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Abstract
North America’s coastal mountains are particularly vulnerable to climate change, yet har-

bour a number of endemic species. With little room “at the top” to track shifting climate enve-

lopes, alpine species may be especially negatively affected by climate-induced habitat

fragmentation. We ask how climate change will affect the total amount, mean patch size,

and number of patches of suitable habitat for Vancouver Island White-tailed Ptarmigan

(Lagopus leucura saxatilis; VIWTP), a threatened, endemic alpine bird. Using a Random

Forest model and a unique dataset consisting of citizen science observations combined

with field surveys, we predict the distribution and configuration of potential suitable summer

habitat for VIWTP under baseline and future (2020s, 2050s, and 2080s) climates using

three general circulation models and two greenhouse gas scenarios. VIWTP summer habi-

tat is predicted to decline by an average of 25%, 44%, and 56% by the 2020s, 2050s, and

2080s, respectively, under the low greenhouse gas scenario and 27%, 59%, and 74%

under the high scenario. Habitat patches are predicted to become fragmented, with a 52–

79% reduction in mean patch size. The average elevation of suitable habitat patches is

expected to increase, reflecting a loss of patches at lower elevations. Thus ptarmigan are in

danger of being “squeezed off the mountain”, as their remaining suitable habitat will be

increasingly confined to mountaintops in the center of the island. The extent to which ptarmi-

gan will be able to persist in increasingly fragmented habitat is unclear. Much will depend on

their ability to move throughout a more heterogeneous landscape, utilize smaller breeding

areas, and survive increasingly variable climate extremes. Our results emphasize the

importance of continued monitoring and protection for high elevation specialist species, and

suggest that White-tailed Ptarmigan should be considered an indicator species for alpine

ecosystems in the face of climate change.
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Introduction
Climate-related range shifts are discernable across the globe for many animal species [1] and
clear fingerprints related to climate change are detectable on bird species assemblages [2,3].
Mountain ecosystems are among the most at risk from climate change [4]. Mountains often
have high levels of biodiversity and harbour large numbers of endemic species [5,6], many of
which are restricted to alpine habitats [7]. Such habitats are gradually being lost due to tree and
shrub encroachment [8,9], resulting in range contractions of alpine species at their lower altitu-
dinal limits [10,11]. With no room “at the top” for upward expansion, alpine species face habi-
tat loss and fragmentation and, ultimately, risk of extinction [12–14]. Increased competition
from invasive species and low elevation generalists may further accelerate population declines
for alpine specialist species under a warming climate [15,16].

Coastal temperate mountains are particularly vulnerable to climate change as they occur at
lower elevations compared to interior mountains and contain a smaller area of alpine habitat
[17]. Relatively little is known about the importance of alpine ecosystems for avian biodiversity,
and most large-scale bird sampling schemes, including citizen science programs such as eBird
and the Breeding Bird Survey, lack adequate reports from high elevations because of their rela-
tive inaccessibility and low population densities [18,19]. However, British Columbia’s coastal
mountains, including those on Vancouver Island, harbour a remarkable diversity of birds,
many of which are of conservation concern and threatened by climate change ([20], Boyle and
Martin, In Review). Other threatened wildlife taxa depending on these coastal montane ecosys-
tems are similarly difficult to study, such as mountain goats (Oreamnos americanus) and the
critically endangered, endemic Vancouver Island Marmot (Marmota vancouverensis; [21]). In
general, North America’s coastal alpine are remarkably understudied, in part due to their
extremely rugged terrain and restricted road and trail access.

Over the past decade, the Pacific Northwest of North America has experienced a significant
warming trend (roughly 0.5–1.5°C; [22]). Temperatures are predicted to continue to warm
across all seasons at rates comparable to or higher than current rates, with variable predictions
for precipitation [23]. Such changes will accelerate woody vegetation growth in former alpine
tundra; for instance, Flower et al. [24] predict rapid upward shifts in elevational range for both
Douglas Fir (Pseudotsuga menziesii) and spruce (Picea spp.) in British Columbia, and Laroque
et al. [25] used dendroclimatological analysis to document climate-related pulses of tree estab-
lishment at high elevations on southern Vancouver Island during the 20th century. They pre-
dicted rapid infilling of alpine meadow sites within 10–20 years, with negative consequences
for montane meadow-dependent wildlife. Subsequent research has shown that infilling by trees
and shrubs at high elevations occurred on Vancouver Island between 1962 and 2005 [26]. Such
expansion of woody vegetation leads not only to loss of suitable habitat for alpine species but
also to habitat fragmentation and loss of connectivity. Most studies investigating potential cli-
mate-induced range changes for wildlife focus primarily on habitat loss and shifting climate
envelopes, but fragmentation may also play a crucial role, particularly for alpine species with
limited room “at the top” for tracking climate envelopes upward in elevation.

The Vancouver Island White-tailed Ptarmigan (Lagopus leucura saxatilis; hereafter
VIWTP) is endemic to Vancouver Island and was designated a subspecies in 1939 based on
unique morphological characteristics [27,28]. An alpine specialist bird that spends its entire life
history above the treeline, VIWTP was blue-listed as vulnerable by the British Columbia gov-
ernment in 1992 given its endemic status and low density [29]. White-tailed Ptarmigan are
adapted to cold environments and cannot physiologically tolerate hot temperatures [30,31].
They rely on permanent snow fields for thermoregulation [31,32] and areas with sufficient
moisture (from summer precipitation and snowmelt) for food such as ericaceous shrubs,
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grasses, and forbs [33]. Because the coastal alpine comprises lower elevations than interior
mountains, VIWTP habitat exists as smaller, more fragmented “sky island” patches than inte-
rior White-tailed Ptarmigan habitat on the mainland. For example, the size of alpine patches
comprehensively surveyed for VIWTP in 1997 varied from 0.14 to 7.10 km2 (KM unpublished
info) versus 2.7 to> 13.2 km2 in Colorado [34]. Although ptarmigan have persisted on Van-
couver Island, there is likely a demographic cost to utilizing smaller habitat patches. For
instance, VIWTP in the central island (with larger, more continuous patches of alpine) had
higher breeding success and higher adult survival than birds in the more fragmented south
island populations in 2011 [33].

Because of their physiological requirements and the fact that their habitat exists as smaller
alpine patches at lower elevations than mainland White-tailed Ptarmigan [35,36], VIWTP are
threatened primarily by climate change. Wang et al. [37] modeled the relationships between 44
climate variables and the distribution of 16 biogeoclimatic zones in British Columbia. They
found that the Coastal Mountain-heather Alpine zone, upon which VIWTP primarily depend,
is predicted to decline by nearly 50% by the 2080s based on a single consensus map that incor-
porated 20 climate change scenarios, with near total loss predicted for Vancouver Island. They
predict alpine ecosystems will be replaced by Coastal Western Hemlock forests, potentially
resulting in increased forest productivity and carbon sequestration at the expense of habitat for
alpine specialist species [37]. Survey efforts combined with museum records and other historic
sources revealed that VIWTP still occupied the same mountains on Vancouver Island in 2004
as they had occupied historically (early to mid-1900s; [35]). However, this study was coarse in
scale and did not examine the effects of climate or topography on ptarmigan habitat. As climate
change accelerates, adequate conservation of VIWTP will ultimately depend on detailed
knowledge of the amount and configuration of suitable breeding habitat predicted under cur-
rent and future climates.

Species distribution models can be a useful tool for assessing the impacts of environmental
change and the distribution of organisms. In a previous study describing the quantity and loca-
tion of suitable ptarmigan breeding habitat on Vancouver Island, we showed that species distri-
bution models trained using opportunistic observations submitted by hikers (citizen science)
are comparable in quality and predictions to models trained using time- and cost-intensive
field survey data [36]. Thus, although large-scale avian citizen science platforms such as eBird
may not adequately capture observations from alpine regions, localized and species-specific cit-
izen science programs can provide valuable information about elusive alpine species such as
VIWTP. Here, we build on our comparison of five modeling techniques using citizen science
and field survey input data to investigate how climate change will alter the size, distribution,
and configuration of suitable VIWTP breeding habitat. Specifically, we ask how the total
amount, mean patch size and number of patches of suitable VIWTP habitat will change by the
2020s, 2050s, and 2080s due to climate change. Our study identifies areas of highest vulnerabil-
ity and guides future plans for conservation of this threatened subspecies, along with providing
a baseline for future studies of connectivity for mountain wildlife across increasingly frag-
mented habitat.

Materials and Methods
The ptarmigan banding work was approved by the UBC Animal Care Committee Protocol
A01-0097. Birds were captured under the Canadian Federal Banding Sub Permit—10365BO
and BC Provincial banding permit (Water, Lands and Parks)—C068541. Research was con-
ducted in Strathcona Provincial Park under Park Use Permit—#3081065.
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Study area and species occurrence data
The study area encompassed all of Vancouver Island, located on the southwest coast of British
Columbia, Canada (between 47° and 52° N latitude and 123° and 128° W longitude). At 460
km long (north to south) and 80 km wide (east to west; 32,134 km2), Vancouver Island is the
largest island on the west coast of North America. Elevation varies from 0 to 2,195 m a.s.l. A
central spine of mountains spans the length of the island, with highest elevations located in the
center of the island within Strathcona Provincial Park (with four mountain summits between
1,830 m and 2,195 m). These mountains create a rain shadow on the eastern side, resulting in a
strong east-west precipitation gradient across the island. The biogeography of the island has
been classified into biogeoclimatic (BEC) zones by the provincial government that represent
vegetation, soil, and climate conditions. Four BEC zones exist on Vancouver Island, including
Coastal Douglas Fir, Coastal Western Hemlock, Mountain Hemlock and Coastal Mountain-
heather Alpine. The largest areas of continuous alpine habitats are found in the central region
of the island, while alpine patches in the northern and southern regions are generally lower in
elevation and more fragmented.

We used two sources of distributional data for Vancouver Island White-tailed Ptarmigan.
The first consisted of ptarmigan presence locations from field surveys conducted by K. Martin
from 1995–1999. These surveys targeted the entire range of VIWTP and representative alpine
habitat deemed suitable for ptarmigan was searched in the north, central, and south island.
Birds were located using playbacks of male territorial calls and chick distress calls, then cap-
tured with a snare attached to an extendable pole [38] and outfitted with a necklace collar radio
transmitter (RI-2D/2B, 18 mo battery life, weight 6–9 gm, Holohil Systems Ltd., Carp,
Ontario). K. Martin and field crews tracked the radio-collared birds over the 4-year period by
foot during summer and recorded encounters with other uncollared birds using playbacks and
incidental encounters. GPS coordinates were recorded at each bird location.

From this field survey dataset, we extracted summer (June–October) observations and elim-
inated sightings of juveniles, since they were usually found at or near the same GPS coordinate
as their parent during the summer period. We then eliminated duplicates at the same GPS
point (i.e., if a flock of several birds was recorded at one point, only one observation was
included in the final dataset). To minimize bias due to certain individuals being observed more
than others, we first eliminated records from the same individual that were< 1 day apart, and
then randomly selected two records per individual. Lastly, we randomly selected one observa-
tion within each 100-m grid cell of the environmental predictor GIS layers. All filtering of the
original ptarmigan data was carried out using R 3.1.2.

In order to supplement the field survey records, an opportunistic citizen science program
was initiated in partnership between the Strathcona Wilderness Institute and K. Martin at the
Centre for Alpine Studies, University of British Columbia. Notices were posted at trailheads
within Strathcona Provincial Park describing distinguishing features of White-tailed Ptarmi-
gan. The notices requested that hikers report their ptarmigan sightings by mailing a card or
sending an e-mail with GPS or map coordinates and photos (if possible) to K. Martin at UBC.
The citizen science initiative began in 1995 and continues to the present, currently resulting in
404 confirmedWhite-tailed Ptarmigan sightings (see [36] for details). Although trailhead
cards were posted within Strathcona Provincial Park, many hikers frequently submitted rec-
ords from their other alpine hikes on the island after finding out about the program. This
resulted in a public dataset spanning the entire range of alpine habitat on Vancouver Island
(Fig 1).

We extracted summer (June–October) observations from the public dataset and then fil-
tered the observations by location accuracy, keeping only those that contained precise GPS or
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map coordinates (accurate to within 100 m). As with the field survey observations, we elimi-
nated duplicates at the same location and randomly selected one observation within each
100-m grid cell. Because the field survey and public datasets result in models with similar accu-
racy and distributional predictions when using machine learning modeling techniques [36], we
combined ptarmigan presence locations from each dataset in order to maximize sample size
and model accuracy for the purpose of this study. If two sightings fell within the same 100-m
grid cell in the combined dataset, we randomly eliminated one sighting from the cell. The
resulting combined dataset contained 344 sightings (207 from the field survey and 137 from
the public dataset; Fig 1).

Because we lack information on ptarmigan absences (areas traversed by observers where
ptarmigan were not encountered) in either dataset, we generated a baseline random sample of
pseudo-absences for the combined dataset to represent the landscape potentially available to
VIWTP. First, we constrained the pseudo-absence background within a 200-m buffer sur-
rounding the minimum convex polygon around the entire set of ptarmigan observation points.
Within this area, we restricted the background to areas within the Coastal Mountain-heather
Alpine and Mountain Hemlock Biogeoclimatic (BEC) zones. The majority (92%) of ptarmigan
presence locations fell within the Coastal Mountain-heather Alpine BEC zone, while the
remainder fell within the Mountain Hemlock zone (except for one sighting in the Coastal
Western Hemlock zone).

Some methods for generating pseudo-absences first predict low suitability areas using pres-
ence-only models and select pseudo-absences from those areas [39–41]. Senay et al. [42] apply
a novel three-step approach to select pseudo-absences using environmental constraints which
can outperform models where pseudo-absences are randomly generated. We used distribution

Fig 1. White-tailed Ptarmigan presence locations on Vancouver Island from the field survey (circles;
N = 207) and public submissions (triangles; N = 137). Strathcona Provincial Park is outlined in black. This
map is similar but not identical to that shown in [36].

doi:10.1371/journal.pone.0142110.g001
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maps of BEC zones, which incorporate environmental variables known to be correlated with
ptarmigan presence, to define environmental constraints for pseudo-absence selection. In con-
trast to methods that generate pseudo-absences outside of suitable habitat, we differentiated
‘‘suitable” from ‘‘highly suitable” habitat by generating pseudo-absences within potentially suit-
able habitat (which included both Mountain Hemlock and Coastal Mountain-heather Alpine
zones). Such a distinction is important for rare and threatened species [43]. Including Moun-
tain Hemlock zones in our pseudo-absence background also allowed for better discrimination
between presence and absence locations.

Within this background, we excluded all areas within a 200-m buffer around known ptarmi-
gan presence locations (the median distance moved by ptarmigan within a day during summer
was 170 m based on the radio-telemetry study; N = 37 movements). Finally, we randomly
selected twice as many pseudo-absence locations as the number of ptarmigan presence loca-
tions (688 total pseudo-absences). This choice was based on an initial exploration of different
ratios of presences to pseudo-absences (1:2, 1:4, and 1:10) to check for changes in model accu-
racy measures (sensitivity, specificity, Kappa, AUC, and the True Skill Statistic). Using a ratio
of 1:2 resulted in the highest Kappa value, whereas all other accuracy measures were not
affected by presence-to-pseudo absence ratio.

Abiotic predictor variables
To model ptarmigan occurrence, we used eight abiotic variables believed to influence ptarmi-
gan distribution (Table 1). Five topographic variables included elevation, aspect, slope, com-
pound topographic index (CTI, commonly referred to as a wetness index), and a vector
ruggedness measure (VRM). All topographic variables were derived from a 100-m resolution
digital elevation model (DEM). Aspect and slope were calculated using ArcGIS Spatial Analyst.
We transformed aspect as x = -1�cos[Ø(π/180)], where Ø is the aspect measured in degrees.
Values ranged from -1 where the angle of solar incidence was lower (north-facing slopes) to 1
where it was higher (south-facing slopes). The importance of aspect depends on slope, so we
assigned aspects with slopes of<5° a neutral value of 0 [44]. CTI was calculated based on the
slope and upstream contributing area orthogonal to the flow direction [45], so that low values
represent small catchments such as steep slopes or ridges and high values represent large catch-
ments such as gentle slopes or depressions. VRM is an integrative measure of terrain heteroge-
neity based on slope and aspect, and was calculated using neighbourhoods of nine pixel cells.
Ruggedness values can range from 0 (no terrain variation, or a smooth surface) to 1 (extremely
rugged terrain with high variability in slope and aspect; [46]).

We extracted three climate variables for each ptarmigan location from the year the observa-
tion was collected using the program ClimateBC v5.03 [47] (http://cfcg.forestry.ubc.ca/
projects/climate-data/climatebcwna/#ClimateBC; Table 1). ClimateBC extracts PRISM [48]
monthly climate normal data at a coarse scale (800 x 800 m) and then downscales it using bilin-
ear interpolation and adjustments based on latitude, longitude, and elevation. We used mean
summer temperature, mean summer precipitation, and precipitation as snow to model ptarmi-
gan distribution. These climate variables reflected prior knowledge about White-tailed Ptarmi-
gan energy and water constraints [30–32]. To predict suitable ptarmigan habitat across
Vancouver Island, we also extracted the climate variables for the baseline time period 1980–
2010 for each cell in our 100-m DEM.

To model the distribution of VIWTP in the future, we extracted the above climate predic-
tors from ClimateBC for the 2020s (2010–2039), 2050s (2040–2069), and 2080s (2070–2099)
across three general circulation models (GCMs): CanESM2 from the Canadian Centre for Cli-
mate Modelling and Analysis, CCSM4 from the National Center for Atmospheric Research,
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and GFDL-CM3 from the Geophysical Fluid Dynamics Laboratory, and two Representative
Concentration Pathways (RCPs) from the International Panel on Climate Change AR5 report:
RCP 4.5 and RCP 8.5. We chose these three GCMs to represent a range of possible climate
futures on Vancouver Island based on scatter plots of future temperature and precipitation
using all 16 GCMs made available through ClimateBC. The GFDL model predicts a hot, mod-
erately wet future, the CanESM2 model predicts a hot, very wet future, and the CCSMmodel
predicts the least change in both temperature and precipitation (Fig 2). The RCP 4.5 scenario
represents lower future greenhouse gas concentrations and more conservative predictions of
climate change, whereas the RCP 8.5 scenario represents higher future greenhouse gas concen-
trations and a more extreme climate change scenario. In order to predict future ptarmigan dis-
tribution, we extracted the three climate predictors for every cell in the 100-m DEM covering
all of Vancouver Island for each GCM and greenhouse gas scenario combination.

Distribution model construction
We predicted probability of White-tailed Ptarmigan occurrence over all of Vancouver Island at
100-m resolution using a Random Forest model [49,50] with the ‘randomForest’ package in R.
Random Forest models had high accuracy and were most consistent when modeling the field
survey and public data separately [36]. Furthermore, Random Forest is robust to the inclusion
of correlated variables (e.g., temperature and elevation; [49,51]). Random Forest models pro-
duce many classification trees, each constructed using a bootstrap sample of the input data.
The number of predictor variables randomly selected at each tree node was set to the default
(the square root of the total number of predictors), and 1500 classification trees were
constructed.

Table 1. Abiotic variables used in the Random Forest model for predicting the distribution of Vancouver IslandWhite-tailed Ptarmigan habitat.
The mean and standard deviation (SD) along with the range (in brackets) of each variable are shown for ptarmigan presences and pseudo-absences.

Variable Description Mean (± SD) and range of ptarmigan locations

Field survey
presences

Public presences Pseudo-
absences

Elevation (m) Elevation a.s.l. 1,557 (±178)
[1,088–1,989]

1,590 (±189)
[968–2,29]

1,173 (± 197)
[675–1,800]

Aspect Aspect transformed for solar incidence1 -0.50 (± 0.52) [-1–
0.99]

-0.28 (± 0.60) [–1–
1]

-0.08 (± 0.68) [–
1–1]

Slope (°) Slope of the landscape 21.3 (± 9.8) [2.1–
48.4]

17.6 (± 9.8) [1.3–
53.4]

22.1 (± 11.6) [0–
57.2]

CTI Compound Topographic Index2, a function of the slope and the
upstream contributing area [45]

11.0 (± 0.9) [9.2–
14.5]

10.9 (± 0.9) [8.9–
14.3]

11.4 (±1.4) [8.9–
19.4]

VRM Vector Ruggedness Measure, a measurement of terrain
ruggedness as the variation in three-dimensional orientation of grid
cells within a 9-cell neighborhood [46]

0.063 (± 0.031)
[0.006–0.162]

0.079 (± 0.035)
[0.006–0.212]

0.049 (± 0.031)
[0.001–0.218]

Mean summer
precipitation (mm)

Mean annual summer (May–Sept.) precipitation 619 (± 390) [284–
1,867]

594 (± 263) [152–
1,591]

563 (± 300) [171–
2,536]

Mean summer
temperature (°C)

Mean summer temperature 10.3 (± 1.0) [7.7–
12.8]

10.2 (± 1.1) [7.3–
13.3]

12.0 (± 1.0) [8.8–
14.5]

Precipitation as
snow (mm)

Precipitation as snow from August in previous year to July of
current year

1,793 (± 721)
[586–4,592]

1,436 (± 522)
[676–3,718]

1,101 (± 507)
[330–4,129]

1 x = -1*cos[Ø(π/180)], where Ø is the aspect measured in degrees. Since the importance of aspect depends on slope, we assigned aspects with slopes

of <5° a neutral value of 0 [44].
2 CTI = ln(As / tan(β)) where As = Area Value calculated as (flow accumulation + 1) * (pixel area m2) and β is the slope expressed in radians.

doi:10.1371/journal.pone.0142110.t001
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We used ptarmigan presence and pseudo-absence locations from the pooled datasets as the
response variable and all abiotic predictor variables in the model. In order to convert probabil-
ity of presence into binary presence-absence predictions, we used the threshold probability that
maximized sensitivity (percent of presences correctly classified) at 90% using the ‘PresenceAb-
sence’ package in R. Map pixels with probabilities above the threshold were considered ‘suit-
able’ habitat and those below the threshold were considered ‘unsuitable.’We felt that from a
conservation perspective, errors of omission (misclassifying presences as absences) were more
“dangerous” than errors of commission (misclassifying absences as presences). Furthermore,
since we knew the presences to be true presences but absences were pseudo-absences and may
have been false (located in areas where ptarmigan are present) we chose to maximize the num-
ber of presences correctly predicted at 90%, recognizing that this may result in slight over-pre-
diction of suitable habitat compared to other threshold-setting measures (e.g., maximizing
kappa). We evaluated the RF model by calculating out-of-bag (OOB) errors based on boot-
strapped samples of the input data according to the pre-chosen threshold using the R package
‘PresenceAbsence’. We constructed all models using R 3.1.2.

We predicted the RF model onto the entire landscape of Vancouver Island at 100-m resolu-
tion using baseline (1980–2010) and future (2020s, 2050s, and 2080s) climates, resulting in one
baseline distribution model and 18 future distributions (= 3 GCMs × 2 emission scenarios × 3
time periods).

Spatial analysis of baseline and future distributions
We calculated baseline and future habitat area by multiplying the number of raster grid cells
considered “suitable” in each predicted distribution by the area of each grid cell (0.01 km2). We
assessed the potential effects of climate change on predicted distributions by evaluating poten-
tial net range change. Range change (RC) was calculated using the formula

RC ¼ 100 � ðRG � RLÞ = BR

where RG = range gain, RL = range loss, and BR = baseline range area. RG and RL were both

Fig 2. Predicted changes in mean summer temperature (a), mean summer precipitation (b) and precipitation as snow (c) according to three
general circulationmodels (GCMs): CanESM2 (Can), CCSM4 (CCSM), and GFDL-CM3 (GFDL), and two IPCC emissions scenarios (RCP 4.5 and
RCP 8.5) for Vancouver Island. The RCP 4.5 scenario is displayed using dotted lines while the RCP 8.5 scenario is displayed using solid lines. Line weights
correspond to the three GCMs (thick = Can, medium = GFDL, thin = CCSM).

doi:10.1371/journal.pone.0142110.g002
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summed at the level of individual grid cells. We also calculated the number of suitable habitat
patches and mean patch size based on the configuration of baseline and future suitable
habitat.

Results
According to the Random Forest model, elevation was the most important variable for predict-
ing White-tailed Ptarmigan habitat (Fig 3, S1 Fig). Mean summer temperature, precipitation as
snow, aspect, and mean summer precipitation all were of intermediate importance, while
slope, VRM, and CTI were of low importance.

The threshold-independent area under the receiver-operating curve (AUC) measure of
model accuracy revealed high predictive accuracy (AUC = 0.94 ± 0.008). The threshold habitat
suitability chosen to maximize model sensitivity at 0.90 was 0.36; all pixels with habitat suitabil-
ity above the threshold were considered “suitable” and those below the threshold were consid-
ered “unsuitable.” Specificity (% of pseudo-absences correctly classified) was 0.86, and the RF
model performed within the ‘excellent’ range of the kappa index (kappa = 0.73; [52]).

Habitat suitability under baseline climate was greatest at high elevations inside Strathcona
Provincial Park in the center of Vancouver Island, with small patches of highly suitable habitat
in the northern and southern mountains (Fig 4). Habitat suitability declined across all of Van-
couver Island by the 2080s under both RCP scenarios. Most of ptarmigan baseline range is pre-
dicted to contain only low suitability habitat by the 2080s under the highest greenhouse gas
scenario (RCP 8.5). Habitat suitability is predicted to remain highest within the Forbidden Pla-
teau region in the southeast corner of Strathcona Provincial Park, with a fairly large patch of
moderately to highly suitable habitat remaining by 2085 under the lower greenhouse gas sce-
nario but only a few small patches of moderately suitable habitat remaining under the high
greenhouse gas scenario.

Baseline suitable habitat according to the threshold encompassed 521 km2 of Vancouver
Island and dropped to 229 (± 13) km2 under the RCP 4.5 scenario and 132 (± 10) km2 under
the RCP 8.5 scenario by the 2080s (Fig 5). Habitat decline is predicted to occur gradually, with
an average range change of -25% (± 2), -44% (± 11), and -56% (± 2) by the 2020s, 2050s, and
2080s, respectively, under the RCP 4.5 scenario and -27% (± 2), -59% (± 8), and -74% (± 2)
under the RCP 8.5 scenario (Fig 6). Predictions of range change differed markedly under the
two greenhouse gas scenarios; more habitat was predicted to be lost by the 2050s under the
RCP 8.5 scenario than by the 2080s under the RCP 4.5 scenario. The three general circulation
models (GCMs) showed strong agreement in their predictions of the future distribution of suit-
able ptarmigan habitat and indicated that remaining suitable habitat will be located within
Strathcona Provincial Park, with little to no remaining habitat in the southern ranges and only
small, isolated habitat patches in the northern ranges by 2085 (Fig 5).

Number of patches is predicted to decline by the 2020s followed by an increase by the 2080s
under both greenhouse gas scenarios (Fig 7). This increase in number of patches corresponds
with a 52% reduction in mean patch size from 6.6 km2 to 3.2 (± 0.03) km2 under the RCP 4.5
scenario and a 79% reduction in mean patch size to 1.4 (± 0.01) km2 under the RCP 8.5 sce-
nario by the 2080s. Currently large patches such as those in the Forbidden Plateau, southeast
Strathcona Park (Fig 5), are predicted to become fragmented into several smaller patches. In
particular, the three currently largest patches of suitable habitat are predicted to become frag-
mented into several smaller patches by the 2080s (Fig 8). The largest patch by the 2080s
accounts for 25–29% of the predicted remaining habitat area under the RCP 4.5 scenario and
5–9% of predicted remaining habitat area under the RCP 8.5 scenario. The Can GCM and RCP
8.5 greenhouse gas scenario depict the most dire predictions of habitat change for White-tailed
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Ptarmigan, with total loss of all habitat patches larger than 6 km2 and 97% of all remaining
habitat patches< 1 km2. Average elevation of suitable habitat patches is predicted to increase
from 1,350 m (± 84) under the baseline climate to 1,459–1,472 m under the RCP 4.5 scenario
and 1,501–1,508 m under the RCP 8.5 scenario by the 2080s (Fig 9).

Fig 3. Variable importance plot for predictor variables from the Random Forest model for predicting
presence of White-tailed Ptarmigan on Vancouver Island. The mean decrease in accuracy for a variable
is the classification accuracy for the out-of-bag data [49]. Variables include elevation, mean summer
temperature (MST), precipitation as snow (PAS), aspect, mean summer precipitation (MSP), slope, vector
ruggedness measure (VRM), and compound topographic index (CTI). See Table 1 for variable descriptions.

doi:10.1371/journal.pone.0142110.g003

Fig 4. Predicted habitat suitability according to probability of presence (%) using a Random Forest model for Vancouver IslandWhite-tailed
Ptarmigan under baseline climate (1980–2010 normals) and future climate (2080s). Future habitat suitability represents averages across 3 general
circulation models (CanESM2, CCSM4, and GFDL-CM3) for 2 IPCC greenhouse gas concentration scenarios (RCP 4.5 and RCP 8.5) projected out to the
2080s. Strathcona Provincial Park is outlined in black.

doi:10.1371/journal.pone.0142110.g004
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Discussion
Our approach predicts that Vancouver Island White-tailed Ptarmigan may lose a substantial
portion of their habitat as early as the 2020s, as patches become smaller and increasingly frag-
mented. The GCMs differed very little in their estimates of habitat loss and configuration,
whereas greenhouse gas concentration scenarios depicted very different futures for VIWTP
habitat. By the 2080s, we predict VIWTP will lose at least 53%, or as high as 77%, of their habi-
tat under the low and high greenhouse gas scenarios, respectively. Our predictions are consis-
tent with predictions of significant range contractions for other high elevation specialist species
as a consequence of global climate change [12,14,53,54].

Warmer summers and reduced snowfall drive VIWTP range change
After elevation, mean summer temperature and precipitation as snow were the second and
third most important variables for predicting VIWTP distributions. Changes in these climate
variables will likely drive habitat loss. Increased annual mean summer temperature will likely
correspond with increased frequency of extreme heat days, which may stress birds and lead to
reduced fecundity or survival [30,31]. Warmer summers and reduced snowfall will also lead to
the loss of permanent snow fields, which are important for ptarmigan thermoregulation and

Fig 5. Distribution of “suitable” VIWTP habitat according to a threshold that maximizes sensitivity at 0.9 for Vancouver IslandWhite-tailed
Ptarmigan under baseline climate (black), and the number of general circulationmodels (GCMs) that predict suitable habitat under future climate
scenarios by the 2080s under two IPCC greenhouse gas concentration scenarios (RCP 4.5 and RCP 8.5) . Strathcona Provincial Park is outlined in
black.

doi:10.1371/journal.pone.0142110.g005

Fig 6. Percentage of range change (100 x [range gain–range loss]/baseline range) by the 2020s (2025),
2050s (2055), and 2080s (2085) according to three general circulationmodels: CanESM2 (Can),
CCSM4 (CCSM), and GFDL-CM3 (GFDL), and two IPCC greenhouse gas concentration scenarios:
RCP 4.5 and RCP 8.5.

doi:10.1371/journal.pone.0142110.g006
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Fig 7. Number (a) andmean size (b) of suitable ptarmigan habitat patches under baseline climate (1980–2010 normals) and by the 2020s (2025),
2050s (2055), and 2080s (2085). Future values represent averages across three general circulation models: CanESM2 (Can), CCSM4 (CCSM), and
GFDL-CM3 (GFDL), and are presented for two IPCC greenhouse gas concentration scenarios: RCP 4.5 and RCP 8.5. Error bars represent 1 SE.

doi:10.1371/journal.pone.0142110.g007

Fig 8. Histograms of the range of suitable ptarmigan habitat patch areas (km2). Baseline climate (1980–2010) is shown in black, future climate for the
2080s is shown in white, and their overlap is shown in gray. Future climate is represented by three general circulation models: CanESM2 (Can), CCSM4
(CCSM), and GFDL-CM3 (GFDL), and two emissions scenarios (top row = RCP 4.5 and bottom row = RCP 8.5).

doi:10.1371/journal.pone.0142110.g008
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for providing sufficient moisture for ptarmigan forage [31,32,55]. Additionally, ptarmigan
moult is primarily influenced by photoperiod and not climate [56]. As the number of snow-
free days during the year increase, birds with white plumage against a dark background may be
at increased risk of predation, especially independent but naive juveniles. Birds may adapt to
changing conditions through evolutionary changes in their molt response to photoperiod and
increased ability to tolerate heat, but such selective responses are likely to be slow [57].

Climate change greatly impacts spatial configuration of VIWTP habitat
While many studies project future range shifts for wildlife, the spatial configuration and con-
nectivity of future habitats has been less well addressed. Our work predicts that VIWTP habitat
will become increasingly fragmented and confined to mountaintops. Climate change will likely
cause fragmentation of VIWTP habitat by facilitating infilling of trees and shrubs into previ-
ously open alpine tundra [8,9,58], a process already documented at high elevations on Vancou-
ver Island [25,26]. The effects of habitat fragmentation on VIWTP persistence will depend on
their home range size and dispersal ability. Substantial movement of VIWTP genes occurs
across the landscape and high allelic richness is found even among the most isolated popula-
tions [59]. Female White-tailed Ptarmigan in Colorado can move long distances to other
breeding areas without incurring reproductive or survival costs during the breeding season
[34]. These studies suggest that ptarmigan may be able to persist on Vancouver Island despite
increasing habitat fragmentation due to their apparent ability to move between patches, at least
for the initial periods of change. Still, our results predict the disappearance of nearly all of the
ptarmigan habitat south of Strathcona Provincial Park by the 2080s. Large areas of unsuitable
low elevation habitat act as a barrier to VIWTP gene flow, as the southern populations
appeared to be smaller and more temporally variable [59]. Thus, these southern populations
may well be extirpated by climate-induced habitat loss within 70 years. The ability of

Fig 9. Mean elevation (m) of suitable ptarmigan habitat patches under baseline climate (1980–2010
normals) and by the 2020s (2025), 2050s (2055), and 2080s (2085) for three general circulationmodels
(circles = CanESM2, squares = CCSM4, triangles = GFDL-CM3) and two IPCC greenhouse gas
concentration scenarios (open symbols = RCP 4.5, closed symbols = RCP 8.5). Error bars represent 1
SD.

doi:10.1371/journal.pone.0142110.g009
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ptarmigan to disperse between smaller and more spatially fragmented habitat patches will be
an important predictor of VIWTP long-term viability, and future research should examine
VIWTP dispersal distance as a function of future climates in order to inform management and
conservation of the subspecies.

Under all climate change scenarios, our results predict substantial decline in the average
suitable patch size for VIWTP by the 2080s, including loss of most large patches and an
increasing number of very small patches. Although average patch size is predicted to decline
gradually from the 2020s–2080s, total number of patches is predicted to decline by the 2020s
but then increase in the 2050s and 2080s. The predicted reduction in number of patches by the
2020s primarily reflects the disappearance of most very small patches of currently suitable hab-
itat. By the 2080s, however, most current larger patches are predicted to become fragmented
into several smaller patches, increasing the total number of patches but lowering average patch
size. As shown by [33], there is likely a demographic cost for VIWTP persisting in smaller
patches. Alpine habitat already exists as small, fragmented “sky islands” on Vancouver Island
compared to interior alpine, which is more continuous. Further fragmentation and reduction
in patch size of VIWTP habitat will likely be detrimental to ptarmigan breeding success [33]
and may also hinder dispersal and increase the ecological cost of movement, as birds will
increasingly be forced to cross unsuitable habitat in order to reach suitable breeding patches.
Finally, the average elevation of suitable habitat patches is expected to increase by the 2080s,
reflecting a loss of patches at lower elevations. Thus ptarmigan are in danger of being “squeezed
off the mountain”, as their remaining suitable habitat will be increasingly confined to
mountaintops.

Implications for VIWTP population persistence and the importance of
refugia
The configuration of future habitat is important when modeling shifts in climate envelopes in
part because of the importance of micro- and macrorefugia in allowing the persistence of popu-
lations. VIWTP may show resilience to climate change-induced habitat loss through the use of
microrefugia. Microrefugia differ from macrorefugia in that they are small areas with unusual
microclimates that allow species to persist in areas that might be deemed unsuitable according
to average background climates [60,61]. Coarse scale species distribution models tend to over-
estimate extinction risk because they use climate grids that are too coarse to predict locations
of fine-scale topographic relief that may provide microrefugia [62,63]. Although we used a
smaller climate grid (100 m) than many species distribution modeling studies, we acknowledge
that we can still only identify climate macrorefugia. Randin et al. [64] found that local-scale
models (25 m grid cells) predicted some persistence of suitable habitats at high elevations for
European plant species that were predicted to lose all of their suitable habitat according to
large-scale models (100 grid cells). Similarly, ptarmigan may be able to utilize microclimates
created by fine-scale landscape features (e.g., boulders, ravines, and water bodies), vegetation
type, or small variations in slope or aspect not accounted for in our models to persist in habitat
that is predicted to be lost (see [65,66]). In contrast, Trivedi et al. [67] found that coarse scale
models overestimated species thermal tolerances and underestimated the potential impact of
climate change on high elevation species compared to local-scale models, suggesting that
microclimatic refugia may not allow for persistence as speculated.

Even if ptarmigan can utilize microrefugia, it is unlikely that populations will be able to per-
sist in their current numbers. Extinction probability increases with reduced range size and con-
nectivity [68], and climate change will increase the variability of extreme temperatures and
weather events in high elevation habitats [69]. Ptarmigan must be able to live and reproduce
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through these extreme episodes if they are to persist. Alpine birds tend to exhibit slower life
histories than low elevation populations of the same or similar species, where high elevation
individuals have the lowest breeding success but higher survival [70,71]. More frequent epi-
sodes of extreme conditions may alter the fitness consequences of alternative life-history strate-
gies and exceed the coping abilities of alpine-breeding birds.

The persistence of populations in the central and northern regions of Vancouver Island will
depend partially on the ability of birds to utilize smaller areas at higher densities. Alpine ibex
(Capra ibex) have shown intensified density dependence under unfavourable climatic condi-
tions [72], which also may be the case for ptarmigan especially if the quality of “suitable” habi-
tat declines. For instance, ptarmigan may encounter more competition from lower elevation
competitors such as Sooty Grouse (Dendragapus fuliginosus) and increased predation pressure
from generalist predators such as ravens, particularly around nest sites [73]. This potential
replacement of an alpine specialist with generalist competitors and increased predators corre-
sponds to recent findings in Europe, where local species assemblages are increasingly com-
posed of native habitat generalists [74].

Strengths and limitations of climate envelope models
The choice of a threshold for determining habitat suitability with species distribution models
can be subjective, especially when reliable absence data are not available [39,75]. We used a
threshold that maximized sensitivity (set at 0.90) to correctly predict the largest number of
ptarmigan presence locations while attempting to avoid overpredicting habitat suitability
across the landscape by setting sensitivity too high. However, as in most studies of this kind, we
cannot be sure that areas without ptarmigan sightings represent unsuitable summer habitat. A
series of initial trials revealed that our choice of threshold and resulting estimates of habitat
loss were conservative; other methodological choices for setting a threshold, such as maximiz-
ing model accuracy according to kappa or setting a lower sensitivity, resulted in smaller esti-
mates of suitable habitat area and greater predictions for climate-induced habitat loss. By
utilizing a threshold that slightly over-predicts baseline suitable habitat for VIWTP, we mini-
mized the chances of “missing” areas of suitable habitat and overestimating habitat loss as
often occurs in climate envelope studies [76].

Although their shortcomings have been described elsewhere [77,78], predictions from cli-
mate envelope models have corresponded well with observed population trends for breeding
birds [3,79,80] and range shifts for montane birds [81]. Climate envelope models can also be
useful for identifying conservation opportunities within climatic macro-refugia or newly avail-
able habitat [76]. Our predictions for VIWTP appear realistic based on predictions for loss of
alpine tundra in British Columbia [37], and allow for informed decisions for prioritizing man-
agement of areas where ptarmigan are likely to persist.

Conclusions
Changes in the configuration of alpine habitat, including fragmentation and increasing con-
finement to high elevation mountaintops, will likely play a large role in driving the responses of
alpine wildlife to climate change. VIWTP, along with other alpine specialists, are in danger of
being “squeezed off the mountain” as alpine habitat declines in total area and mean patch size.
Our results also emphasize that regardless of changes in habitat size and connectivity and the
threshold chosen to define “suitable” ptarmigan habitat, habitat quality will be reduced from
the birds’ point of view. This reduction in quality may manifest in several ways including phys-
iological intolerance to warming, reduced survival or brood failure due to increased frequency
of extreme weather events, lower food availability, and/or increased competition or predation.
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Little is known about the potential fate of North America’s coastal alpine ecosystems under cli-
mate change or the ability of alpine animals to cope with deteriorating habitat quality. Because
our study has implications for other high elevation specialist species with similarly restricted
ranges, White-tailed Ptarmigan can be considered an indicator species for coastal alpine eco-
systems in the face of climate change.

Supporting Information
S1 Fig. Mean decrease in Gini Index. The mean decrease in the Gini index as a measure of
variable importance for predictor variables from the Random Forest model for predicting pres-
ence of White-tailed Ptarmigan on Vancouver Island. Variables include elevation, mean sum-
mer temperature (MST), precipitation as snow (PAS), aspect, mean summer precipitation
(MSP), slope, vector ruggedness measure (VRM), and compound topographic index (CTI). See
Table 1 for variable descriptions.
(TIFF)
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