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Progressive physiological changes in the hippocampal dentate gyrus circuits following
traumatic brain injury (TBI) contribute to temporal evolution of neurological sequelae.
Although early posttraumatic changes in dentate synaptic and extrasynaptic GABA
currents have been reported, and whether they evolve over time and remain distinct
between the two projection neuron classes, granule cells and semilunar granule cells,
have not been evaluated. We examined long-term changes in tonic GABA currents and
spontaneous inhibitory postsynaptic currents (sIPSCs) and in dentate projection neurons
3 months after moderate concussive fluid percussion injury (FPI) in adolescent rats.
Granule cell tonic GABA current amplitude remained elevated up to 1 month after FPI,
but decreased to levels comparable with age-matched controls by 3 months postinjury.
Granule cell sIPSC frequency, which we previously reported to be increased 1 week after
FPI, remained higher than in age-matched controls at 1 month and was significantly
reduced 3 months after FPI. In semilunar granule cells, tonic GABA current amplitude
and sIPSC frequency were not different from controls 3 months after FPI, which contrast
with decreases observed 1 week after injury. The switch in granule cell inhibitory inputs
from early increase to subsequent decrease could contribute to the delayed emergence
of cognitive deficits and seizure susceptibility after brain injury.

Keywords: dentate gyrus, traumatic brain injury, tonic GABA current, development, adolescence, synaptic
inhibition

INTRODUCTION

Traumatic brain injury (TBI) leads to diverse consequences including impaired memory and
reasoning, depression, anxiety as well as enhanced risk for epilepsies and Alzheimer’s disease
(LoBue et al., 2019; Faden et al., 2021). Adverse outcomes after TBI can evolve over months to years,
highlighting the need to understand progressive changes in cellular and circuit function (Marshall
et al., 2015). The hippocampal dentate gyrus is a focus of cellular pathology and functional changes
following brain injury in humans and various experimental models (Kharatishvili et al., 2006; Hunt
et al., 2010; Villasana et al., 2015; Meier et al., 2016; Neuberger et al., 2017a,b; Wolf et al., 2017;
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Korgaonkar et al., 2020b; Parga Becerra et al., 2021). The dentate
gyrus is a crucial gateway to the hippocampal circuit, serving as
a locus for memory processing and as a check against excessive
excitability and reentrant epileptiform activity (Dengler and
Coulter, 2016). Strong synaptic and extrasynaptic inhibition of
dentate granule cells (GCs) contributes to their sparse activity
and is known to be disrupted in TBI and epilepsies (Peng
et al., 2004; Rajasekaran et al., 2010; Pavlov et al., 2011; Gupta
et al., 2012; Boychuk et al., 2016; Kahn et al., 2019; Parga
Becerra et al., 2021). Studies examining injury-induced changes
in inhibition in GCs, the major projection neuronal subtype,
days to weeks after trauma have identified changes in synaptic
and extrasynaptic GABAA currents, which differ between injury
models and with injury severity (Santhakumar et al., 2001; Pavlov
et al., 2011; Gupta et al., 2012; Boychuk et al., 2016). While
long-term (> 4 weeks) posttraumatic changes in GC inhibition
have been examined, the results are varied, with persistent
decreases in both tonic and synaptic GABAA currents after
controlled cortical impact injury (CCI) (Boychuk et al., 2016;
Parga Becerra et al., 2021) and reduced synaptic inhibition,
while tonic GABAA currents remained unchanged after severe
concussive trauma (Pavlov et al., 2011). We previously reported
an increase in GC synaptic and tonic GABA currents 1 week
after moderate concussive brain injury in adolescent rats (Gupta
et al., 2012). This clinically relevant adolescent concussive injury
paradigm impairs working memory performance 1–4 weeks
postinjury followed by heightened risk for seizures 1–3 months
after injury (Neuberger et al., 2017b; Korgaonkar et al., 2020a,b).
Since GABAergic signaling, which critically regulates dentate
memory function and epileptogenesis (Dengler and Coulter,
2016), undergoes developmental plasticity spanning in this
period (Kapur and Macdonald, 1999; Gupta et al., 2020), we
sought to determine if GC inhibition undergoes progressive
changes after concussive TBI.

In addition to GCs, we reported that brain injury impacts
inhibition of semilunar granule cells (SGCs), a sparse,
morphologically distinct dentate projection neuron (Williams
et al., 2007; Gupta et al., 2012; Afrasiabi et al., 2021). SGCs have
been proposed to support the feedback inhibition of GCs needed
to maintain sparse activity and contribute to cellular memory
representations (Larimer and Strowbridge, 2010; Erwin et al.,
2020). Interestingly, both tonic and synaptic GABA currents
in SGCs are decreased 1 week after FPI, which contrasts with
increases observed in GCs at the same time (Gupta et al., 2012).
Since changes in tonic GABA currents enhance SGC excitability
early after brain injury (Gupta et al., 2012), they could contribute
to posttraumatic memory dysfunction. While tonic GABA
currents in SGCs are greater than in GCs during adolescence,
SGC tonic GABA currents undergo a developmental decline
into adulthood (Gupta et al., 2020). Thus, whether the early
decrease in SGC tonic GABA currents after injury persists at
later time points when SGC tonic GABA currents have declined
remains to be established. Since GCs and SGCs are proposed to
play distinct roles in dentate feedback inhibition and memory
processing (Larimer and Strowbridge, 2010; Erwin et al., 2020),
it is crucial to understand how injury-induced changes in
inhibition evolve in these dentate projection neuron subtypes.

This study examined the long-term changes in tonic and synaptic
GABA currents in GCs and SGCs after moderate concussive
brain injury in adolescent rats to determine if early cell-specific
posttraumatic changes in inhibition, observed at 1 week, are
maintained at later time points.

MATERIALS AND METHODS

Animals
All experiments were conducted under IACUC protocols
approved by Rutgers-NJMS and the University of California at
Riverside and conformed with the ARRIVE guidelines. Wistar
rats (Charles River) aged 60–70 or 120–180 days, which were over
1 and 3 months after sham or brain injury, respectively, were used
in the study. Due to the potential effects of hormonal variation
on GABA currents (Maguire and Mody, 2009), recordings were
restricted to male rats.

Surgery and Fluid Percussion Injury
Lateral fluid percussion injury (FPI) was performed on adolescent
(postnatal days 24–26) male Wistar rats as described previously
(Dixon et al., 1987; Li et al., 2015). Briefly, under ketamine–
xylazine anesthesia (25 mg/kg of ketamine and 5 mg/kg of
xylazine, i.p.), a 2-mm hole was trephined on the left side
of the skull (3 mm posterior to the bregma and 3.5 mm
from the lateral to sagittal suture) to expose the dura, and
a syringe hub with a 2.6-mm inner diameter was bonded to
the skull with cyanoacrylate adhesive. One day later, animals
were anesthetized with isoflurane and attached to an FPI
device (Virginia Commonwealth University, Richmond, VA,
United States). A pendulum was dropped to deliver a brief
(20 ms) 2.0–2.2-atm impact to the intact dura resulting in
moderate FPI with reproducible hilar cell loss (Gupta et al., 2012;
Li et al., 2015). Sham injured animals received identical surgery
and treatment, but the pendulum was not dropped.

Slice Physiology
One and 3–5 months after FPI or sham injury rats were
decapitated under isoflurane anesthesia for slice physiology
(Figure 1A). Horizontal brain slices (300 µm) were prepared
in ice-cold sucrose-artificial cerebrospinal fluid (sucrose-aCSF)
containing (in mM): 85 NaCl, 75 sucrose, 24 NaHCO3, 25
glucose, 4 MgCl2, 2.5 KCl, 1.25 NaH2PO4, and 0.5 CaCl.
Slices were bisected and incubated at 32◦C for 30 min in
a holding chamber containing an equal volume of sucrose-
aCSF and recording aCSF and were subsequently held at room
temperature. The recording aCSF contained (in mM): 126 NaCl,
2.5 KCl, 2 CaCl2, 2 MgCl2, 1.25 NaH2PO4, 26 NaHCO3, and
10 D-glucose saturated with 95% O2 and 5% CO2 (pH 7.4).
Whole-cell voltage-clamp recordings were performed at 33◦C
under IR-DIC visualization using MultiClamp 700B (Molecular
Devices) as detailed previously (Gupta et al., 2012; Yu et al.,
2016). As illustrated in the schematic (Figure 1B), small oval
or teardrop-shaped cells in the granule cell layer were targeted
for recording GCs, while crescent-shaped neurons located in
the inner molecular layer were targeted for SGC recordings.
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Data were low-pass filtered at 3 kHz, digitized using DigiData
1440A, and sampling frequency using pClamp10 was acquired
at 10 kHz. GABA currents were recorded using microelectrodes
(5–7 M�) containing (in mM): 125 CsCl, 5 NaCl, 10 HEPES,
2 MgCl2, 0.1 EGTA, 2 Na-ATP, 0.5 Na-GTP, and 0.2% biocytin,
titrated to a pH 7.25 in the absence of without added GABA
or GABA transporter antagonists (Gupta et al., 2012; Yu et al.,
2013). Kynurenic acid (3 mM KynA), a glutamate receptor
antagonist, was used to isolate GABA currents in cells held at−70
mV. Recordings were discontinued if series resistance increased
by > 20%. Baseline recordings (in KynA) were obtained for over
5 min before perfusing GABAA receptor (GABAAR) antagonist,
bicuculline methiodide (BMI, 100 µM) or gabazine (SR95531,
10 µM). Cesium-based internal solution was used to block K+
conductances underlying postsynaptic GABAB currents. Custom
macros in IgorPro7.0 were used to measure tonic GABA currents
as the difference in baseline currents in blockers and for detecting
sIPSCs (Yu et al., 2013). All salts were purchased from Sigma-
Aldrich.

Cell Morphology
All recorded slices were fixed in 4% paraformaldehyde and
processed for biocytin staining using Alexa Fluor 594-conjugated
streptavidin (Gupta et al., 2012; Swietek et al., 2016) for cell
identification. Sections were imaged using a Zeiss LSM 510
confocal microscope for classification. Images of biocytin-filled
cells (Figures 1C,D) were used to distinguish GCs with compact
dendritic arbors and hilar axonal projections from SGCs with
wide dendritic angle, multiple primary dendrites, and axons
projecting to the hilus (Gupta et al., 2020; Afrasiabi et al., 2021).
A subset of cells were reconstructed using Neurolucida 360 for
illustration (Gupta et al., 2020).

Statistics
Cumulative probability plots of sIPSC parameters were
constructed by pooling an equal number of events from each cell.
Wilcoxon rank test (WRT) was conducted on data that failed
tests for normalcy or equal variance. Cohen’s d test was used to
estimate effect size. Student’s t-test (SigmaPlot 12.3) was used
to test for statistical differences in tonic GABA currents and
one-way ANOVA was used to estimate effect of time. Sample
sizes (n = cells/number of rats) were not predetermined and
conformed with those employed in the field. Data that fell over 3
standard deviations outside the mean were considered outliers
and rejected. Significance was set at p < 0.05. Data are reported
as mean± SEM (standard error of the mean).

RESULTS

Posttraumatic Increase in Granule Cell
Tonic GABAergic Currents Decline With
Time
Tonic GABA currents mediated by extrasynaptic receptors
influence GC excitability (Stell et al., 2003). While we have
reported an increase in GC tonic GABA currents 1 week after

moderate FPI in 25–26-day-old rats (Gupta et al., 2012), a
period that parallels human adolescence in terms of neurological
developmental (Semple et al., 2013; Sengupta, 2013), no changes
in GC tonic GABA currents were observed 1–5 months after
severe FPI in adult rats (Pavlov et al., 2011). To determine
the time course of changes in tonic GABA currents after
developmental FPI, we examined GCs from rats injured during
adolescence at two time points: 1 and 3–4 months post-FPI. GCs
were identified based on somata in the cell layer and compact
dendritic arbors with one or two primary dendrites in post hoc
biocytin fills (Figures 1C, 2A,B). Tonic GABA current amplitude
in GCs remained larger than in age-matched sham controls 1
month post-FPI (Figures 2C,D, in pA, sham: 7.2 ± 1.3, n = 8/4;
FPI: 15.2 ± 2.2, n = 6/5; p = 0.004 by t-test) similar to what was
reported at 1 week (Figure 2G, 8.4 ± 1.1, n = 9; FPI: 20.8 ± 3.4,
n = 6; p < 0.05 by t-test reported in Gupta et al., 2012, shown
shaded). However, tonic GABAergic current in GCs from rats 3 to
5 months after FPI was not different from age-matched controls
(Figures 2E–G, sham: 5.4± 1.4, n= 10/7; FPI: 7.0± 1.8, n= 9/6,
p > 0.05 by t-test). Notably, while differences in GC tonic GABA
currents were not statistically significant 1 week to 3 + months
after sham injury [F(2,24) = 1.46, p = 0.2], there was a decline in
tonic GABA currents with time after FPI during the same period
[Figure 2G, F(2,18) = 8.9, p = 0.002]. These data demonstrate
progressive recovery of the early increase in GC tonic GABA
currents to sham control levels by 3 months.

We previously reported that THIP, a GABAAR agonist
selective for δ subunit containing receptors, increased GC tonic
GABA current amplitude 1 week after FPI (Gupta et al., 2012).
Consistent with the progressive change in tonic GABA current
amplitude after FPI, GC tonic GABA current amplitude in THIP
(1µM) was also higher than in controls 1 month after FPI (in pA
sham: 14.7 ± 3.0, n = 5/3; FPI: 32.3 ± 3.4, n = 5/4, p < 0.05
by t-test), but was not different from sham controls by 3 months
post-FPI (Figure 2H, in pA sham: 18.9 ± 3.4, n = 7/5; FPI:
20.8 ± 2.8, n = 3/3, p = 0.75 by t-test). Once again, the effect of
time after sham injury on tonic GABA currents in GCs remained
stable over 1 week to 3 + months [F(2,15) = 0.97, p = 0.4].
However, there was a decline in tonic GABA currents with time
after FPI during the same period [Figure 2G, F(2,11) = 4.7,
p= 0.03]. Together, these data identify that changes in GABAARs
with δ subunits contribute to the progressive alterations in GC
tonic GABA currents after brain injury.

Long-Term Reduction in Inhibitory
Synaptic Drive to Granule Cells After
Brain Injury
We previously reported that the frequency of spontaneous
inhibitory postsynaptic currents (sIPSCs) was increased in GCs
1 week after FPI both in the presence and absence of glutamate
receptor antagonists (Gupta et al., 2012). To isolate the activity
of the inhibitory circuit, we examined the effect of trauma on
sIPSCs in the presence of the glutamate receptor antagonist
kynurenic acid (3 mM). We find that GC sIPSC frequency and
amplitude remained elevated 1 month after FPI (Figures 3A,B,
frequency in Hz, sham: 17.6 ± 1.1; FPI: 19.4 ± 1.2, p = 7e−9 by
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FIGURE 1 | Schematic of the experimental design and cell types. (A) Schematic illustrates timeline of injury (indicated by arrows to the surgically implanted hub) and
slice physiology in the current study. (B) Schematic of the dentate granule cell layer (GCL) illustrates the location of cells targeted for patch clamp recording of
granule cells (GCs) in the GCL and semilunar granule cells (SGCs) in the inner molecular layer (IML). (C,D) Representative maximum intensity projections from
confocal image stacks of a biocytin-filled GC (C) and SGC (D) from rats 1 month after sham injury. Arrowheads indicate axon.

WRT, Cohen’s d = 0.4; amplitude in pA sham: 30.1 ± 1.4; FPI:
38.5 ± 2.4, p = 0.0003 by WRT, Cohen’s d = 0.4, n = 9/5 sham
and 6/5 FPI). However, sIPSC 10–90% rise time and amplitude-
weighted decay time constant (τdecay) were not different from
age-matched controls (10–90% rise time in ms, sham: 0.2± 0.01,
FPI: 0.2 ± 0.03, p > 0.05 by t-test; τdecay, sham: 3.4 ± 0.1, FPI:
3.0 ± 0.3, p > 0.05 by t-test in n = 9/5 sham and 6/5 FPI). In
contrast, GC sIPSC frequency was reduced 3–5 months after FPI
(frequency in Hz, sham: 20.1 ± 1.6, n = 14/5; FPI: 12.7 ± 1.8,
n = 10/6, p = 3e−6 by WRT, Cohen’s d = 0.2), while sIPSC
amplitude was not different between groups (Figures 3C,D,
amplitude in pA sham: 34.5± 1.9, n= 14; FPI: 40.3± 3.6, n= 10,
p = 0.33 by WRT). Both 10–90% rise time and τdecay of GC
sIPSCs were not different between groups 3 and 5 months after
FPI (10–90% rise time in ms, sham: 0.2 ± 0.01, FPI: 0.2 ± 0.013,
p > 0.05 by t-test; τdecay, sham: 2.9± 0.1, FPI: 3.2± 0.2, p > 0.05
by t-test in n = 14/5 sham and 10/6 FPI). There was significant
effect of age on sIPSC frequency, with sham controls showing a
developmental increase in frequency [F(2,32) = 23.5, p < 0.001],
while sIPSCs frequency after FPI increased 1 week to 1 month
followed by a decline over 3 months [F(2,20) = 8.49, p = 0.002].
These data indicate simultaneous developmental- and injury-
induced plasticity and suggest a decline in basal interneuronal
activity 3–5 months after FPI.

Long-Term Apparent Recovery of
Semilunar Granule Cell Inhibition After
Brain Injury
SGCs undergo a marked decrease in amplitude of tonic GABA
currents 1 week after FPI (in pA, sham: 16.7 ± 1.7, n = 8;

FPI 2.9 ± 0.8, n = 9 p < 0.05 by t-test, previously reported in
Gupta et al., 2012), which contrasts with the increase observed
in GCs. Since SGCs show developmental reduction in tonic
GABA currents (Gupta et al., 2020), we examined whether
injury-induced differences in SGC GABA currents persisted
to 3 months. Based on criteria established in earlier studies,
SGCs were identified from biocytin fills based on the presence
of multiple primary dendrites, semilunar somata, and wide
dendritic span and somata located in the molecular layer
(Figures 1D, 4A,B). SGC tonic GABA currents were not different
between sham and FPI at 3–5 months post injury (Figures 4C,D,
in pA, sham: 2.9 ± 0.8, n = 9/7; FPI 2.7 ± 1.1, n = 6/4 p = 0.8
by t-test). Interestingly, while there was an effect of age in sham
controls (F1,15 = 58.2, p < 0.001), which is consistent with
the developmental decline of SGC tonic GABA currents into
adulthood (Gupta et al., 2020), there was no age-related change
in SGC tonic GABA currents after FPI [F(1,13) = 0.97, p = 0.34]
(Figure 4E).

Similar to tonic GABA currents, SGCs also show a reduction
in sIPSC frequency 1 week after FPI (in pA, sham: 15.6 ± 0.6,
n = 6; FPI 4.8 ± 0.36, n = 6 p < 0.05 by t-test, previously
reported in Gupta et al., 2012), which contrasts with the increase
in GCs. However, sIPSC frequency in SGCs from rats 3 months
after FPI was not different from age-matched sham controls
(Figures 4F–H, in Hz, sham: 15.7± 1.2, n= 13/6; FPI 13.6± 0.8,
n = 6/4 p = 0.08 by WRT). Additionally, sIPSC amplitude in
SGCs was not different between FPI and age-matched sham
controls 3 months after injury (Figure 4I, in pA, sham: 21.2± 2.0,
n = 13/6; FPI 39.06 ± 9.4, n = 6/4 p = 0.08 by WRT). Although
sIPSC frequency in SGCs from sham injured animals remained
unchanged during this period [F(1,17) = 0.003, p = 0.95], there
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FIGURE 2 | Granule cell tonic GABA current amplitude progressively declines 1–3 months after brain injury. (A,B) Representative Neurolucida reconstructions of
GCs from rats 3 months after sham (A) and fluid percussion injury (FPI) (B). (C,D) Representative traces from granule cell 1 month after sham (C) or FPI (D) illustrate
tonic GABA current as the baseline current blocked by bicuculline. (E,F) Representative tonic GABA current traces in GCs 3 months after sham (E) and FPI (F).
Panels to the right show Gaussian fits to the positive half of histograms derived from 30-s recording periods in control conditions, in the presence of THIP (1 µM) and
during the perfusion of bicuculline methiodide (BMI) used to determine tonic current. The dashed lines indicate the Gaussian means, and the difference current is
noted. (G) Summary plots of tonic GABA current amplitude (pA) in granule cells from rats 1 week (data from Gupta et al., 2012 shown in gray box), 1 month, and
3 months after FPI. Inset: Summary of percentage change in tonic GABA current normalized to sham. (H) Summary plots of tonic GABA current amplitude in granule
cells measured in the presence of THIP (1 µM) from rats 1 week (data from Gupta et al., 2012 shown in gray box), 1, and 3 months after FPI. *Indicates p < 0.05.

was an apparent increase in sIPSC frequency in SGCs from 1
week to 3 months postinjury [F(1,17) = 37.8, p < 0.001]. These
data demonstrate differential temporal progression of changes

in synaptic GABA currents in GCs and SGCs with a decline in
inhibition overtime after injury in GCs and an apparent recovery
of synaptic inhibition in SGCs.
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FIGURE 3 | Granule cell spontaneous inhibitory postsynaptic current (sIPSC) frequency declines over time after brain injury. (A) Representative current traces
illustrate sIPSCs in GCs from rats 1 month after sham (A1) and FPI (A2). (B) Cumulative probability plots of sIPSC frequency (B1) and amplitude (B2) in granule cells
1 month after FPI. Dotted line illustrates the median. (C) Representative current traces illustrate sIPSCs in GCs from rats 3 months after sham (C1) and FPI (C2).
(D) Cumulative probability plots of granule cell sIPSC frequency (D1) and amplitude (D2) in rats 3 months after FPI. Dotted line illustrates the median. *Indicates
p < 0.05.

DISCUSSION

TBI results in diverse cellular and network alterations (Morales
et al., 2005; Pitkanen et al., 2009; Hunt et al., 2013; Neuberger
et al., 2017a). Acute injury-induced death of GABAergic neurons
in the dentate hilus initiates progressive changes in inhibition,
which differ between injury models (Lowenstein et al., 1992;
Toth et al., 1997; Hunt et al., 2011; Pavlov et al., 2011;

Frankowski et al., 2019; Parga Becerra et al., 2021). Our data
identify progressive changes in tonic and synaptic GABA
currents, which differ between GCs and SGCs. Early post-FPI
increase in tonic GABA currents in GC reported a 1 week
(Gupta et al., 2012), persisted at 1 month, but was absent at
3 months. This decrease was due to a reduction in GC tonic
GABA current after injury, while the amplitude in sham controls
remained relatively stable over the same period. In contrast,
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FIGURE 4 | Long-term injury-induced changes in GABA currents in semilunar granule cells. (A,B) Representative Neurolucida reconstructions of semilunar granule
cells from rats 3 months after sham (A) and FPI (B). (C,D) Representative traces from semilunar granule cell 3 months after sham (C) or FPI (D) illustrate tonic GABA
current as the baseline current blocked by bicuculline. Panels to the right show Gaussian fits to the positive half of histograms derived from 30-s recording periods in
control conditions and during the perfusion of BMI used to determine tonic current. The dashed lines indicate the Gaussian means, and the difference in currents are
noted. (E) Summary plot of tonic GABA current amplitude (pA) in SGCs from rats 1 week (data from Gupta et al., 2012 shown in gray box) and 3 months after FPI.
(F,G) Representative current traces illustrate sIPSCs in SGCs from rats 3 months after sham (F) and FPI (G). (H) Cumulative probability plots of SGC sIPSC
frequency (H) and amplitude (I) in rats 3 months after FPI. Dotted line illustrates the median values. *Indicates p < 0.05.

Frontiers in Neuroscience | www.frontiersin.org 7 March 2022 | Volume 16 | Article 800733

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-800733 March 8, 2022 Time: 14:55 # 8

Gupta et al. Long-Term Inhibitory Plasticity After FPI

the apparent recovery of early injury-induced reduction in SGC
tonic GABA currents, reported previously (Gupta et al., 2012),
by 3 months was largely due to a developmental decline in
SGC tonic GABA current amplitude in sham rather than a
recovery of the injury-induced decrease. Synaptic inhibitory
events were examined in the presence of glutamate block
to isolate the inhibitory circuit from glutamatergic plasticity
(Santhakumar et al., 2001; Hunt et al., 2011; Folweiler et al., 2020;
Korgaonkar et al., 2020b). We find that the early posttraumatic
increase in sIPSC frequency in GCs, reported previously (Gupta
et al., 2012), gives way to a significant decrease compared
with age-matched sham controls by 3 months. This resulted
from a delayed decline in sIPSC frequency 3 months after
FPI. In SGCs, sIPSC frequency was not different from age-
matched controls 3 months after injury largely due to a
developmental decrease in SGC sIPSC frequency. Together, these
data demonstrate complex, cell type-specific inhibitory plasticity
after concussive brain injury in adolescent rats, which evolve
alongside developmental plasticity.

Tonic and synaptic GABA currents are known to be
altered after brain injury with outcomes varying between
experimental models. GC tonic GABA current amplitude was
reported to be similar to controls 2–20 weeks after murine
CCI or severe FPI in adult rats (Pavlov et al., 2011; Boychuk
et al., 2016; Parga Becerra et al., 2021), which contrasts
with the increase we had reported 1 week after moderate
FPI in adolescent rats (Gupta et al., 2012). Our current
demonstration that GC tonic GABA current amplitude remains
elevated 1 month after injury differs from that of Pavlov
et al. (2011) and parallels our observation at 1 week (Gupta
et al., 2012), while the recovery to control levels by 3 months
is consistent with that of Pavlov et al. (2011). Since we
adopted FPI in adolescent rats, when tonic GABA current
amplitude shows a developmental peak during adolescence
before declining to adult levels (Gupta et al., 2020), age
at injury likely contributed to differences in the effect of
injury on tonic GABA current amplitude observed in the two
studies. Differences in injury severity and anesthesia could
also contribute to the divergent effects. Consistent with prior
work (Pavlov et al., 2011), the percentage increase in tonic
currents induced by THIP was stable across all time points
(not shown). It is possible that species or model-specific effects
underlie the reduction in THIP modulation of GC tonic
GABA currents after murine CCI (Boychuk et al., 2016; Parga
Becerra et al., 2021). In keeping with interaction between
developmental and injury-induced changes, the decrease in
SGC tonic GABA currents observed 1 week post-FPI (Gupta
et al., 2012) is eliminated by 3 months as a consequence
of age-related decline in SGC tonic GABA currents in sham
controls rather than recovery of postinjury changes. Indeed,
it is possible that brain injury in adulthood, when the SGC
tonic GABA currents are considerably lower than during
adolescence, would not result in a discernable reduction in
SGC tonic GABA currents. These results suggest that age of
injury is a key factor in inhibitory changes in the dentate
after moderate concussive injury. Specifically, concussive brain
injury during adolescence may selectively reduce SGC tonic

inhibition and alter feedback inhibition of GCs. Given the
differences in posttraumatic pathology between the immature
and adult brain (Saletti et al., 2019) and the high incidence of
moderate concussions in adolescence, the selective perturbation
of tonic GABA currents following concussion during adolescence
could underlie heightened cognitive deficits in this population
(Babikian et al., 2015).

Studies following both murine CCI and severe FPI in
rats have reported reduced sIPSC frequency (Pavlov et al.,
2011; Boychuk et al., 2016; Parga Becerra et al., 2021), which
contrasts with the increase identified in our studies 1 week
after moderate FPI (Santhakumar et al., 2001; Gupta et al.,
2012). Since excitatory drive to interneurons can increase after
injury (Santhakumar et al., 2001; Hunt et al., 2011; Folweiler
et al., 2020), we examined the inhibitory circuit isolated in
the presence of glutamate blockers. Interestingly, the postinjury
increase in GC sIPSC frequency observed at 1 week (Gupta
et al., 2012) was no longer evident at 1 month and reduced
further, becoming significantly lower than age-matched controls
by 3 months. In contrast, the decrease in SGC sIPSC frequency
observed 1 week after injury was not present at 3 months,
although the effect reflected developmental decrease in SGC
sIPSC frequency in controls (Gupta et al., 2020) rather than
recovery of sIPSCs after FPI. Since SGCs are proposed to drive
polysynaptic lateral inhibition of GCs (Larimer and Strowbridge,
2010), it is possible that early reduction in SGC inhibition after
brain injury may lead to increase in GC inhibition, impair
memory processing, and delay epileptogenesis (Gupta et al.,
2012; Folweiler et al., 2020; Korgaonkar et al., 2020a,b). It is
possible that low SGC inhibition, together with progressive
decline in GC inhibition after brain injury, contributes to
the enhanced incidence of posttraumatic epilepsy following
moderate concussive TBI in adolescent rats (Neuberger et al.,
2017b; Korgaonkar et al., 2020b).

Tonic and synaptic inhibition are interrelated, with sIPSCs
driving GABA spillover, which augments tonic GABA currents
(Glykys and Mody, 2007). Consistently, we see that both synaptic
and tonic GABA currents in GCs decline over time. However,
the decrease in THIP-mediated currents suggests that with
time after injury, an early increase followed by progressive
reduction in expression of extrasynaptic GABAAR, including
those containing δ subunits, contributes to the progressive
reduction in tonic GABA currents after FPI. Moreover, SGC
tonic GABA currents remained low at later time points, even
when sIPSC frequency and amplitude after FPI were similar
to controls, indicating that reduced extrasynaptic GABAAR
expression likely drives changes in tonic GABA currents. The
opposite direction of changes in sIPSC frequency in GC and
SGCs is intriguing as it suggests that different populations
of interneurons may innervate the cell types. While hilar
somatostatin neurons undergo extensive cell loss, parvalbumin
basket cells and molecular layer interneurons appear to survive
(Toth et al., 1997; Santhakumar et al., 2000; Hunt et al.,
2011; Frankowski et al., 2019; Folweiler et al., 2020) and
may have enhanced contribution to GC sIPSCs after brain
injury. Alternatively, the inhibitory network reorganization after
brain injury may lead to cell-specific innervation, possibly as
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an attempt at restoring homeostasis at the level of cellular
excitability. Additionally, since parvalbumin basket cells and
molecular layer interneurons express GABAAR δ subunits
(Glykys et al., 2007; Yu et al., 2013), it is possible that changes
in interneuronal tonic GABA currents could influence their
excitability and alter GC sIPSC frequency as observed in epilepsy
(Yu et al., 2013). Indeed, recent data indicate that inhibition
of dentate parvalbumin neurons may be increased after FPI
(Folweiler et al., 2020).

In summary, we find progressive decrease in GC inhibition
after concussive brain injury in adolescence, while developmental
change in SGC inhibition drives the apparent normalization
of SGC inhibition. Reduced SGC inhibition could enhance
SGC recruitment during afferent inputs impairing its ability to
shape input-specific lateral inhibition of GCs degrading memory
processing following concussive brain injury. Progressive decline
of the early increases in tonic and synaptic inhibition and
eventual depression of sIPSC in GCs 3 months after brain
injury could render the adolescent brain particularly vulnerable
to impaired cognitive function and epileptogenesis observed
over time.
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