De
Blasio, & Cave, 2016). Although our results provide further
evidence for the N2 component in a discrimination learning
task with equal probability go/no-go stimuli, this line of re-
search should be expanded to further our understanding of the
functional implications of the N2 components in such tasks.
To disentangle response preparation and pure stimulus com-
parison, a principal component analysis might be performed in
another study to decompose frontal stimulus-locked N2 com-
ponents from other N2/P3 components that might indicate
response preparation. Finally, future research might address
the generalizability of N2 and frontal P3 processes of moni-
toring and feedback learning in a discrimination learning task
(cf. Folstein & van Pettern, 2008).

Conclusion

Our study provides findings supporting predictions on
individual differences of conflict monitoring, feedback
processing, and reinforcement learning in a mock foren-
sic context (i.e., a semantically embedded discrimination
learning task). We obtained new insights on primary
cognitive processes applied during reinforcement learn-
ing and individual differences. Social observation inten-
sified conflict monitoring throughout the learning task,
suggesting that social observation is another context
variable beyond cognitive demand and reinforcement
that facilitates conflict monitoring. Individuals with
higher reasoning ability and individuals with higher
trait-BAS scores processed the feedback more intensely,
whereas individuals with higher anxiety scores moni-
tored the faces more intensively to learn the correct face
classification. Our data in a mock forensic task setting
reveal comparable learning curves as reported in other
learning tasks, and therefore support prior findings that
the strongest learning increase occurs in initial learning
phases. We conclude that more-anxious individuals pro-
actively invest more conflict monitoring to learn suc-
cessfully, whereas individuals with higher reasoning
scores, especially in the first task block, and individuals
with higher trait-BAS scores throughout the task reac-
tively process feedback more intensively during
learning.
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