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Abstract

An important step toward understanding how the brain represents complex natural sounds is to develop accu-
rate models of auditory coding by single neurons. A commonly used model is the linear-nonlinear spectro-
temporal receptive field (STRF; LN model). The LN model accounts for many features of auditory tuning, but it
cannot account for long-lasting effects of sensory context on sound-evoked activity. Two mechanisms that
may support these contextual effects are short-term plasticity (STP) and contrast-dependent gain control (GC),
which have inspired expanded versions of the LN model. Both models improve performance over the LN
model, but they have never been compared directly. Thus, it is unclear whether they account for distinct proc-
esses or describe one phenomenon in different ways. To address this question, we recorded activity of neu-
rons in primary auditory cortex (A1) of awake ferrets during presentation of natural sounds. We then fit models
incorporating one nonlinear mechanism (GC or STP) or both (GC1STP) using this single dataset, and meas-
ured the correlation between the models’ predictions and the recorded neural activity. Both the STP and GC
models performed significantly better than the LN model, but the GC1STP model outperformed both individu-
al models. We also quantified the equivalence of STP and GC model predictions and found only modest simi-
larity. Consistent results were observed for a dataset collected in clean and noisy acoustic contexts. These
results establish general methods for evaluating the equivalence of arbitrarily complex encoding models and
suggest that the STP and GC models describe complementary processes in the auditory system.
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Significance Statement

Computational models are used widely to study neural sensory coding. However, models developed in sep-
arate studies are often difficult to compare because of differences in stimuli and experimental preparation.
This study develops an approach for making systematic comparisons between models that measures the
net benefit of incorporating additional nonlinear elements into models of auditory encoding. This approach
was then used to compare two different hypotheses for how sensory context, that is, slow changes in the
statistics of the acoustic environment, influences activity in auditory cortex. Both models accounted for
complementary aspects of the neural response, indicating that a hybrid model incorporating elements of
both models provides the most complete characterization of auditory processing.

Received May 12, 2020; accepted September 5, 2020; First published October
27, 2020.
The authors declare no competing financial interests.

Author contributions: J.R.P. and S.V.D. designed research; J.R.P.
performed research; J.R.P. and S.V.D. contributed unpublished reagents/
analytic tools; J.R.P. analyzed data; J.R.P. and S.V.D. wrote the paper.

November/December 2020, 7(6) ENEURO.0205-20.2020 1–17

Research Article: New Research

https://orcid.org/0000-0003-4135-3104
https://doi.org/10.1523/ENEURO.0205-20.2020


Introduction
The sound-evoked spiking activity of an auditory neu-

ron can be modeled as a function of a time-varying stimu-
lus plus some amount of error, reflecting activity that
cannot be explained by the model. Prediction error can
reflect experimental noise (physiological noise or record-
ing artifacts), but in many cases it also reflects a failure of
the model to account for some aspects of sound-evoked
activity (Sahani and Linden, 2003b). A common encoding
model used to study the auditory system is the linear-non-
linear spectro-temporal receptive field (STRF), or LN
model (David et al., 2007; Calabrese et al., 2011; Rahman
et al., 2019). According to the LN model, the time-varying
response of a neuron can be predicted by convolution of a
linear filter with the sound spectrogram followed by a static
rectifying nonlinearity. The LN model is a generalization of
the classical STRF, which does not specify a static nonli-
nearity but provides a similar description of auditory coding
(Aertsen and Johannesma, 1981; Eggermont et al., 1983;
deCharms et al., 1998; Klein et al., 2000; Theunissen et al.,
2001). The LN model has been useful because of its gener-
ality; that is, because it provides a representation of a neu-
ron’s response properties that holds for arbitrary stimuli
(Aertsen and Johannesma, 1981; Theunissen et al., 2000).
Despite the relative value of the LN model, it fails to ac-

count for important aspects of auditory coding, particularly
in more central auditory areas such as primary auditory
cortex (A1; Machens et al., 2004; David et al., 2007;
Atencio and Schreiner, 2008). Several studies have identi-
fied nonlinear selectivity for spectro-temporal sound fea-
tures (Eggermont, 1993; Atencio et al., 2008; Sadagopan
and Wang, 2009; Kozlov and Gentner, 2016). In addition,
auditory neurons undergo slower changes in response
properties that reflect the sensory context (Hiroki and
Zador, 2009; Rabinowitz et al., 2012). A canonical example
of context-dependent changes is stimulus-specific adap-
tation (SSA), where responses are reduced for repeating
versus oddball tones (Ulanovsky et al., 2003). Context-de-
pendent changes in coding are also apparent in responses
to clean (undistorted) versus noisy stimuli (Moore et al.,
2013; Rabinowitz et al., 2013; Mesgarani et al., 2014).
These context effects can last hundreds of milliseconds
and reflect nonlinear computations outside of the scope of
a linear filter (David and Shamma, 2013). Several studies
have attempted to bridge this gap in model performance
by extending the LN model to incorporate experimentally-

observed nonlinearities, including short-term synaptic
plasticity (STP) and contrast-dependent gain control (GC;
Rabinowitz et al., 2012; Cooke et al., 2018; Lopez Espejo
et al., 2019). These models show improved performance
over the LN model and point to mechanisms that explain
contextual effects.
The improved performance of these alternatives to the

LN model is well established, but the extent to which they
describe distinct, complementary mechanisms within the
brain is not clear. It has been suggested, for example, that
STP may in fact contribute to GC (Carandini et al., 2002;
Rabinowitz et al., 2011). At the same time, both gain con-
trol and STP have been implicated in the robust coding of
natural stimuli in noise (Rabinowitz et al., 2013; Mesgarani
et al., 2014).
The complementarity of these effects has been difficult

to establish because thus far they have been tested on
datasets recorded from different experimental prepara-
tions and using different stimulus sets (Rabinowitz et al.,
2012; David and Shamma, 2013; Lopez Espejo et al.,
2019). To address this issue, we tested both STP and GC
models on two natural sounds datasets, collected from
A1 of unanesthetized ferret. The first was comprised of a
large collection of diverse natural sounds, while the sec-
ond contained only ferret vocalizations with and without
additive broadband noise. We focused on natural sound
coding because LN models are limited in their ability to
predict responses to natural sounds in A1 (Theunissen et
al., 2000; David et al., 2009; Sharpee et al., 2011).
With the models on equal footing, we compared their

performance to each other and to a standard LN model.
Both models showed improved performance over the LN
model, but a model combining the STP and GC mecha-
nisms performed better than either one alone. Additionally,
we found a low degree of similarity between the STP and
GC models’ predictions after accounting for the LN mod-
el’s contributions. These results suggest that models for
STP and GC are not equivalent, and in fact account for
complementary components of auditory cortical coding.

Materials and Methods
Experimental procedures
Data collection
All procedures were approved by the Oregon Health

and Science University Institutional Animal Care and Use
Committee (protocol IP00001561) and conform to stand-
ards of the Association for Assessment and Accreditation
of Laboratory Animal Care (AAALAC).
Before experiments, all animals (Mustela putorius furo,

seven males) were implanted with a custom steel head
post to allow for stable recording. While under anesthesia
(ketamine followed by isoflurane) and under sterile condi-
tions, the skin and muscles on the top of the head were
retracted from the central 4-cm diameter of skull. Several
stainless-steel bone screws (Synthes, 6 mm) were at-
tached to the skull, the head post was glued on the mid-
line (3 M. Durelon), and the site was covered with bone
cement (Zimmer Palacos). After surgery, the skin around
the implant was allowed to heal. Analgesics and antibiotics
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were administered under veterinary supervision until
recovery.
After animals fully recovered from surgery and were

habituated to a head-fixed posture, a small craniotomy
(1–2 mm in diameter) was opened over A1. Neurophysio-
logical activity was recorded using tungsten microelectro-
des (1–5MO, A.M. Systems). One to four electrodes
positioned by independent microdrives (Alpha-Omega
Engineering EPS) were inserted into the cortex.
Electrophysiological activity was amplified (A.M. Systems

3600), digitized (National Instruments PCI-6259), and re-
corded using theMANTA open-source data acquisition soft-
ware (Englitz et al., 2013). Recording site locations were
confirmed as being in A1 based on tonotopy, relatively well-
defined frequency tuning and short response latency
(Kowalski et al., 1996).
Spiking events were extracted from the continuous raw

electrophysiological trace by principal components analy-
sis and k-means clustering (David et al., 2009). Single unit
isolation was quantified from cluster variance and overlap
as the fraction of spikes that were likely to be from a single
cell rather than from another cell. Only units with .80%
isolation were used for analysis.
Stimulus presentation was controlled by custom soft-

ware written in MATLAB (version 2012A, MathWorks).
Digital acoustic signals were transformed to analog
(National Instruments PCI6259) and amplified (Crown D-
75a) to the desired sound level. Stimuli were presented
through a flat-gain, free-field speaker (Manger) 80 cm dis-
tant, 0° elevation and 30° azimuth contralateral to the neu-
rophysiological recording site. Before experiments, sound
level was calibrated to a standard reference (Brüel &
Kjær). Stimuli were presented at 60–65dB SPL.

Natural stimuli
The majority of data included in this study were col-

lected during presentation of a library of natural sounds
(set 1: 93, 3 s/sample, set 2: 306, 4 s/sample). Some of
these sounds (set 1: 30%, set 2: 10%) were ferret vocal-
izations. The vocalizations were recorded in a sound-at-
tenuating chamber using a commercial digital recorder
(44-kHz sampling, Tascam DR-400). Recordings included
infant calls (oneweek to onemonth of age), adult aggres-
sion calls, and adult play calls. No animals that produced
the vocalizations in the stimulus library were used in the
current study. The remaining natural sounds were drawn
from a large library of human speech, music and environ-
mental noises developed to characterize natural sound
statistics (McDermott et al., 2013).
Neural activity was recorded during three repetitions of

these stimuli (set 1: 90, set 2: 288) in random order and ei-
ther 24 or 30 repetitions of the remaining stimuli (set 1: 3,
set 2: 18), all ferret vocalizations, presented on random in-
terleaved trials with 1–3 s of silence between stimuli. The
low-repetition data were used for model estimation and
the high-repetition data were used for model validation.
A second dataset was collected during presentation of

ferret vocalizations in clean and noisy conditions; 43-s vo-
calizations were each presented without distortion (clean)
and with additive Gaussian white noise [0 dB signal-to-
noise ratio (SNR), peak-to-peak]. The noise started 0.5 s

before the onset and ended 0.5 s following the offset of
each vocalization. A distinct frozen noise sample was
paired with each vocalization to allow repetition of identi-
cal noisy stimuli. Stimuli were presented at 65dB SPL
with 1-s interstimulus interval.

Modeling framework
Cochlear filterbank
To represent the input for all the encoding models, stim-

ulus waveforms were converted into spectrograms using
a second-order gammatone filterbank (Katsiamis et al.,
2007). The filterbank included F=18 filters with fi spaced
logarithmically from flow = 200 to fhigh = 20,000Hz. After
filtering, the signal was smoothed and down-sampled to
100Hz to match the temporal bin size of the peristimulus
time histogram (PSTH), and log compression was applied
to account for the action of the cochlea.

LNmodel
The first stage of the LN model applied a finite impulse

response (FIR) filter, h, to the stimulus spectrogram, s, to
generate a linear firing rate prediction (ylin):

ylinðtÞ ¼
XF

f

XU
u

hf;u; sðf; t� uÞ: (1)

For this study, the filter consisted of F=18 spectral
channels and U=15 temporal bins (10ms each). In princi-
ple, this step can be applied to the spectrogram as a sin-
gle 18� 15 filter. In practice, the filter was applied in two
stages: multiplication by an 18� 3 spectral weighting ma-
trix followed by convolution with a 3� 15 temporal filter.
Previous work has shown that this rank-3 approximation
of the full filter is advantageous for prediction accuracy in
A1 (Thorson et al., 2015).
The output of the filtering operation was then used as

the input to a static sigmoid nonlinearity that mimicked
spike threshold and firing rate saturation to produce the
final model prediction. For this study, we used a double
exponential nonlinearity:

yðtÞ ¼ b1 ae�ekðylinðtÞ�sÞÞ
; (2)

where the baseline spike rate, saturated firing rate, firing
threshold, and gain are represented by b, a, s, and k,
respectively.

STPmodel
The output of each spectral channel served as the input

to a virtual synapse that could undergo either depression
or facilitation (Tsodyks et al., 1998). In this model, the
number of presynaptic vesicles available for release within
a virtual synapse is dictated by the fraction of vesicles re-
leased by previous stimulation, ui, and a recovery time
constant, t i. For depression, ui . 0, and the fraction of
available vesicles, d(t), is updated,

diðtÞ ¼ diðt� 1Þ � uisiðt� 1Þdiðt� 1Þ1 1� diðt� 1Þ
t i

:

For facilitation, ui , 0, and d(t) is updated,
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diðtÞ ¼ diðt� 1Þ � uisiðt� 1Þ½2� diðt� 1Þ�1 1� diðt� 1Þ
t i

:

The input to the i-th synapse, si, is scaled by the fraction
of available vesicles, di:

sdiðtÞ ¼ diðtÞsiðtÞ: (3)

The scaled output, sdiðtÞ, is then used as the input to a
temporal filter, identical to the one used in the LN model.
Three virtual synapses were used in this study to match
the rank-3 STRF approximation, for a total of six free pa-
rameters t i, ui, i=0, 1, 2. Values of t and u reported in
the results represent the mean across all three virtual
synapses.

GCmodel
The GC model was adapted from Rabinowitz et al.

(2012). In this model, the parameters of the output non-
linearity depend on a linear weighted sum of the time-
varying stimulus contrast. For each stimulus, the contrast,
C, within a frequency band, f, was calculated as the coef-
ficient of variation,

CfðtÞ ¼ s fðtÞ
mfðtÞ

; (4)

within a 70-ms rolling window offset by 20ms. s f is the SD
and mf is the mean level within that window (dB SPL). In the
GC model’s original formulation, a linear filter with fittable
coefficients would then be applied to the stimulus contrast
(Rabinowitz et al., 2012). For this study, we found that a
simple contrast weighting provided more accurate predic-
tions. Our implementation used a fixed filter that summed
stimulus contrast across frequencies and at a single time
point. Thus, the contrast at each point reflected the ratio in
Equation 4 computed over the window 20–90ms preced-
ing the current moment in time. The output, K, of this sum-
mation was then used to determine the parameters of the
output nonlinearity in (2) such that the i-th parameter, u i,
was determined from the base value, u i0 , that would nor-
mally be fitted in (2) and a contrast weighting term, u i1 :

KðtÞ ¼
XF

f

CfðtÞ (5)

u iðtÞ ¼ u i01ðu i1 � u i0ÞKðtÞ: (6)

With this formula, it is necessary to know both u i1 and
u i0 to determine the impact of contrast on any particular
parameter. However, we did not find any significant differ-
ences in the base values u i0 between improved and non-
improved cells. In the results we instead report the differ-
ence, ðu i1 � u i0Þ, which represents the slope of the linear
relationship proposed by the model.

Model optimization
Models were optimized using the L-BFGS-B gradient

descent algorithm implemented in the SciPy Python li-
brary (Virtanen et al., 2020). This optimization minimized
the mean-squared error (MSE) between a neuron’s time-

varying response, averaged across any repeated presen-
tations of the same stimulus, and the model’s prediction.
Post-fitting performance was evaluated based on the cor-
relation coefficient (Pearson’s R) between prediction and
response, adjusted for the finite sampling of validation
data (Hsu et al., 2004).
Because of the difficult nonlinear optimization problem

posed by the models used in this study, we were not able
to reliably fit all model parameters simultaneously. Instead,
when optimizing the GC1STP model, it was necessary to
fit the STP model parameters before fitting the GC model
parameters. We began by fitting only the linear STRF por-
tion of the model, using coarse stopping criteria, with the
other portions of the model excluded. Next, we incorpo-
rated and optimized the STP and static output nonlinearity
parameters while keeping the STRF parameters fixed. This
was followed by simultaneous optimization of all LN and
STP parameters using finer stopping criteria. Next, the GC
and STP parameters were optimized while keeping LN pa-
rameters fixed. Finally, all model parameters were opti-
mized simultaneously. Other model fits followed the same
process, but without the additional parameters where ap-
propriate. Compared with optimizing all parameters in a
single step we found that, on average, using this heuristic
approach reduced overfitting and avoided more local mini-
ma. However, we emphasize that we were not able to rem-
edy these issues entirely, as is typical for encoding models
of complex spiking data.

Equivalence analysis
Equivalence of STP and GC models was quantified

using the partial correlation between the time-varying re-
sponse to the validation stimuli predicted by each model,
computed relative to the prediction by the LN model
(Baba et al., 2004). If the two models were equivalent and
deviated from the LN model in exactly the same way, the
partial correlation would be 1.0. If they deviated in com-
pletely different ways, the partial correlation would be 0.0.
Because dataset size was finite, noise in the estimation

data produced uncertainty in model parameter estimates,
which biased partial correlation values to be less than 1.
To compute an upper bound on equivalence, we split the
estimation dataset in half and fit the same model (STP or
GC) to both halves. We then measured equivalence be-
tween two fits of the same model (Whalf), one for each half
of the estimation data, using the models’ predictions for
the full validation dataset.
The resulting within-model equivalence scores were cor-

rected to account for noisier model estimates that resulted
from using half as much data to fit each model as in the
main analysis. Three measurements were used for the cor-
rection: within-model equivalence, Whalf, computed as de-
scribed above; between-model equivalence using the full
dataset, Bfull; and between-model equivalence using oppo-
site halves of the estimation data, Bhalf, similar to the within-
model computation. Corrected within-model equivalence,
W1, was computed for each of the STP and GCmodels as:

W1 ¼ Bfull

Bhalf

� �
Whalf � (7)

The ratio Bfull
Bhalf

represents the increase in equivalence ex-
pected if the within-model comparison could be performed
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on the full dataset. The values for within-model equivalence
reported in the results are these corrected scores.
We also estimated an upper bound for the comparison

of relative improvements to prediction correlation. As with
the partial correlation computations, relative performance
for the full validation dataset was compared within-model
by using separate halves of the estimation dataset for
fitting.

Reliability metric
Neurons with noisy, unreliable responses necessarily

have less reliable model fits, which in turn are biased to-
ward low equivalence values. To quantify the reliability of
neural responses, we used a variation on the SNR, based
on methods developed by Sahani and Linden (Sahani and
Linden, 2003a,b). A typical SNR definition would be:

SNR ¼ Signal Power
NoisePower

¼ Signal Power
Total Power � Signal Power

:

(8)

However, SNR values can be difficult to compute for
sparse spiking data. In an extreme case, noise power
would be zero for a train of zero spikes, leading to indeter-
minate SNR. To avoid this problem, we measured re-
sponse reliability as

Reliability ¼ Signal Power
Total Power

: (9)

Since total power is the sum of signal and noise power,
this approach avoids the issue of sparse responses in the
noise computation. Interpretation of the metric is also
straightforward. For example, a reliability of 0.5 indicates a
response that is 50% signal and 50% noise. For each neu-
ron and stimulus, we measured signal and total power for
the spiking response yj to the j-th stimulus repetition as:

ðTotal PowerÞj ¼ hyj; yji
ðSignal PowerÞj ¼ 1

m

Xm
k¼1

hyj; yki; j 6¼ k ; (10)

where h; i denotes a dot product andm is the total number
of repetitions. This process was repeated for each repeti-
tion of each stimulus to obtain a reliability measure for the
i-th stimulus:

ðReliabilityÞi ¼
1
m

Xn

j¼1

ðSignal PowerÞj
ðTotal PowerÞj

: (11)

A neuron’s overall reliability was then calculated as the
mean of the per-stimulus values:

Reliability ¼ 1
n

Xn

i¼1

ðReliabilityÞi: (12)

Code accessibility
The python-based model estimation software de-

scribed in the paper is freely available online at https://
github.com/LBHB/NEMS and https://github.com/LBHB/

nems_db. Analyses for this study were run on an in-house
compute cluster using Intel core-i7 CPUs running the
Ubuntu Linux operating system version 16.04.

Results
Models for encoding of natural sounds by neurons
in A1
To compare performance of the short-term plasticity

(STP) and gain control (GC) models directly, we recorded
the activity of n=540 neurons in A1 of awake, non-behav-
ing ferrets during presentation of a large natural sound
library (Fig. 1). We then compared how models incorpo-
rating STP or GC nonlinearities accounted for sound-
evoked activity in the same dataset. See Table 1 for a list
of all statistical tests used, with individual tests referenced
by superscript throughout the results.
We compared performance of four model architectures,

fitting and evaluating each with the same dataset (Fig.
1B–D). The first was a standard linear-nonlinear (LN)
model, which is widely used to characterize spectro-tem-
poral sound encoding properties (Simoncelli et al., 2004;
Calabrese et al., 2011; Rahman et al., 2019) and provided
a baseline for the current study. The second architecture
(STP model) accounted for synaptic depression or facilita-
tion by scaling input stimuli through simulated plastic syn-
apses (Tsodyks et al., 1998; Wehr and Zador, 2005;
Lopez Espejo et al., 2019). The third (GC model) scaled a
neuron’s sound-evoked spike rate as a function of recent
stimulus contrast (Rabinowitz et al., 2011). A fourth archi-
tecture (GC1STP model) incorporated both STP and GC
mechanisms into the LN model. The LN, STP, and GC
models were implemented following previously published
architectures (Rabinowitz et al., 2012; Lopez Espejo et al.,
2019), and the GC1STP model combined elements from
the other models in a single architecture. Data were
grouped into two sets to permit unbiased model compari-
son: an “estimation” dataset used for fitting and a held-
out “validation” dataset used for assessing model per-
formance. The estimation dataset included a wide variety
of stimuli repeated only a few times each to explore as
large a portion of the stimulus space as was feasible. The
validation dataset contained fewer stimuli, none of which
was present in the estimation set, that were repeated
many times each to obtain an accurate estimate of the
time-varying firing rate.

Complementary explanatory power by STP and gain
control models
We quantified prediction accuracy using the correlation

coefficient (Pearson’s R) between the predicted and actual
PSTH response in each neuron’s validation data. Before
comparing performance between models, we identified au-
ditory-responsive neurons for which the prediction accu-
racy of all four models was greater than expected for a
random prediction (p, 0.05, permutation test, n=468/
540a). Comparisons then focused on this subset. This con-
servative choice ensured that comparisons between model
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performance were not disproportionately impacted by cells
for which a particular optimization failed.
A comparison of median prediction correlation across

the entire set of auditory-responsive neurons (n=468;
Fig. 2A) revealed that both the GC model and the STP
model performed significantly better than the LN model
(p=7.54� 10�30 and p=3.55� 10�26, respectivelyb,c,
two-sided Wilcoxon signed-rank test), confirming previ-
ous results (Rabinowitz et al., 2012; Lopez Espejo et al.,
2019). We also found that the STP model performed sig-
nificantly better than the GC model (p=5.00� 10�24d). If
the STP and GC models were equivalent to one another,
we would not expect to observe further improvement for
the combined GC1STP model. Instead, we observed a
significant increase in predictive power for the combined
model over both the GC model and the STP model
(p=5.10� 10–23 and p=2.02� 10�27, respectivelye,f). The
improvement for the combined model suggests that the
STP and GC models describe complementary functional
properties of A1 neurons.
The scatter plot in Figure 2B compares performance of

the LN and combined models for each neuron. Among the
468 auditory-responsive neurons, 132 (28.2%) showed a
significant improvement in prediction accuracy for the
combined versus the LN model (p, 0.05, Jackknife t
testg). For the analyses of model equivalence and

parameter distributions below, we focus on this set of im-
proved neurons.

Limited equivalence of STP and contrast gain model
predictions
A central question in this study was the extent to which

the STP model’s improved performance over the LN
model could be accounted for by the GC model, or vice-
versa. Among non-improved cells, the two models’ pre-
dictions were often closely matched to each other and to
the prediction of the LN model (Fig. 3A). However, for
some improved neurons, the time-varying responses pre-
dicted by the STP and GC models were readily distin-
guishable not only from the LN model but also from each
other (Fig. 3B,C). In this case, the STP and GC models
both improved prediction accuracy, but they did so with
low equivalence. That is, the models’ predicted responses
deviated from that of the LN model in different ways. If the
STP and GC models account for equivalent nonlinear
properties, their predicted responses should remain simi-
lar to each other, even when differing from the LN model.
To quantify model equivalence across neurons, we first

compared the change in prediction correlation for the
STP and GC models, relative to the LN model (Fig. 4A). If
the two models were equivalent, we would expect a

E

D

C

B

A

Figure 1. Schematic of four different model architectures for sound encoding by neurons in auditory cortex. A, Single neuron activity was
recorded from A1 of awake, passively listening ferrets during presentation of a large set of natural sound stimuli. The trial-averaged re-
sponse to each sound was calculated as the instantaneous firing rate using 10-ms bins. Sound waveforms were transformed into 18-
channel spectrograms with log-spaced frequencies for input to the models. B, Linear nonlinear (LN) model: stimulus spectrogram is con-
volved with a linear spectro-temporal filter followed by nonlinear rectification. C, Short-term plasticity (STP) model: simulated synapses de-
press or facilitate spectral stimulus channels before temporal convolution. D, Gain control (GC) model: the coefficient of variation (contrast)
of the stimulus spectrogram within a rolling window is summed across frequencies. Parameters for the nonlinear rectifier are scaled by
time-varying contrast. E, Model performance is measured by the correlation coefficient (Pearson’s R) between the trial-averaged response
and the model prediction. The four architectures were defined as follows: LN, B only; STP, B and C; GC, B and D; GC1STP, B–D.
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strong positive correlation between improvements over
the LN model per neuron. However, we observed only a
weak correlation (r=0.18, p=6.42� 10�5h).
This measure of correlation between model perform-

ance can be biased toward lower values by estimation
noise that randomly impacts prediction accuracy. To con-
trol for effects of noise, we measured the same correlation
statistics, but for models known to be equivalent. We per-
formed a within-model comparison using a subset of cells
for which responses to a larger collection of sounds were
recorded (n=237; for details, see Materials and Methods).
The within-model correlation between changes in predic-
tion correlation was substantially larger for both the STP
and GC models (r=0.50, p=1.34� 10�16 and r=0.31,
p=1.26� 10�6, respectivelyi,j). These results indicate that

model estimation noise substantially impacts measures of
prediction accuracy, but equivalence of prediction corre-
lations is still low even after accounting for estimation
noise.
If two models account for the same functional properties,

we also expect them to predict the same time-varying re-
sponse to a validation stimulus. To test for this possibility,
we measured the similarity of responses predicted by the
STP and GC models. Since both models are extensions of
the LN model, we discounted the contributions of the LN
model to the prediction (Fig. 4B). We defined model equiv-
alence for each neuron as the partial correlation between
the STP and GC model predictions relative to the LN
model prediction (Baba et al., 2004). An equivalence score
of 1.0 would indicate perfectly equivalent STP and GC

Table 1: Statistical tests reported in the Results, labeled in the text by the letters in the left-hand column

Distribution Test Statistic p value Sample size animals
a Non-parametric Permutation test N/A p, 0.05, 468 sig. n=540 n=7
b Non-parametric Wilcoxon signed-rank T=2.17� 104 p=7.54� 10�30 n=468 n=7
c Non-parametric Wilcoxon signed-rank T ¼ 2:39� 104 p ¼ 3:55� 10�26 n=468 n=7
d Non-parametric Wilcoxon signed-rank T ¼ 4:46� 104 p ¼ 5:00� 10�4 n=468 n=7
e Non-parametric Wilcoxon signed-rank T ¼ 2:60� 104 p ¼ 5:10� 10�23 n=468 n=7
f Non-parametric Wilcoxon signed-rank T ¼ 2:31� 104 p ¼ 2:02� 10�27 n=468 n=7
g Non-parametric Jackknife t test T (varies) p, 0.05, 132 sig. n=468 n=7
h Normal (residuals) Pearson’s correlation r=0.18 p ¼ 6:42� 10�5 n=468 n=7
i Normal (residuals) Pearson’s correlation r=0.31 p ¼ 1:26� 10�6 n=237 n=2
j Normal (residuals) Pearson’s correlation r=0.50 p ¼ 1:34� 10�16 n=237 n=2
k Non-parametric Mann–Whitney U U ¼ 1:48� 104 p ¼ 1:72� 10�8 n=132, 336 n=7
l Normal (residuals) Pearson’s correlation r=0.22 p=0.0103 n=132 n=7
m Non-parametric Wilcoxon signed-rank T ¼ 1:00� 103 p ¼ 1:41� 10�14 n=132 n=7
n Non-parametric Mann–Whitney U U ¼ 3:39� 103 p ¼ 6:01� 10�12 n=119, 118 n=2
o Non-parametric Mann–Whitney U U ¼ 4:85� 103 p ¼ 3:91� 10�5 n=119, 118 n=2
p Non-parametric Mann–Whitney U U ¼ 3:67� 103 p ¼ 1:23� 10�8 n=93, 141 n=7
q Normal (residuals) Pearson’s correlation r=0.34 p ¼ 1:20� 10�7 n=234 n=7
r Normal (residuals) Pearson’s correlation r=0.66 p ¼ 1:18� 10�16 n=122 n=2
s Normal (residuals) Pearson’s correlation r=0.41 p ¼ 2:61� 10�6 n=122 n=2
t Non-parametric Mann–Whitney U U ¼ 1:61� 104 p ¼ 3:53� 10�6 n=132, 336 n=7
u Non-parametric Mann–Whitney U U ¼ 1:26� 104 p ¼ 2:92� 10�13 n=132, 336 n=7
v Non-parametric Mann–Whitney U U ¼ 2:72� 104 p ¼ 1:22� 10�4 n=132, 336 n=7
w Non-parametric Mann–Whitney U U ¼ 2:81� 104 p ¼ 8:01� 10�6 n=132, 336 n=7
x Non-parametric Mann–Whitney U U ¼ 1:56� 104 p ¼ 5:90� 10�7 n=132, 336 n=7
y Non-parametric Mann–Whitney U U ¼ 2:24� 104 p ¼ 0:852� 10�4 n=132, 336 n=7
z Non-parametric Mann–Whitney U U ¼ 1:94� 103 p* = 1.00 n=132, 336 n=7
aa Non-parametric Mann–Whitney U U ¼ 5:19� 102 p* = 1.00 n=132, 336 n=7
bb Non-parametric Mann–Whitney U U ¼ 5:28� 102 p* = 1.00 n=132, 336 n=7
cc Non-parametric Mann–Whitney U U ¼ 3:39� 103 p* = 1.00 n=132, 336 n=7
dd Non-parametric Mann–Whitney U U ¼ 1:09� 104 p* = 1.00 n=132, 336 n=7
ee Non-parametric Mann–Whitney U U ¼ 9:49� 103 p* = 1.00 n=132, 336 n=7
ff Non-parametric Mann–Whitney U U ¼ 1:86� 103 p* = 1.00 n=132, 336 n=7
gg Non-parametric Mann–Whitney U U ¼ 5:47� 102 p* = 1.00 n=132, 336 n=7
hh Non-parametric Mann–Whitney U U ¼ 2:37� 104 p* = 1.00 n=132, 336 n=7
ii Non-parametric Mann–Whitney U U ¼ 4:78� 102 p* = 1.00 n=132, 336 n=7
jj Non-parametric Mann–Whitney U U ¼ 1:40� 104 pp ¼ 1:68� 10�3 n=132, 336 n=7
kk Non-parametric Mann–Whitney U U ¼ 1:19� 104 pp ¼ 2:87� 10�3 n=132, 336 n=7
ll Non-parametric Wilcoxon signed-rank T ¼ 3:67� 103 p ¼ 5:84� 10�3 n=141 n=6
mm Non-parametric Wilcoxon signed-rank T ¼ 2:26� 103 p ¼ 1:70� 10�8 n=141 n=6
nn Non-parametric Wilcoxon signed-rank T ¼ 2:14� 103 p ¼ 3:69� 10�9 n=141 n=6
oo Non-parametric Wilcoxon signed-rank T ¼ 3:02� 103 p ¼ 4:27� 10�5 n=141 n=6
pp Non-parametric Wilcoxon signed-rank T ¼ 4:22� 103 p=0.105 n=141 n=6
qq Normal (residuals) Pearson’s Correlation r=0.18 p=0.0345 n=141 n=6
rr Non-parametric Mann–Whitney U U=5.02� 102 p=0.0449 n=12, 129 n=6

p* indicates Bonferroni-adjusted p values for 12 multiple comparisons.
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model predictions, and a score of 0 would indicate that
the models accounted for completely different response
properties. We emphasize that this measure of equiva-
lence is distinct from the measure based on prediction
accuracy (Fig. 4A). Two models might both improve per-
formance, but they could accomplish that improvement
by accounting for different aspects of the neural re-
sponse. Conversely, two model predictions can be
closely matched while not resulting in a significant im-
provement in prediction accuracy.
For the n=132 neurons with improvements over the LN

model, the equivalence of time-varying predictions had a
median of 0.29. This value was relatively low, again indi-
cating weak equivalence between the models. However,
the median was significantly greater than that for non-im-
proved neurons (0.17; p=1.72� 10�8, Mann–Whitney U
testk). Thus, there are some similarities between the neu-
ral dynamics accounted for by the STP and GC models.
As in the comparison of prediction improvements, model
estimation error biased measured equivalence to be less
than the theoretical maximum of 1.0. To determine the
upper bound on equivalence we measured partial correla-
tion between predictions by two fits of the same model
using separate halves of the estimation data, as was done

for the relative performance comparison above. This with-
in-model control produced a median noise-adjusted parti-
al correlation of 0.68 for the STP model and 0.43 for the
GC model. Thus, while the STP and GC models show
some degree of equivalence in their time-varying predic-
tions, it is lower than would be expected for fully equiva-
lent models.

Model estimation noise impacts measures of model
equivalence
We performed additional controls for the possibility that

the low equivalence suggested by Figure 4A resulted
from model estimation noise. If noise was a significant
factor, then equivalence should be higher for models with
better prediction accuracy. If the deviations from the LN
model prediction were small and mostly reflected noise
(Fig. 3A), one would expect weak equivalence using this
metric. We therefore defined a measure of effect size for
each cell as the mean change in prediction correlation for
the STP and GC models relative to the LN model.
Neurons for which the more complex models did not im-
prove prediction accuracy over the LN model could have
a high equivalence score under the metric used in Figure
4B, but would also have a small effect size. If the STP and
GC models are equivalent, we would expect most cells
with significant improvements over the LN model to only
have a large effect size if they also had a high equivalence
score. However, we did not discern a clear pattern in the
data (Fig. 4C). Instead, equivalence and effect size were
only weakly correlated (r=0.22, p=0.0103l).
Following this evidence for limited equivalence, we

asked whether the combined model’s greater predictive
power was merely the result of its flexibility to account for
either STP or GC, without any benefit from their combina-
tion in individual neurons. If this were the case, we would
expect that for an improved cell, the prediction correlation
of the combined model should be no greater than the
larger of the prediction correlations for the STP and GC
models (Fig. 4D). Instead, we found that the median predic-
tion correlation was significantly higher for the combined
model (median difference 0.0249, Wilcoxon signed-rank
test, two-sided, p=1.41� 10�14m). This result indicates
that simultaneous inclusion of STP and GC mechanisms
provides extra explanatory power for some auditory corti-
cal neurons.
We also quantified the extent to which our equivalence

analyses were robust to noise in our data. For each neu-
ron included in the within-model equivalence analysis, we
compared the reliability of the recorded neural response
(Eqs. 8–12) to that neuron’s equivalence score for each of
the STP and GC models. For within-model comparisons,
we expected to find an association between more reliable
neural responses and higher equivalence scores. To deter-
mine whether this was the case, we split the neurons into
two groups with below-median or above-median reliability
(Fig. 5). We found that cells with more reliable neural re-
sponses indeed had significantly higher within-model
equivalence scores both for the STP model (two-sided
Mann–Whitney U test, p=6.01� 10�12n) and for the GC
model (p=3.91� 10�5°). Notably, the median equivalence

B

A

Figure 2. Comparison of model prediction accuracy. A, Median
prediction correlation for each model (n=468 neurons).
Differences between LN and GC (*p=7.54� 10�30), GC and STP
(*p=5.00� 10�4), and STP and GC1STP (*p=2.02� 10�27)
models were all significant (two-sided Wilcoxon signed-rank
test). B, Scatter plot compares prediction correlation by the LN
model and combined GC1STP model for each neuron. Color in-
dicates whether the combined model showed a significant im-
provement (red, p, 0.05, permutation test) or not (gray).

Research Article: New Research 8 of 17

November/December 2020, 7(6) ENEURO.0205-20.2020 eNeuro.org



scores among more reliable cells (STP: 0.61, GC: 0.42)
closely matched the adjusted medians obtained in the pre-
vious analysis. We also observed that for the GC model,
the maximum equivalence score dropped off considerably
for cells with lower reliability.
Finally, we asked whether excluding neurons with low

response reliability would have a significant impact on the
equivalence results reported above. When we repeated
the comparison of relative performance improvements
(Fig. 4A), we found a substantial effect of excluding the
low-reliability data. Relative improvements for the STP
and GC models were much more correlated (r=0.34,

p=1.20� 10�7q), as were relative improvements for with-
in-model comparisons (STP: r=0.66, p=1.18� 10�16r,
GC: r=0.411, p=2.61� 10�6s). For the equivalence of
time-varying predictions (Fig. 4B), we saw less of a change
after excluding low-reliability cells. Median equivalence
was comparable to the previous values both for improved
neurons (0.31) and for non-improved neurons (0.18), and
these values were still significantly different from one an-
other (two-sided Mann–Whitney U test, p=1.23� 10�8p).
These results suggest that the comparison of relative per-
formance improvements is much more sensitive to noise in
neural responses than the equivalence score analysis.

C

B

A

Figure 3. Example model fits and predictions. A, Results from a neuron for which the STP and GC model predictions were not sig-
nificantly better than the LN model prediction. Top left subpanel, Spectrogram from one natural sound in the validation set. Top
right panel, Spectro-temporal filter from the LN model fit (right). Bottom panel, Actual PSTH response (light gray, filled) overlaid with
predictions by the LN (dark gray), STP (blue), GC (green), and GC1STP (purple, dashed) models. Values at the bottom right of each
panel indicate the prediction correlations for each model in the corresponding color. Below this list is the cell’s equivalence score
(black, see Fig. 4B). The actual response was smoothed using a 30-ms boxcar filter for visualization. B, Comparison for a neuron for
which the STP model performed significantly better than the LN and GC models, plotted as in A. Arrows indicate times for which
the STP model successfully reproduced an increase in firing rate while the other models did not. The combined model prediction
closely follows the STP model prediction. C, Comparison for a neuron for which the GC model performed significantly better than
the LN and STP models. Right-most arrow indicates a time when the GC model successfully predicted an increase in firing rate
while the LN and STP models did not, while the combined model closely followed the GC model. Middle arrow indicates a time
when the STP model incorrectly predicted an increase in firing rate, and the combined model nearly matched the STP model. Left-
most arrow shows a time when the combined model prediction differed from both the STP and GC model predictions to more
closely match a strong onset response.
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Simulations highlight distinct functional properties of
STP and GCmodels
The weak equivalence of the GC and STP models (Fig.

4) suggests that these models account for functionally
distinct response properties in A1. As one final control for
the possibility that estimation noise could have biased our
equivalence results, we analyzed data simulated using the
different models. We fit the LN, STP, and GC models to
three simulated neural responses (Fig. 6). Each simulation
was generated by using a fitted model to predict re-
sponses to a set of natural stimuli and treating the mod-
el’s prediction as ground-truth for subsequent fitting.
Because the simulated responses could be generated
noise-free, any difference in STP versus GC model per-
formance could be attributed to differences in their ability

to account for nonlinear response properties. The first si-
mulated response was generated using the LN model fit
to a cell that showed no improvements for the STP or GC
models (Fig. 3A). The other simulations were generated
using the STP and GC model fits from neurons for which
the STP or CG models, respectively, performed better
than the LN model (shown in Fig. 3B,C).
As expected, all three models were able to reproduce

the LN simulation nearly perfectly (Pearson’s R= 0.9995,
R= 0.9996, and R= 0.9996 for the LN, STP, and GC
models, respectively; Fig. 6A). However, when fit to the
STP simulation, the GC model was no better than the
LN model, but the STP model did perform better
(R= 0.7228, R= 0.9564, and R = 0.7260; Fig. 6B).
Conversely, when fit to the GC simulation, the STP

DC

BA

Figure 4. Equivalence of model predictions. A, Difference in prediction correlation between the GC (horizontal axis) or STP (vertical
axis) model and the LN model for each neuron (r=0.18, *p=6.42�10�5). Red points indicate neurons with a significant improve-
ment for the GC1STP model over the LN model (p, 0.05, permutation test); gray points indicate neurons that were not improved.
B, Histogram of model equivalence for each unit, measured as the partial correlation between time-varying response predicted by
the STP and GC models relative to the LN model prediction. Median equivalence for improved cells (0.29, bottom, red) was signifi-
cantly greater than for non-improved cells (0.17, top, gray; Mann–Whitney U test, *p=1.72� 10�8). Arrows indicate median partial
correlation for the GC model (0.43, left) and the STP model (0.68, right) when compared within-model, adjusted for differences in es-
timation data. C, Scatter plot compares equivalence (vertical axis) versus effect size (horizontal axis), i.e., the average change in pre-
diction correlation for the STP and GC models relative to the LN model, for improved cells. Only a weak relationship between
equivalence and effect size was observed (r=0.22, *p=0.0103). D, Prediction correlations for the combined GC1STP model (verti-
cal axis) and the maximum of the GC and STP models (horizontal axis) for improved cells. Median prediction correlation was signifi-
cantly higher for the combined model (0.6568) than for the greater of the individual models (0.6319; Wilcoxon signed-rank test,
p=1.41� 10�14).

Research Article: New Research 10 of 17

November/December 2020, 7(6) ENEURO.0205-20.2020 eNeuro.org



model performed no better than the LN model while the
GC model did (R= 0.8564, R= 0.8552, and R= 0.9849;
Fig. 6C). This pattern of different performance confirmed
that that the STP and GC models did account for distinct
neuronal dynamics.

Model fit parameters are consistent with previous
studies
Since both the STP model and the GC model used in

this study were designed to replicate previous studies
(Rabinowitz et al., 2012; Lopez Espejo et al., 2019), it is
important to verify that the models behaved consistently
with these previous observations. This consideration was
of particular relevance for the GC model since it had not
previously been fit using a natural sound dataset. To test
for consistency, we analyzed the distributions of their fit-
ted parameter values for comparison with the previous
reports.
For the STP model (Fig. 7), we found that the median

values of both the time constant (t ) and fraction gain
change (u) parameters were significantly higher for im-
proved versus non-improved cells (Mann–Whitney U
tests, two-sided, p=3.53� 10�6 and p=2.92� 10�13, re-
spectivelyt,u). The difference was more pronounced for

BA

Figure 5. Within-model equivalence ordered by response reli-
ability. A, Scatter plot compares within-model equivalence
scores for the STP model compared with response reliability
(n=237 neurons recorded with the larger stimulus set). Dashed
line indicates median reliability. Within-model equivalence was
significantly higher for neurons with above-median reliability
(median high reliability: 0.61, low reliability: 0.36, Mann–Whitney
U test, *p=6.01�10�12). B, Within-model equivalence scores
for the GC model versus reliability, plotted as in A. Again, with-
in-model equivalence was significantly higher for neurons with
above-median reliability (median high reliability: 0.42, low reli-
ability: 0.25, *p=3.91�10�5).

C

B

A

Figure 6. Model performance for simulated data. A, Simulation based on the fitted LN model from Figure 3A. Simulated PSTH re-
sponse to one stimulus (spectrogram at top) based on an LN model is plotted in gray shading. Predicted PSTHs for each model
(LN, STP, or GC) are overlaid, and model prediction correlation is indicated at right (LN: dark gray, STP: blue, GC: green). For this
linear neuron, all three models perform nearly identically. The linear filter fit using the LN model is shown at the top right. B, Model
fits for simulation based on the STP model from Figure 3B, plotted as in A. C, Model fits for simulation based on the GC model from
Figure 3C.
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the u parameter, and nearly all cells had positive values
for the u parameter. The large impact of the u parameter
and predominance of depression over facilitation agreed
with published results (Lopez Espejo et al., 2019).

For the GC model (Fig. 8), the impact of contrast on the
slope (k) parameter of the output nonlinearity was signifi-
cantly more negative for improved neurons than for non-
improved neurons (Mann–Whitney U tests, two-sided;

BA

Figure 7. Parameter fit values for the STP model. A, Distribution of t , representing the time constant for the recovery of synaptic
vesicles, Top panel shows data for non-improved neurons (gray) and bottom panel for improved neurons (red). Median values for non-
improved (0.0533 s) and improved (0.0833 s) neurons were significantly different (p=3.53� 10�6, two-sided Mann–Whitney U test, *
p, 0.05), indicating a longer time constant for the improved cells. B, Distribution of u values, representing release probability (i.e., the
fraction change in gain per unit of stimulus amplitude). Medians for non-improved (0.0128) and improved (0.0641) neurons were signifi-
cantly different (p=2.92�10�13), showing higher release probability for neurons with improved performance over the LN model.

DC

BA

Figure 8. Parameter fit values for the GC model. A, Histogram of effect of contrast on k, representing the slope of the output nonli-
nearity, plotted for non-improved neurons (gray, top) and improved neurons (red, bottom) as in Figure 7. The negative median value
for improved (�0.14) cells indicates a decrease in slope during high-contrast conditions. This median was significantly more negative
than for non-improved neurons (�0.042, p=1.22�10�4, two-sided Mann–Whitney U test). Asterisk indicates p, 0.05. B, Histogram
of contrast effect on a (saturation level), plotted as in A. Median values for non-improved (0.0031) and improved (�0.0156) neurons
were significantly different, indicating a decreased response amplitude in high contrast conditions (p=8.01�10�6). C, Histograms of
contrast effect on b (baseline of the output nonlinearity). Medians for non-improved (0.0005) and improved (0.0058) neurons were sig-
nificantly different, indicating an increase in baseline for high contrast (p=5.90� 10�7). D, Distribution of contrast effect on s (input off-
set). There was no significant difference between medians for non-improved (0.0088) and improved (0.0082) neurons (p=0.85).
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p=1.22� 10�4v). This indicates a decrease in neural gain
during high contrast sounds, which is consistent with
models fit using dynamic random chord (RC-DRC) stimuli
(Rabinowitz et al., 2012). Additionally, compared with
non-improved cells, the relationship between contrast
and saturation (a) was significantly more negative, and the
relationship between contrast and baseline (b) was signifi-
cantly more positive for improved cells (p=8.01� 10�6

and p=5.90� 10�7, respectivelyw,x). However, we ob-
served no significant difference in the effect of contrast
for the input offset (s) parameter, which did change for
RC-DRC stimuli (p=0.852 y). As observed in the previous
study, the net result of increasing contrast was to de-
crease the gain of neural responses, and thus the overall
effects of changing contrast on response gain were con-
sistent between studies.

Relationship between baseline neural properties and
model performance
Previous work has reported that spontaneous firing

rates are related to the predictive power of the STP model
(David and Shamma, 2013). We therefore asked whether
there was a basic functional property that could predict
whether a particular neuron would benefit from one non-
linear model or another. While we could not distinguish
neuronal cell type (e.g., excitatory versus inhibitory neu-
rons), we could measure basic aspects of spiking activity,
namely spontaneous and evoked firing rates, that might
correspond to biological properties of the neurons. To
this end, we split the neurons into four mutually exclusive
groups. The first three consisted of: neurons for which

none of the nonlinear models significantly improved pre-
diction accuracy (None, n=327), neurons for which the
STP model significantly improved prediction accuracy
(STP, n=66), and neurons for which the GC model signifi-
cantly improved prediction accuracy (GC, n=17), respec-
tively. The fourth group contained neurons for which both
the STP and GC models significantly improved prediction
accuracy or for which the GC 1 STP model alone signifi-
cantly improved prediction accuracy (Both, n=56). We
then separately compared the median evoked and spon-
taneous firing rates between each group (Fig. 9).
Of the 12 comparisons made, most (10/12) were not

statistically significant (pp.0:05z�ii). Only two showed a
significant difference: median evoked firing rate was sig-
nificantly higher for the STP (11.7 spikes/s) and Both (12.7
spikes/s) groups compared with the None (7.31 spikes/s)
group (Mann–Whitney U test, p* = 1.68� 10�3 and p* =
2.87� 10�3, respectivelyjj,kk, adjusted for multiple com-
parisons). Thus, there was a small correlation between
STP effects and the magnitude of evoked activity.

Greater relative contribution of contrast gain to
encoding of noisy natural sounds
We also compared performance of the STP and GC

models on a smaller dataset collected with clean and
noisy ferret vocalizations (Fig. 10). Previous studies using
stimulus reconstruction methods argued that both STP
and GC are necessary for robust encoding of noisy natu-
ral signals (Rabinowitz et al., 2013; Mesgarani et al.,
2014). The inclusion of additive noise should reduce con-
trast by increasing the mean sound energy and reducing

BA

Figure 9. Mean evoked and spontaneous firing rates grouped by nonlinear model performance. A, Histograms of mean evoked fir-
ing rate for four mutually exclusive groups of neurons: no significant improvement in prediction accuracy for the nonlinear models
(gray, top), significant improvement for the STP model relative to the LN model (blue, middle-top), significant improvement for the
GC model relative to the LN model (green, middle-bottom), or significant improvement for both the STP and GC models or the
GC1STP model (purple, bottom). Median evoked firing rate was significantly higher for the STP (11.7 spikes/s) and Both (12.7
spikes/s) groups than for the None group (7.31 spikes/s, Mann–Whitney U test, *p=1.68� 10�3 and *p=2.67� 10�3, respectively,
adjusted for multiple comparisons). All other comparisons were not statistically significant (p . 0.05). B, Histograms of spontaneous
firing rate for each model, plotted as in A. None of the groups was significantly different from the others (p . 0.05).
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variance. We compared the mean and SD of each sample
for the two datasets to see whether there were any sys-
tematic differences in contrast. We found that the natural
sounds dataset smoothly spanned the range of observed
means and SDs. Meanwhile, the vocalization dataset
formed two distinct categories: a high-contrast group of
clean vocalizations and a low-contrast group of noisy vo-
calizations (Fig. 11). A small set of the natural sounds
overlapped with the noisy vocalizations because they had
similar noise characteristics.
We compared model performance and equivalence,

using the same approach as for the natural sound data
above (Fig. 12). For the noisy vocalization data, we again
found that both the STP and GC models performed signif-
icantly better than the LN model and that the combined
model performed significantly better than either the STP
or GC model individually (Wilcoxon signed-rank tests,
two-sided, p=0.0058, p ¼ 1:70� 10�8; p ¼ 3:69� 10�9,
and p ¼ 4:27� 10�5, respectivelyll,mm,nn,oo). However, un-
like for the natural sound data, performance of the STP
and GC models themselves was not significantly different
(Wilcoxon signed-rank test, two-sided, p=0.105pp). This
difference indicates a relative increase in the performance
of the GC model when applied to noisy vocalizations. This
effect is consistent with the hypothesis that gain control
plays a bigger role in shaping neural responses for stimuli
with large fluctuations between high and low contrast.

The equivalence analysis also produced similar results
for the noisy vocalizations data. The change in prediction
correlation was only weakly correlated for the STP and
GC models (r=0.18, p=3.5� 10�2qq). Moreover, partial
correlation between STP and GC predicted responses
was modest for improved cells (median 0.30), but signifi-
cantly higher than the median for non-improved cells (me-
dian 0.16, Mann–Whitney U test, two-sided, p=0.0449rr).
However, the small number of significantly improved cells
in this dataset (n=12/141) made drawing definitive con-
clusions difficult. This smaller set of improved cells likely
reflects the fact that the amount of estimation data was
smaller for the noisy vocalizations than for the clean natu-
ral sounds.

Discussion
We found that encoding models incorporating either

GC or STP explained complementary aspects of natural
sound coding by neurons in A1. Although we observed
some degree of equivalence between models, the overlap
was modest relative to what would be expected if both
models explained the same functional properties (Fig. 4).
Instead, a novel model that incorporated both STP and
GC mechanisms showed improved performance over ei-
ther separate model (Fig. 2). It is well established that the
LN model fails to account for important neural activity in
real-world, natural stimulus contexts (Theunissen et al.,
2000; Machens et al., 2004). This work supports the idea
that both forward adaptation, as might be mediated by
STP, and feedback inhibition, as might be mediated by
GC, play a role in these contextual processes.

Assessing equivalence of encodingmodels
A major goal of this study was to establish a framework

for systematically comparing the functional equivalence
of complex encoding models. The STP and GC models
served as a useful case study for analysis of equivalence:
both models emulate adaptation following sustained stim-
ulation, and it is not immediately obvious whether they ac-
count for distinct contextual effects. By comparing the

BA

Figure 10. Comparison of natural sound and clean/noisy vocal-
ization properties. A, Top to bottom, stimulus spectrogram
(blue), contrast (red), and frequency-summed contrast (black)
for a sequence of three natural sound samples. B, Same as in
A, but for vocalizations. The vocalization set contained inter-
leaved trials of ferret vocalizations with and without additive
noise. Black bar indicates segment with noise added.

BA

Figure 11. Comparison of contrast properties between stimulus
sets. A, Scatter plot of SD and mean level (dB SPL) for each
natural sound spectrogram. The distribution indicates a smooth
variation in contrast level. B, Comparison of SD and mean for
clean/noisy vocalizations. There is a clear grouping of noisy
(low-contrast) and clean (high-contrast) stimuli.
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performance of these alternative models on the same nat-
ural sound dataset, we were able to determine that they in
fact account for distinct functional properties. We ex-
plored two methods for assessing model equivalence: the
degree to which two alternative models improve predic-
tion accuracy by the same magnitude for the same neu-
ron, and the degree to which the time varying responses
predicted by those models are identical. Accurate assess-
ment using either equivalence metric requires accounting
for noise in model parameter estimates, which can bias
equivalence metrics toward lower values. In the current
study, we found that the latter metric based on the partial
correlation between predicted time-varying responses
was more robust to noise and thus may be a more reliable
measure of equivalence.
Many other encoding models have been developed previ-

ously, each representing a separate hypothesis about non-
linear dynamics in auditory encoding (Schinkel-Bielefeld et
al., 2012; Kozlov and Gentner, 2016; Williamson et al., 2016;
Harper et al., 2016; Willmore et al., 2016). In some cases,
the equivalence of encoding models can be established
analytically (Williamson et al., 2015). However, with the

development of convolutional neural networks and related
machine learning-based models, future models are likely to
only become more complex and difficult to characterize
(Kell et al., 2018; Keshishian et al., 2019). Alternative models
cannot be compared easily because of the many experi-
mental differences between the studies in which they are
developed. Performance depends not only on the model ar-
chitecture itself, but also on numerous details of the fitting
algorithm and priors that themselves are optimized to the
specific dataset used in a study (Thorson et al., 2015). This
complication leaves an important question unanswered: if
some number of these models all improve predictive power,
does each model’s improvement represent unique progress
in understanding the function of auditory neurons or is there
overlap in the benefits that eachmodel provides? The equiv-
alence analysis described in this study provides the neces-
sary tools to begin answering this question.

Increased impact of gain control for stimuli in acoustic
noise
The greater relative performance of the GC model for

the dataset including noisy vocalizations indicates a

DC

BA

Figure 12. Comparison of model performance for data including clean and noisy vocalizations. A, Median prediction correlation
(n=141) for each model. Statistical significance of median differences was determined via two-sided Wilcoxon signed-rank tests
(*p, 0.05). Unlike the natural sound data (Figure 2), performance was not significantly different between the GC and STP models.
B, Change in prediction correlation for the GC (horizontal axis) and STP (vertical axis) models relative to the LN model for each neu-
ron (r=0.18, p=3.45� 10�2). C, Prediction correlations for the LN model compared with the combined model for each neuron,
grouped by whether the combined model showed a significant improvement (red, n=12, p, 0.05, permutation test) or not (gray,
n=129). D, Histogram of equivalence for non-improved (top, gray) and improved neurons (bottom, red). Median equivalence for im-
proved cells (0.30) was significantly greater than for non-improved cells (0.16, Mann–Whitney U test, *p=0.0449).
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behaviorally-relevant regime in which gain control contrib-
utes significantly to neural coding in noisy acoustic condi-
tions. The fact that clean and noisy stimuli naturally
cluster into high-contrast and low-contrast groups, re-
spectively, may explain the GC model’s increased impact.
As a result of this division, a combination of clean and
noisy stimuli provides a naturalistic replication of the
switches between high-contrast and low-contrast con-
texts that was used with RC-DRC stimuli in other studies
(Rabinowitz et al., 2012; Lohse et al., 2020). In compari-
son, these binary switches between contrast regimes
were absent from the dataset containing natural sounds
without added noise, which instead smoothly spanned
the contrast space.
In contrast to the variable GC model performance, the

consistent performance of the STP model across both da-
tasets suggests that STP operates across a wider range
of stimuli and is relevant to sound encoding even in the
absence of acoustic noise. Previous studies have shown
that some nonlinear computations are required in addition
to the LN model to account for noise-invariant neural
responses in auditory cortex (Moore et al., 2013;
Rabinowitz et al., 2013; Mesgarani et al., 2014). The com-
plementary effects of gain control and STP reported here
are consistent with the idea that both mechanisms con-
tribute to robust encoding of noisy auditory stimuli.

Comparison with previous studies of gain control
In order to adapt the GC model to analysis of natural

sound data, we made some important changes to the
original implementation (Rabinowitz et al., 2012). First,
although Rabinowitz and colleagues imposed the con-
trast profiles of their stimuli by design, natural stimuli
contain dynamic fluctuations in contrast with no predeter-
mined window for calculating contrast. As a result, we
were required to make decisions about parameters gov-
erning the contrast metric: the spectral and temporal ex-
tent of the window used to calculate contrast and the
temporal offset needed to emulate the dynamics with
which contrast effects are fed back to the response.
We used a 70-ms, spectrally narrowband convolution

window with a 20-ms temporal offset, which worked best
on average in our initial analysis. However, there was vari-
ability in the best window for different cells, so model per-
formance may be further improved if these parameters
are optimized on a cell-by-cell basis. Optimal plasticity
parameters also varied substantially between cells for the
STP model. Variability in contrast integration windows
may reflect similar biological differences in how cells
adapt to contrast. For example, a recent study reported
that the timescale of the impacts of contrast on neural
gain varied among neurons both in auditory cortex and in
two subcortical regions (Lohse et al., 2020).
A second important difference from the original GC

model is that we were not able to differentiate high con-
trast sounds with high SD from those with an exceptional-
ly low mean level since both cases can result in a large
coefficient of variation. In the original study, Rabinowitz et
al. (2012) were able to fix mean level across stimuli to

avoid this potential confound. Despite these differences,
our results broadly replicated the original findings.

Mechanismsmediating effects of sensory context on
auditory cortical responses
Previous work has described cortical layer 6 neurons as

a mechanistic source of gain control in the visual system
(Olsen et al., 2012). Other adaptive mechanisms like SSA
have also been shown to arise from cortical circuits
(Natan et al., 2015). However, in the auditory system gain
control has been attributed both to cortical feedback and
to feedforward adaptation arising in subcortical regions
(Lohse et al., 2020). In this case, STP could contribute to
the feedforward process (Rabinowitz et al., 2011).
In the current study, the GC model was formulated as a

feedback mechanism (Rabinowitz et al., 2012), while the
STP model described a feedforward mechanism (David
and Shamma, 2013). Although we did not directly mea-
sure circuit properties, we found that a model combining
both mechanisms provided the most accurate predictions
overall. Thus, our results are consistent with the hypothe-
sis that both contribute to context-related processing in
A1. Future experiments involving direct manipulations of
synaptic plasticity and/or inhibitory feedback mecha-
nisms can provide explicit insight into the mechanisms
underlying these functions.
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