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Pediatric sarcomas are a heterogeneous group of malignant tumors of bone and soft 
tissue origin. Although more than 100 different histologic subtypes have been described, 
the majority of pediatric cases belong to the Ewing’s family of tumors, rhabdomyosar-
coma and osteosarcoma. Most patients that present with localized stage are curable 
with surgery and/or chemotherapy; however, those with metastatic disease at diagnosis 
or those who experience a relapse continue to have a very poor prognosis. New thera-
pies for these patients are urgently needed. Immunotherapy is an established treatment 
modality for both liquid and solid tumors, and in pediatrics, most notably for neuro-
blastoma and osteosarcoma. In the past, immunomodulatory agents such as interferon, 
interleukin-2, and liposomal-muramyl tripeptide phosphatidyl-ethanolamine have been 
tried, with some activity seen in subsets of patients; additionally, various cancer vaccines 
have been studied with possible benefit. Monoclonal antibody therapies against tumor 
antigens such as disialoganglioside GD2 or immune checkpoint targets such as CTLA-4 
and PD-1 are being actively explored in pediatric sarcomas. Building on the success of 
adoptive T cell therapy for EBV-related lymphoma, strategies to redirect T cells using 
chimeric antigen receptors and bispecific antibodies are rapidly evolving with potential for 
the treatment of sarcomas. This review will focus on recent preclinical and clinical devel-
opments in targeted agents for pediatric sarcomas with emphasis on the immunobiology 
of immune checkpoints, immunoediting, tumor microenvironment, antibody engineering, 
cell engineering, and tumor vaccines. The future integration of antibody-based and cell-
based therapies into an overall treatment strategy of sarcoma will be discussed.

Keywords: pediatric sarcoma, immunotherapy of cancer, antibodies, monoclonal, CAR T cells, tumor vaccines, 
natural killer cells, osteosarcoma

introduction

Sarcomas are a heterogeneous group of malignant tumors arising from bone or soft tissues. More 
than 100 different subtypes of sarcoma have been described in adults and pediatrics; the major-
ity of cases in children are rhabdomyosarcoma, Ewing’s family of tumors, osteosarcoma, and the 
non-rhabdomyosarcoma soft tissue sarcomas. Although these tumors are rare individually, as a 
group they account for 10–14% of all childhood cancers (1). While most patients who present with 
localized disease are highly curable with conventional therapies involving surgery and chemoradio-
therapy, those who present with metastatic disease or who relapse post-therapy have an extremely 
poor prognosis, with little to no improvements in survival seen over the past 20 years. Furthermore, 
current therapies are highly toxic and associated with significant long-term morbidity in survivors; 
thus, new and effective therapies are urgently needed for these patients.
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History of immunotherapy for Sarcomas

That the immune system might be involved in cancer control 
was first observed in sarcoma patients when Wilhelm Busch 
in Germany reported in 1866 on tumor regressions in sarcoma 
patients who developed erysipelas infections (2). Immunotherapy 
for the treatment of sarcomas can be traced back at least as far 
as 1891, when William Coley, a prominent bone surgeon at 
Memorial Hospital in New York (now Memorial Sloan Kettering 
Cancer Center), published his report on the use of what came 
to be known as “Coley’s Toxin” to treat a series of sarcomas of 
the bone (3, 4). He found that injections with streptococcus 
organisms (originally live bacteria, later a heat-killed concoction 
that also included Serratia marcescens) could induce remissions 
in some patients with otherwise inoperable sarcomas. Though 
use of his toxins was highly controversial and eventually fell out 
of favor, they are considered by many to be the precursors of 
today’s modern anti-cancer immunotherapy (5). Perhaps the best 
conceptualization of what has become modern immunotherapy 
came from Paul Ehrlich in the early 1900s with his description of 
the “magischen kugeln” – the “Magic bullet” – specific medicines 
fashioned to attack and kill only the diseased cell while sparing 
the surrounding normal tissues (6). The increased frequency of 
lymphoid malignancies in patients with immunodeficiencies 
also suggests that the immune system plays an important role 
in carcinogenesis (7). In addition, development of sarcomas has 
been well described in allograft transplant recipients, with a risk 
more than double that of non-immunosuppressed patients (8).

immune System in the Non-Malignant 
State

Our immune system is a complex organization of immune cells 
and mediators that interact with each other and with other 
accessory cells to protect against infections; simultaneously, this 
system must maintain tolerance toward self. The immune system 
consists of two layers of defense: the innate and adaptive spheres. 
The innate immune system includes dendritic cells, mast cells, 
and macrophages, as well as natural killer (NK) cells, neutrophils, 
basophils, and eosinophils. Innate immune cells serve as the initial 
defense against foreign antigens. Once activated, macrophages 
and mast cells release cytokines that engage additional immune 
cells and initiate an inflammatory response. Dendritic cells serve 
as antigen-presenting cells, taking in foreign antigens and sub-
sequently presenting them for recognition by adaptive immune 
cells, thereby recruiting the second sphere of the immune system. 
NK cells can also interact with dendritic cells, either activating or 
eliminating them depending on context, thus they too can influ-
ence both the innate and adaptive immune systems.

The adaptive immune system includes B-lymphocytes, CD4+ 
T helper lymphocytes, and CD8+ cytotoxic T lymphocytes 
(CTLs). This arm of the immune system requires direct activa-
tion through antigen presentation by antigen-presenting cells. 
Upon antigen presentation and activation, antigen-specific T 
and B cells are generated. Together, the innate and adaptive 
pathways eliminate pathogens and remove damaged cells (7, 
9). Unlike the innate system, the adaptive immune response 

requires training, but, once established, is antigen specific, has 
a memory, and can be recalled to rapid action in the future.

immune Surveillance and 
immunoediting

One of the basic principles of cancer immunosurveillance is that 
cancer cells possess antigens that distinguish them [or set them 
apart] from non-transformed cells. These so-called tumor “neo-
antigens” can be recognized by the endogenous immune system 
and targeted for destruction. These tumor antigens are generally 
products of mutated genes, abnormally expressed normal genes, 
or genes coding for viral proteins. Unfortunately, transformed 
cells, under the selective pressure of the normal host response, 
are sometimes able to evolve evasive or immune-suppressive 
mechanisms and thus avoid detection and/or eradication. This 
concept that the immune system, while protecting against cancer, 
influences tumor immunogenicity and ultimately tumor escape 
was proposed as the framework for cancer immunoediting 
(10). This process can be divided into three phases: elimination, 
equilibrium, and escape. During the elimination phase both the 
innate and adaptive immune systems work to identify a devel-
oping neoplasm and eliminate it, through various mechanisms 
including activation of innate immune effector cells such as NK 
cells, and secretion of interferons (IFNs) and subsequent activa-
tion of dendritic cells, which in turn promote adaptive anti-
tumor immune responses. However, a subset of cancer cells may 
develop the ability to survive this elimination phase, and thus 
the developing neoplasm enters the equilibrium phase. Here, the 
immune system prevents tumor escape, yet fails to eradicate it 
completely and thus participates in influencing the immuno-
genicity of these remaining cells. Finally, in the escape phase, 
those tumor cells that evolved the ability to evade the immune 
system during the equilibrium phase progressively proliferate 
and present as clinically apparent tumors. Mechanisms by which 
this escape may occur include loss of tumor antigens, down 
regulation of histocompatibility locus antigens (HLA) from 
the tumor cell surface; altered tumor microenvironment that is 
immunosuppressive due to the recruitment of regulatory T cells 
(Tregs); myeloid-derived suppressor cells, tumor-associated M2 
macrophages, and others (11–13); upregulation of inhibitory 
receptors (e.g., PD-1) on T cells; or upregulation of inhibitory 
ligands (e.g., PD-L1 or B7-H3) on stromal cells or tumor cells.

immunomodulatory Agents

A variety of immunomodulatory agents have been investigated 
for the treatment of sarcomas, including cytokines such as inter-
leukin-2 (IL-2) and IFN. The majority of sarcoma studies have 
been conducted in adult patients with advances fueling interest 
in the pediatric patient population.

Cytokines
Stimulation of the immune system has been attempted using 
various cytokines. Cytokines are involved in a wide array of 
immune functions including modulation of antigen presentation 
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and T cell activation (14, 15). The list of cytokines continues to 
expand (15). Although the most widely studied clinically are IFN 
and IL-2, several other cytokines are also moving into the clinic.

Interleukin 2
Interleukin 2 stimulates T cells proliferation, induces generation 
of CTLs, and facilitates the maintenance of NK cells (16–18). IL-2 
is FDA approved for the treatment of metastatic renal cell carci-
noma and melanoma, and responses to IL-2 have been reported 
in several other cancers including lung and breast cancers (19, 
20). In pediatrics, IL-2 has been used most notably for the treat-
ment of high-risk neuroblastoma in combination with an anti-
GD2 monoclonal antibody (mAb) and granulocyte-macrophage 
colony-stimulating factor (GM-CSF) (21). A study of high-dose 
IL-2 in relapsed pediatric patients included four patients with 
osteosarcoma and two patients with Ewing sarcoma. Two of 
the four osteosarcoma patients had complete responses, while 
the other two and both Ewing sarcoma patients had progressive 
disease (20). However, use of high-dose infusional IL-2 is greatly 
hampered by significant toxicity, including capillary leak syn-
drome; continued use in pediatric sarcoma as a single agent seems 
unlikely. Several studies are ongoing in pediatrics combining IL-2 
given in a variety of different routes and dosages with antibody 
therapy, vaccines, and adoptive cell therapy.

Interferon
Interferons are a complex family of molecules that bind to 
IFN receptors; IFNα and IFNβ activate type I receptors, while 
IFNγ activates type II receptors (15, 22). Both IFNα and IFNβ 
activate immune cells and increase antigen presentation to T 
cells. INFα is approved for use in melanoma and has also been 
studied in sarcomas. Most recently, the large EURAMOS study 
reported three-year follow-up data on 715 pediatric and adult 
osteosarcoma patients up to 40  years of age randomized to 
postoperative chemotherapy ± IFN; there was no survival benefit 
from IFNα when added to standard three-drug chemotherapy in 
osteosarcoma patients (74% chemotherapy alone vs. 77% chemo-
therapy + IFNα; EFS, p = 0.21) (23). Further development of IFN 
as a single agent in pediatric sarcoma seems unlikely; its role in 
pediatric sarcoma immunotherapy as an adjuvant combined with 
other immunotherapies such as adoptive cell therapy to increase 
antigen presentation remains to be defined.

Interleukin 15
Interleukin 15 (IL-15) (24, 25) is a 14–15 kDa glycoprotein that 
binds to a heterotrimeric receptor that shares the IL-2R/IL-15Rβ 
(CD122) and the common gamma (γc) chain (CD132) with the 
IL-2 receptor (26), as well as a unique α subunit (IL-15Rα) that 
confers receptor specificity. However, unlike IL-2, IL-15 is not 
required for the maintenance of Tregs (27); it does not induce 
activation-induced cell death (AICD) of CD8+ effector T cells 
(28); is required for the differentiation of NK, effector CD8+ and 
memory phenotype CD8+ T cells; and does not cause capillary 
leak syndrome (29). IL-15Rα binds to IL-15 with high affinity 
(Kd  <  10–11  M) and retains IL-15 on the cell surface. IL-15Rα 
trans-presents IL-15 to IL-2R/IL-15Rβ-γc on neighboring NK 
and T cells through immunological synapses (30, 31). IL-15 has 

diverse immunologic effects (26). It stimulates the proliferation 
of activated CD4−CD8−, CD4+CD8+) CD4+, CD8+ T cells, 
induces cytotoxic CTLs, and stimulates the generation, prolif-
eration, and activation of NK cells. Though not essential for the 
generation of memory CD8+ T cells, IL-15 is required for their 
homeostatic proliferation over long periods of time (32). IL-15 
protects neutrophils from apoptosis, modulates phagocytosis, 
stimulates mast cell growth, induces B cell proliferation and dif-
ferentiation partially independent of T cell help, and increases 
their immunoglobulin secretion, while stimulating secondary 
cytokine release from macrophages and maturing dendritic cells. 
When given as the IL15/IL15Rα complex, it is more effective 
and should be less toxic than the soluble IL15 (33–35). Several 
preclinical studies have shown that IL-15 may potentiate anti-
sarcoma immunotherapy in Ewing and osteosarcoma models 
(36–38). A clinical trial combining recombinant human IL15 
with NK cells for relapsed and refractory pediatric solid tumors, 
including sarcomas, is currently underway at the U.S. National 
Cancer Institute (NCT01875601). Although no clinical trial of 
IL-15 has been conducted specifically for sarcomas, this cytokine 
will likely play a major role in future immunotherapy strategies.

Liposomal-Muramyl Tripeptide  
Phosphatidyl-ethanolamine
The immune modulator liposomal-muramyl tripeptide 
phosphatidyl-ethanolamine (L-MTP or mifamurtide) has been 
extensively studied, primarily in osteosarcoma. This compound 
is a non-specific modulator of innate immunity and is a synthetic 
analog of muramyl dipeptide derived from bacterial cell walls. 
It activates monocytes and macrophages leading to an increase 
of a wide variety of immunomodulatory molecules including: 
tumor necrosis factor-alpha (TNF-a), interleukin (IL)-1, IL-6, 
IL-8, IL-12, nitric oxide, prostaglandin E2, lymphocyte function-
associated antigen 1 (LFA-1), and intercellular adhesion molecule 
1 (ICAM1) (39). Preclinical studies suggested that this inflam-
matory response triggered by L-MTP could potentially eliminate 
minimal residual disease. A small study conducted by the EORTC 
Soft Tissue and Bone Sarcoma Group in the 1990s treated 20 
adult patients with soft tissue sarcomas with MTP; there were 
no responses in that study (40). The largest clinical experience 
with combination chemotherapy and L-MTP derives from the 
Intergroup (INT-) 0133 osteosarcoma study. This prospective, 
double randomization, phase III trial tested first the utility of 
adding ifosfamide to the standard three-drug chemotherapy 
regimen (doxorubicin, cisplatin, and high-dose methotrexate); 
and second the impact on survival with the addition of L-MTP 
to either assigned chemotherapy arm. No difference in survival 
was found for patients who received ifosfamide in addition to 
the standard three-drug chemotherapy. The study did suggest 
that L-MTP had a beneficial impact on survival, improving 
the 5-year overall survival rate from 70 to 78% (p = 0.03) (41). 
However, when the 91 patients who had metastatic disease were 
analyzed separately, the difference in survival between those who 
did versus those who did not receive L-MTP, though suggesting 
improvement, did not reach statistical significance. The overall 
survival at 5  years was 53% for those randomized to receive 
L-MTP versus 40% for those who did not (p = 0.27) (42). Based, 
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in part, on the updated results of the non-metastatic cohort of 
INT-0133, the European Medicines Agency granted L-MTP an 
indication for the treatment of non-metastatic osteosarcoma in 
2009; the American Food and Drug Administration (FDA) did 
not. L-MTP is also approved for use in Turkey, Mexico, and Israel.

Antibody-Based immunotherapy

Monoclonal Antibodies
Unmodified antibodies specific for tumor-associated surface 
antigens can engage tumor cells while activating innate immune 
effector cells, primarily macrophages and NK cells via their Fc 
receptors (FcγR). Once activated, the effector cell releases cyto-
toxic granules to kill the target cell, a process known as antibody-
dependent cellular cytotoxicity (ADCC). It is important to 
note that T cells do not possess FcγR and have no affinity for 
conventional antibodies, and hence cannot be activated by these 
tumor selective antibodies.

Many mAbs have been developed for various cancer types. 
While there have been notable successes (for example, anti-CD20 
for hematologic malignancies, anti-human epidermal growth 
factor receptor 2 (HER2) for breast cancer, and anti-GD2 for 
neuroblastoma), most mAbs have failed to improve outcomes 
despite their initial promise, especially in pediatric sarcomas.

Approximately 50% of osteosarcomas overexpress HER2, and 
HER2 expression was shown to correlate with a poorer prognosis 
(43); a phase II study was conducted by the Children’s Oncology 
Group (COG) to evaluate if the addition of trastuzumab (anti-
HER2, Herceptin) to standard chemotherapy would improve 
survival in metastatic osteosarcoma patients. Ninety-six patients 
were enrolled, and 41 were found to have HER2 overexpression. 
Unfortunately, no significant difference in survival was seen in 
patients who received trastuzumab + chemotherapy compared 
to those who received chemotherapy alone {EFS of 32% in both 
arms, OS of 50% for chemotherapy alone compared to 59% for 
chemotherapy + trastuzumab, [p = 0.54 for EFS; p = 0.58 for 
OS] (44)}.

Instead of binding directly to tumors, antibodies can neutral-
ize growth factors (e.g., insulin-like growth factor 1 (IGF1) or 
IGF2) or their receptors (e.g., IGF-1R, -A12). A large body of 
preclinical and early clinical data suggested that IGF1 and 2 
might play an important role in the initiation and progression 
of a variety of cancers, including pediatric sarcomas (45–47). 
Several phase I and II studies were conducted evaluating anti-
IGF1 mAbs in relapsed and refractory solid tumors including 
sarcomas, the largest being a phase II study by the COG that 
enrolled 116 patients, including 20 with rhabdomyosarcoma, 11 
with osteosarcoma, and 10 with synovial sarcoma; there were 
no objective responses in any of the sarcoma patients (48, 49). 
Finally, a randomized phase II study of standard chemother-
apy ± the anti-IGF-1R mAb ganitumab is ongoing within COG 
for Ewing sarcoma (NCT02306161). However, this agent failed 
to show improved outcomes in a large randomized phase III trial 
of adult pancreatic cancer patients (50) and the manufacturer 
has announced that they will not be pursuing development of 
this agent. Thus, regardless of the results of the ongoing trial, its 
future for pediatric sarcoma is unclear.

Although both IGF-1 and IGF-2 activate IGF-1R, the latter 
shares a similar tetrameric α2β2 structure with insulin receptor 
(IR). The IR can be expressed in two isoforms (IR-A and IR-B). 
IR-A binds to IGF-2 with the same affinity as it binds to insulin. 
In addition, insulin and IGF-1 receptor subunits can form hybrid 
heterodimeric receptors (51). Antibodies against IGF-1R only 
partially inhibit IR-A activity by disrupting the IR-A/IGF-1R 
hybrid, but completely fail to inhibit IR-A homodimers. Failure 
of IGF-1R inhibition results from two compensatory mecha-
nisms: (1) IGF-2 is increased during treatment with IGF-1R mAb 
(52) which signals through IR-A, which is known to promote 
cancer survival (53). (2) Compensatory activation of the epi-
dermal growth factor receptor (EGFR) allowing the cancer to 
continue to progress despite blockade of the IGF pathway (54). 
One novel approach to overcome these limitations is to reduce 
the serum and tissue levels of the IGF ligands, using neutralizing 
mAbs specific for both IGF-1 and IGF-2. By removing IGF-2, 
the escape mechanism of IGF-2-mediated IR-A activation can be 
aborted, suggesting that newer mAbs that target both IGF-1 and 
IGF-2 may have more success than the first-generation mAbs 
tested (55, 56).

Several trials of mAbs against the EGFR and the VEGFR 
(57) alone and in combination with chemotherapy have been 
conducted in children and young adults with sarcomas. The COG 
conducted a randomized trial of bevacizumab (anti-VEGFR) 
combined with vincristine, topotecan and cyclophosphamide in 
patients with recurrent Ewing sarcoma, as well as a randomized 
trial of bevacizumab and temsirolimus in combination with 
vinorelbine and cyclophosphamide in recurrent/refractory 
rhabdomyosarcoma patients. In the rhabdomyosarcoma trial, the 
bevacizumab arm was significantly worse than the temsirolimus 
arm and the study was stopped early (58); results for the Ewing 
sarcoma trial have not yet been published. Despite preclinical 
rationale for these targets (59–61), overall, these studies have 
not shown many significant responses in sarcomas, though some 
studies are ongoing.

A phase I trial of the anti-tumor necrosis factor-related apop-
tosis-inducing ligand receptor 2 (TRAIL-2) mAb lexatumumab 
was conducted by the U.S. National Cancer Institute (NCI) in 
pediatric solid tumors. This study enrolled 24 patients, including 
21 with various sarcomas. No objective responses were seen and 
this mAb is no longer under clinical development (62).

Given the success of anti-GD2 mAb therapy in neuroblastoma 
(21, 63) and the expression of GD2 by many sarcomas (64, 65), 
studies exploring the use of these mAbs in sarcomas, particularly 
in osteosarcoma, are underway. Current trials include the anti-
GD2 mAbs humanized3F8 (NCT01419834 and NCT01662804) 
and hu14.18K322A (NCT00743496).

engineered Antibodies including Bispecific 
Antibodies
Bispecific antibodies are engineered antibodies linking a tumor 
antigen recognition domain to a second domain that activates a 
receptor on immune effector cells, typically T cells (Figure 1). 
The anti-CD19/anti-CD3 bispecific antibody blinatumomab was 
approved by the FDA for the treatment of precursor B cell acute 
lymphoblastic leukemia in 2014, making it the first in its class 
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to be approved in the US. Recently published preclinical data 
of an anti-GD2 T cell retargeting bispecific antibody showed 
excellent in vivo activity against GD2 expressing neuroblasto-
mas and melanomas (66). Currently, there are limited clinical 
data on bispecific antibodies in pediatric sarcomas; there is 
one study that recently began enrolling OS patients (Activated 
T Cells Armed with GD2 Bispecific Antibody in Children 
and Young Adults With Neuroblastoma and Osteosarcoma, 
NCT02173093).

immunologic Checkpoint Blockade or 
inhibitors
Recently, there has been much excitement about the potential 
of the immune checkpoint inhibitors in solid tumors includ-
ing pediatric sarcomas following their clinical successes and 
approvals for treatment of metastatic melanoma and metastatic 
squamous non-small cell lung cancer.

CTLA-4 Blockade
Ipilimumab is a human IgG4 monoclonal antibody that blocks the 
anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and 
was the first of the new generation of checkpoint inhibitors to gain 
FDA approval (68). CTLA-4 is a member of the immunoglobulin 
superfamily; after T cell activation, CTLA-4 is expressed on the 

plasma membrane of cells where it acts to inhibit T cell function 
through a variety of mechanisms, allowing tumor cells to escape 
immune surveillance (69, 70). The experience of ipilimumab in 
pediatric patients is limited; GI toxicity was the major concern. 
A small phase II study in adults with synovial sarcoma had no 
clinical or immunological responses (71).

PD-1 Blockade
Antibodies targeting the programed cell death protein 1 path-
way (PD-1/PD-L1) (nivolumab, pembrolizumab) function in a 
similar manner to ipilimumab by removing the brakes on T cells 
which then can perform active anti-tumor immune surveillance 
(69, 70). Preclinical studies have demonstrated expression of 
PD-1L in OS and suggest that high expression levels may cor-
relate with worse clinical outcomes (72); In  vivo studies using 
murine sarcoma models with anti-CTLA-4 antibodies have also 
shown promise for these agents (73). Currently, however, these 
agents have limited pediatric clinical data available; several trials 
with these agents for relapsed or refractory pediatric solid tumors 
are currently ongoing.

Despite the overall successes of checkpoint inhibitors, only 
subsets of patients with melanoma, lung cancer, ovarian cancer, 
NHL, and Hodgkin lymphoma have responded. Two important 
studies have examined the tumors of responders versus non-
responders, one in melanoma and one in non-small-cell lung 
cancer (74–76). In both cases, treatment efficacy was associated 
with a higher number of mutations in the tumors. In melanoma 
patients treated with ipilimumab, the investigators carefully 
examined the tumors of those who responded versus those who 
did not, and found that the responders had tumors with higher 
mutation rates and tumor antigens and in particular, those 
whose tumor neoantigens shared tetrapeptide sequences with 
viral antigens were most likely to be responders to checkpoint 
inhibition (75). To improve on the quality of response to immune 
checkpoint blockade, CTLA-4 and PD-1/PD-L1 antibodies are 
being tested in combination or when added to other anti-cancer 
agents such as chemotherapy, targeted therapy, radiotherapy, 
and other immunotherapy (19, 69, 77). Currently, the COG is 
conducting a phase I/II study (NCT02304458) of nivolimab alone 
or in combination with ipilimumab for relapsed and refractory 
solid tumors including sarcomas.

Although there is much excitement currently surround-
ing these new agents, caution seems warranted in pediatric 
sarcomas. In contrast to melanoma and lung cancer, pediatric 
cancers in general and pediatric sarcomas in particular have an 
extremely low rate of recurrent mutations (<1 mutation per Mb 
for pediatric cancers compared to 15 per Mb for melanomas) 
(78, 79). Furthermore, many sarcomas do not express major 
histocompatibility complex (MHC) which is required for both 
the afferent and efferent arms of T cell response (80). Taken 
together, it seems probable that checkpoint inhibitors may have 
less efficacy in pediatric sarcomas (especially as single agents) 
than in melanoma and lung cancer; careful consideration of 
ideal clinical trial design using these agents will be critical for 
defining their potential role in the immunotherapy of pediatric 
sarcomas.
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Tumor vaccines

Vaccines directed against specific tumor antigens were some of 
the earliest targeted immunotherapies tested. The aim of tumor 
vaccines is to induce an anti-tumor response through exposure 
to tumor antigens. Of the high value tumor targets among the 
75 candidates derived from the NCI consensus panel, only a few 
are directly adaptable to sarcoma (81). The most notable are the 
gangliosides GD2 and GD3, polysialic acid, and translocation 
breakpoints. In animal models and human clinical trials (9, 82), 
vaccines have shown efficacy in preventing tumor development or 
delaying progression, but have generally failed to mediate regres-
sions of established tumors. Single-arm trials have investigated 
vaccines targeting whole cells, lysates, proteins, and peptides in 
both adult and pediatric patients with sarcomas. Results from 
most studies in sarcomas (adult and pediatric) have been disap-
pointing, though some have shown potential benefit with either 
laboratory evidence of the development of an immune response, 
or prolonged stable disease or disease-free intervals (83–88). 
Several additional pediatric sarcoma studies remain ongoing 
(NCT01241162, NCT01803152, NCT01061840). Promising 
results of a recent phase I study of a bivalent GD2-GD3 gangliosides 
vaccine in combination with β-glucan in neuroblastoma patients 
in second remission (89) suggest that vaccines for sarcomas may 
be beneficial if given in the setting of minimal residual disease.

Adoptive Cell Therapy

Adoptive cell therapy is the term coined to describe the concept 
of giving a patient immune cells with cytolytic properties in 
sufficient numbers to cause an anti-tumor response. There are 
various strategies to accomplish this, including use of ex vivo 
expanded autologous cells and infusion of donor-derived alloge-
neic immune effector cells.

Natural Killer Cells
Natural Killer cells are lymphocytes of the innate immune system 
with both cytotoxic and regulatory functions and are important 
mediators of immune responses against infections and cancer. 
Unlike T and B cells, NK cells recognize their targets without prior 
sensitization and generally do not have the same memory system 
[with some exceptions (90)] as T or B cells. NK cells are activated 
through various receptors that recognize proteins that are upregu-
lated by cell stress or are foreign. In turn, NK cells are negatively 
regulated by inhibitory receptors that primarily bind HLA as a 
means of preventing self-recognition, thus preventing autoim-
munity. NK cell target cytotoxicity is triggered when the overall 
balance between the various activating and inhibitory signals is 
weighted toward activation (91). NK cells were initially identi-
fied through their ability to kill tumor cells (92); the anti-tumor 
actions of NK cells have subsequently been documented in many 
human and animal models. NK cells are neither HLA-restricted 
nor do they require activation via the adaptive immune system 
(93). These facts plus their ability to target and kill a wide variety 
of tumors has led to strong interest in their therapeutic potential 
(94). The first application of NK-cell-enriched cellular products 
to treat cancer was performed at the NCI using autologous cells 

in 1980 (95). Subsequently, clinical trials, primarily in acute 
myeloid leukemia, confirmed that haploidentical donor-derived 
NK cells can be expanded in vivo and can induce remissions (96). 
Preclinical data suggest that NK cell strategies may be of benefit in 
pediatric sarcomas (97). Specifically, various studies have shown 
that Ewing sarcoma, osteosarcoma, and rhabdomyosarcoma cell 
lines, including highly chemoresistant lines, are all sensitive to 
NK cell killing and that cytokine activation greatly enhances 
this killing ability both in  vitro and in in  vivo models (36, 38, 
98). Several current NK-cell-based studies are open to pediatric 
sarcomas and apply various strategies, including post-allogeneic 
transplant and ex vivo expansion and/or cytokine stimulation; 
however, no results have yet been reported from these trials.

Cytotoxic T Lymphocytes
Cytotoxic T Lymphocytes are highly efficient at targeting and 
killing specific cells; thus, there has long been much interest in 
harnessing this ability for cancer immunotherapy. De novo T cells 
are generally of low frequency and incapacitated by the tumor 
microenvironment. Initial efforts to use T cells for cancer therapy 
involved ex vivo expansion of the so-called tumor infiltrating 
lymphocytes (TILs) freed from excised tumors. This approach is 
limited, however, by the fact that they cannot be reliably extracted 
or be expanded to sufficient numbers from most tumors. To date, 
there are no studies in pediatric cancer patients (9). Despite their 
limitations, TILs are an important proof-of-concept of the poten-
tial value of T-cell-based immunotherapy as they were the first 
immunotherapy to induce regressions of bulky tumors (99). To 
overcome these limitations, polyclonal T cells can be genetically 
modified to express T cell receptors (TCRs) that recognize tumor 
peptide antigens in the context of MHC. These transgenic TCRs 
function like their natural counterparts, but remain restricted by 
MHC, thus limiting the use of these cells to the patient’s specific 
individual HLA alleles. As approximately 50% of the Caucasian 
population in the U.S. express HLA A*0201, many studies have 
focused on associated antigens, particularly the cancer testis 
antigens. Among these, NY-ESO-1 is one of the most studied 
with expression found in 70–80% of synovial sarcomas, but only 
sporadically in other sarcomas (100, 101); in a pilot feasibility 
study, four of six patients with synovial sarcoma had an objective 
response (101, 102). Further studies using NY-ESO-1 CTLs in 
synovial sarcoma are ongoing (NCT01343043).

Chimeric Antigen Receptor-Modified T Cells
Because T cells do not carry Fcγ-receptors, these potent effec-
tor cells cannot recognize tumor-bound antibodies, and have 
therefore traditionally not been recruited by such antibodies 
to tumor sites. Furthermore, T cells need to recognize tumor 
peptides in the context of their own MHC antigens to be effective 
killers. However, many tumors down regulate or lose their HLA, 
or even tumor peptides, making them transparent to even the 
primed T cells. To overcome these issues of HLA and to broaden 
the selection of targets (e.g., to carbohydrates or lipids), chimeric 
antigen receptors (CARs) can be engineered into T cells. These 
receptors are not classic TCRs, but derived from conventional 
antibodies specific for any target. A chimeric molecule consist-
ing of an antibody in the form of single chain Fv (scFv) as the 
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ectodomain, and T cell signaling machinery as the intracellular 
domain, forms this artificial receptor through which T cells are 
activated when they come into contact with the specific antigen, 
without the necessity of MHC. These CARs are inserted into T 
cells using viral vectors, DNA transposons, or RNA transfection. 
In the early versions (so-called First generation) of CAR-modified 
T cells (CAR T cells), signaling was done through a single activa-
tion domain (either the CD3-ζ chain or FcϵRIγ). Second- and 
third-generation CAR T cells contain one or two additional 
co-stimulatory signaling domains such as CD28, 4-1BB, and 
OX40 (67) (Figure 1). The first-generation CAR T cells did not 
show significant activity in clinical trials presumably because 
many tumor cells lack co-stimulatory ligands (103), and because 
of poor persistence of the T cells, although a phase I study of 
anti-GD2 CAR T cells in relapsed neuroblastoma patients saw 
some objective clinical responses including complete remission 
in three patients (104, 105). Second-generation CAR T cells have 
shown improvements in T cell proliferation and survival (106) 
and have shown promising results in hematologic malignancies 
(107). Several studies with CAR T cells are underway that include 
pediatric sarcoma patients. Two of the open trials target HER2 
expressing sarcomas (NCT00902044, NCT00889954), while two 
more target GD2 expression (NCT01953900, NCT02107963); it 
remains to be seen whether similar successes seen in hematologic 
malignancies can be achieved in solid tumors. The death of a 
patient receiving third-generation anti-HER2 CAR T cells has 
raised concerns regarding the safety of highly activatable T cells 
even when the expression of the antigen in normal tissues was low 
(NCT00924287) (108).

Challenges

Toxicity
In general, although immunotherapy may have less long-term tox-
icity than chemotherapy or radiation therapy, which is particular 
appealing for pediatric cancer, major short-term toxicities can be 
daunting. These include immediate infusion-related allergic reac-
tions with mAbs, and autoimmune reactions to the checkpoint 
inhibitors, some of which were life threatening (109). In a recently 
completed phase I study of ipilimumab (NCT01445379) in pedi-
atric patients with refractory solid tumors including sarcomas, 
no objective responses were seen but significant autoimmune 
toxicity was observed, with up to 50% of patients experiencing 
symptoms (Personal communication, Dr. L. Wexler, 2015); how-
ever, no pediatric safety data for these agents are yet published. 
In adults, enterocolitis, hepatitis, and dermatitis were the most 
commonly seen toxicities, but autoimmune-related toxicities due 
to unregulated T cell activity have been reported in nearly every 
organ system (109). Adoptive cell transfer also carries the real 
potential for serious adverse events. T cell therapy is highly potent 
such that even normal tissues with low target antigen expression 
can become innocent bystanders. These unintended and unex-
pected toxicities to critical organs can be life threatening (110) 
and have limited the choice of certain targets for redirected T-cell-
based therapy (111). Additionally, T cells have been associated 
with severe, sometimes fatal, cytokine release. Cytokine release 
syndrome (CRS) occurs when extremely high levels of immune 

cells are activated thereby stimulating release of large amounts of 
inflammatory cytokines, leading to organ dysfunction and death. 
CRS is particularly seen with second- and third-generation CARs 
as well as bispecific antibodies (112), but can occur after antibody 
infusion as well as with other adoptive lymphocyte therapies. 
Corticosteroids are the mainstay of treatment, while anti-IL6R 
antibody can also be helpful (113).

Target Selection
Perhaps the most critical first step in designing cancer immu-
notherapy is identifying appropriate immunologic targets. A 
good immunotherapy target must be highly expressed on tumor 
tissues but not on normal tissues. Ideally, a good target will play 
a role in the underlying oncogenesis of the tumor, though this is 
not always required. Targets that meet these attributes are rare 
(81). An alternative approach has been to target markers that 
are highly expressed on cancers and expressed in the so-called 
non-vital tissues, such that targeting and loss of these normal 
cells are tolerated by the patient. Monoclonal antibody targeting 
of CD20, and CAR T cells and bispecific antibodies targeting 
CD19 are examples of this approach. Adding further difficulty 
to target selection is that they by necessity must be present on 
the surface of the cell for immune recognition, which limits the 
potential target list. In fact, of the 75 NCI consensus high value 
targets, two-thirds are internal antigens (81). The only way to 
target these internal antigens is through their peptides presented 
on the HLA; hence the description of such antibodies as TCR like. 
Less than 100 publications have been published on the discovery 
of such antibodies, but the best characterized are those against 
the RMFPNAPYL peptide of the Wilm’s tumor-1 (WT1) antigen 
presented on HLA0201 (114). However, this approach is limited 
by the restriction to specific HLA subtypes. Most pediatric sarco-
mas lack HLA expression (80), and among those that have it, only 
individuals with the specific restricted subtype would be sensitive 
to the immunotherapy. Efforts to mine gene expression databases 
for potential new antibody targets are promising but still in early 
stages; validation of these mRNA level exploratory analyses at the 
protein level will be critical (115, 116). Tables 1 and 2 list some of 
the pediatric sarcoma-specific targets, both MHC non-restricted 
(Table 1), and MHC restricted (Table 2), currently in preclinical 
and/or clinical development.

Future Directions

Sarcoma immunotherapy remains in its infancy. To date, while 
we have not seen the successes seen in other malignancies, there 
are glimpses of activity which suggest that immunotherapy could 
be an effective treatment modality. However, to fully realize that 
potential we believe that the following four areas must be care-
fully considered:

Target Discovery and validation
Given the narrow mutation landscape in sarcomas, and especially 
so among those with translocations, neoantigens derived from 
gene mutations are predicted to be rare. Translocation fusion 
sequences have remained difficult to target with T cells, or to be 
used as vaccines. Without neoantigens, even checkpoint blockades 
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TABLe 2 | MHC-restricted immunotherapy targets for pediatric sarcomas.

Target Tumor expression Comments Reference

NY-ESO-1 Synovial Sarcoma (70%) Cancer testis 
antigen, HLA-A1

(102, 117)

HER2/Neu Osteosarcoma (60%) (64)

STEAP (Six-
transmembrane 
epithelial antigen  
of prostate)

Ewing Sarcoma % expression  
data limited

(118, 119)

WT1 Rhabdomyosarcoma (100%) HLA-A1, A24,  
DP5, DR4

(120, 121)
Ewing sarcoma (50%)

PAX3-FKHR Alveolar rhabdomyosarcoma 
(90%)

HLA-B7 (122)

SYT-SSX1, 2 Synovial Sarcoma (100%) HLA-B7 (123)

Table adapted from Orentas et al. (116).

TABLe 1 | Cell surface targets for MHC non-restricted immunotherapy of 
pediatric sarcomas.

Target Tumor expression Normal  
expression

Comments

GD2 Osteosarcoma (90%) GD2+ neuronal 
tissue (peripheral 
sensory nerves)

Dinatuximab 
(Ch14.18) FDA 
approved for 
NB; trials in OS 
using hu3F8 and 
dinatuximab are 
planned.

Soft tissue sarcomas 
(varies)

HER2 Osteosarcoma DSRT Low-level lung 
expression

FGFR4 Rhabdomyosarcoma Expressed during 
muscle development

Glypican-3, -5 Rhabdomyosarcoma Rare outside 
embryonal tissues

FOLR1 Osteosarcoma, 
Rhabdomyosarcoma

Luminal cell  
mem-brane of some 
epithelial tissues

Table adapted from Orentas et al. (116).
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used at recommended dosage levels might not be effective. By 
default, differentiation antigens and tissue antigens deserve to 
be more carefully explored. These include the gangliosides GD2 
(124) and GD3 (65), ROR2 (125), HER2 (126, 127), B7-H3 (128), 
CSPG4 (129, 130), polysialic acid (131), and glypican 3 (132). All 
of these antigens have established antibodies ready for construc-
tion of CAR T cells or bispecific antibodies. Importantly, most of 
these antibodies have already been tested in humans with accept-
able toxicities. Considerations should also be given to novel engi-
neered forms such as bispecific antibodies to retarget T cells (66) 
or bispecific antibodies for multistep targeting to greatly improve 
therapeutic index (133). Given the early glimpses of response to 
IGF1R antibodies and a better understanding as to why tumors 
escape, the new generation of dual-specific antibodies for IGF1 
and IGF2 should be considered (56, 134).

Careful Patient Selection
The majority of clinical trials to date have shown that immuno-
therapy is generally not effective against large, bulky disease. Thus, 
it is imperative that the proper patient population is selected for 

clinical trials moving forward. For example, we are developing 
a phase II anti-GD2 immunotherapy protocol for osteosarcoma 
patients in second or greater remission, with the goal of target-
ing pulmonary minimal residual disease. This is based on our 
experience in OS patients treated on our phase I protocol where 
we found that patients with visible metastatic lesions progressed 
rapidly while those with minimal residual disease have shown 
increased time to progression compared to historical controls. 
It would appear that the clinical efficacy of immunotherapy for 
pediatric sarcoma can best be tested in clinical trials designed to 
treat patients after their overt disease burden has been reduced 
as much as possible.

Development of Combined Modality Regimens
To date, the majority of studies using single immunotherapy 
modalities have not demonstrated significant activity in solid 
tumors in general and in pediatric sarcomas in particular. 
However, rational combinations of new immunotherapies are 
being developed and will need to be carefully explored. Antibodies 
combined with immunomodulatory agents are the most mature 
of these combinatorial approaches. Anti-GD2 mAbs combined 
with GM-CSF or GM-CSF and IL-2 are effective against neuro-
blastoma (21, 63) with studies planned in osteosarcoma. While 
checkpoint inhibitors, for reasons described above, are unlikely 
to be of significant benefit when used alone in pediatric sarco-
mas, their combination with adoptive cell therapy or bispecific 
antibodies has the potential to enhance the efficacy of these T 
cell-based strategies. Additionally, preclinical studies suggest 
that prior radiotherapy can induce tumor neoantigen expression 
and increased effectiveness of checkpoint blockade, echoing the 
abscopal effect in the clinic (135). Studies exploring this strategy 
in adults are underway and may be warranted in children. T cells 
could also be combined with NK cells: MHC down regulation by 
the tumor cells as a means of escape from T cell killing should 
render these cells more susceptible to NK cell killing, which 
does not require MHC, but is instead inhibited by high MHC 
 expression (91).

Tolerance of increased Toxicity
This last point is perhaps the most controversial. However, 
historical precedent suggests that learning to manage toxicities 
associated with therapies can allow otherwise effective treat-
ments to be developed. Anti-GD2 immunotherapy is associated 
with significant infusional toxicities including severe pain; this 
pain side effect was completely unexpected when these mAbs 
were first used (136). Fortunately, rather than halting the 
development of these antibody treatments, ways to overcome 
the toxicities were developed and as a result, anti-GD2 immu-
notherapy is now proven effective in neuroblastoma and is in 
active trials in sarcoma patients. Similarly, it seems likely that 
newer immunotherapy treatments, especially combination 
therapies as suggested above, will have both predictable, as well 
as unexpected, and potentially severe side effects. However, an 
unwillingness to carefully explore and manage novel toxicities 
may limit the adoption of some potentially beneficial treat-
ments.  With checkpoint blockade, the autoimmune toxicity 
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seen shows that children do, in fact, have autoreactive T cells that 
will react with self if the “brakes” are sufficiently released. Since 
many tumors overexpress normal self antigens, it is plausible 
that “releasing the brakes” enough (by combining ipilimumab 
with nivolumab while pushing the dose of both) could allow an 
autoreactive T cell to target a protein on the tumor that would 
otherwise be tolerated by the immune system. The currently 
approved dose of ipilimumab for patients with melanoma, 
however, achieves the target trough concentration of 20  mcg/
mL, the level at which ipilimumab attains maximum CTLA-4 
blockade, in only 30% of patients (68), suggesting that increasing 
the dose could yield improved clinical benefit, if toxicities can be 
managed. Several clinical trials testing this hypothesis in adults 
are underway. Similarly, combination therapy with adoptive T 
cells and checkpoint blockade could have significantly increased 

toxicity, especially for on-target, off-tumor effects, such that 
appropriate target selection and clinical trial design to minimize 
these risks are critical.

Conclusion

Pediatric cancer immunotherapy continues to advance; we believe 
these advances will improve outcomes in patients who have not 
benefited from conventional therapy alone. Late toxicities remain 
a major challenge for those patients who underwent life saving 
chemotherapy and radiation therapy. Immunotherapy offers an 
opportunity to consolidate remission while reducing genotoxic 
therapy. We are cautiously optimistic that immunotherapy will 
improve not just survival but also the quality of life in children 
with sarcomas.
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