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Abstract: The microbiome is able to modulate immune responses, alter the physiology of the human
organism, and increase the risk of viral infections and development of diseases such as cancer. In this
review, we address changes in the cervical microbiota as potential biomarkers to identify the risk
of cervical intraepithelial neoplasia (CIN) development and invasive cervical cancer in the context
of human papillomavirus (HPV) infection. Current approaches for clinical diagnostics and the
manipulation of microbiota with the use of probiotics and through microbiota transplantation are
also discussed.
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1. Introduction

Cervical cancer (CC) is the fourth most common cancer in women worldwide, with an incidence
estimate of 569,847 cases and 311,365 deaths according to the latest Globocan report [1]. Cervical
cancer is almost invariably caused by human papillomavirus (HPV) infection. There are currently
over 200 different HPV types described that infect epithelial cells [2], of which around 40 have
tropism to mucosal tissues. These are further divided into low-risk and high-risk HPV (lr-HPV and
hr-HPV, respectively), depending on their carcinogenic potential [3]. lr-HPV are associated with the
development of anogenital warts, while hr-HPV types are associated with cervical intraepithelial
neoplasia (CIN) and CC [3]. Of the hr-HPV, HPV-16 and HPV-18 are responsible for approximately
70% of CC cases worldwide [4,5].

Although HPV infection per se is not sufficient to promote CC, the development of persistent
infection is a major factor for cervical lesion progression and cancer outcome. The majority of
HPV-infected women do not develop cervical cancer because immune response control infection,
preventing cervical lesion development and its progression to cancer [6]. Thus, only a small fraction
of infected women are not capable to control infection and develop CC. This fact suggests that
additional factors might influence the progression of CIN to CC or its regression. The cervical
microenvironment is complex, composed of immune cells and its specific microbiota that modulate
local immune responses [7–9]. Recently, some studies have shown an association between the
cervicovaginal microbiome and HPV infection, as well as CIN and CC [9–14]. In the current review,
we describe the cervicovaginal microbiome landscape and its influence on the modulation of cervical
viral infections, in addition to its role as a biomarker with predictive value for HPV infection and
cervical neoplasia progression.
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2. History of Bacteria Identification

The human body is a surprising ecosystem that presents trillions of microorganisms.
The coevolution that occurred between man and microbes created a complex interaction network [15,16].
Most microorganisms are bacteria that reside in the gut and have a profound influence on the physiology
and health of their hosts [17].

The identification of bacteria began in 1876 when Robert Koch created the methods to culture,
isolate and identify the Anthrax agent [18]. After culture and isolation, bacteria were identified based
on morphology, differential coloration, type of culture medium in which they grew, and biochemical
characteristics. However, since the number of bacteria that can be cultivated and isolated is limited,
such approach became insufficient to assess the complexity of microorganisms that exists in a single
sample. In 1977, Carl R. Woese and George E. Fox published the first work utilizing the 16S rRNA
gene to identify bacteria and showed that the gene could be used to identify microorganisms using
molecular phylogeny [19]. This approach was revolutionary to biology and now this gene is broadly
used in research that involves bacteria identification.

The 16S rRNA gene has approximately 1.5 kb and nine variable regions (V1 to V9) intercalated by
conserved regions that allow PCR amplification of different bacterial orders using universal primers [20].
For a long time, PCR amplification of 16S gene was followed by cloning and further sequencing using
the Sanger method. Although cloning and sequencing by Sanger provide information about bacterial
composition, the generation of a large dataset is necessary to assess the high diversity of bacteria
present in a sample.

The 21st century advanced technology brought the capability to generate large volumes of
sequencing data faster and with high precision. Today it is possible to characterize the diversity of
microorganisms present at different human anatomical sites [21,22]. The first large effort to characterize
such diversity in the human body was the Human Microbiome Project (HMC) [21,23]. The HMC
started in 2008 and analyzed samples collected from 242 healthy people that contributed greatly to the
understanding of microbiome composition in different body parts of healthy subjects, including the
vaginal microbiome [21]. Currently, second generation high-throughput sequencing (HTS) technologies,
such as those provided by Illumina platforms, are being extensively applied to microbiome studies.
More recently, third generation HTS technologies have also reached and contributed to the microbiome
research field [24,25].

3. Microbiome and Cancer

The concept of the human microbiome was first suggested in 2001 for Joshua Lederberg when he
coined the term “microbiome” to refer to the community of commensal, symbiotic, and pathogenic
microorganisms, which share the same space with and form a complex interaction with specific human
tissue compartments [21,26].

Changes in human microbiome homeostasis may impair the symbiotic relationship between host
and microorganisms, promote physiological changes in the individual, and lead to the development
of diseases such as cancer [27]. Recent studies show that the microbiota plays an important role
on the development of different cancer types suggesting its involvement in various carcinogenic
mechanisms [28,29]. Accordingly, the microbiota composition has been associated with breast cancer.
A breast microbiome with differences in its composition between women with breast cancer and
healthy individuals has been reported [30]. Moreover, a report compared four major breast cancer
types with respect to their microbial signatures and described differences in their bacterial, viral, fungal,
and parasitic compositions. For instance, two breast cancer subtypes (triple-negative and triple-positive)
were remarkably distinct from each other, exhibiting very different microbial patterns [31]. Besides
that, microbiome compositions were related with prostate health and disease. In fact, urinary,
gastrointestinal, and oral microbiota signatures were associated with prostate alterations, including
cancer [32]. Also, fecal microbiome analysis exhibited differences between prostate cancer and healthy
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samples [33]. Taken together, even though those results do not specify causality, they suggest a strong
association between microbiome signatures and cancer at different anatomical sites.

The relationship between lung cancer and local bacterial composition has also been explored.
The lower airways of lung cancer patients exhibited an enrichment of oral commensal bacteria (such as
Streptococcus and Veillonella), which was related to upregulation of signaling pathways commonly
associated with lung carcinogenesis [34]. In the gastrointestinal tract, the relationship between cancer
and the microbiome composition has been extensively described. For example, a report compared
the fecal microbiota from patients with neoplasia at different gastrointestinal sites (stomach, pancreas,
small intestine, colon, and rectum). It was shown that the microbial patterns were different from
control samples and, interestingly, the bacterial composition changed according to the affected site [35],
suggesting that each gastrointestinal cancer has its own microbial signature. Concerning the esophagus,
a shift in its microbiome to a less diverse community with dominance of single bacterial species
(such as Campylobacter and Lactobacillus) was correlated with esophageal adenocarcinoma [36]. Further,
Helicobacter pylori infection is a recognized risk factor for gastric cancer development, but other
species from the gastric microbiome are also being associated with carcinogenesis [37]. In addition,
intestine microbiome composition is linked with cancer development as a positive association between
F. nucleatum and colorectal carcinoma has been reported [38,39]. Anal microbiome composition was
also reported to change in Nigerian men who have sex with men (MSM) according to HIV risk, hr-HPV
prevalence, sexual practices, and other factors [40].

Gynecological cancers have also been associated with microbiome constitution [41]. A study
compared the microbiomes from different sites of the female reproductive tract (vaginal, uterine,
Fallopian tubes, and ovarian samples) between women with endometrial cancer, endometrial
hyperplasia, or benign uterine alterations. The authors described that endometrial cancer and
hyperplasic patients had microbiome signatures distinguishable from that of the group with benign
conditions, being Atopobium vaginae and Porphyromonas spp. particularly increased in the gynaecological
tract from cancer subjects [42]. Of note, Fusobacterium spp. were also found in high prevalence among
cervical cancer samples from Mexican women [9]. Also, microbiome analyses of ovarian cancer
samples exhibited unique viral, bacterial, fungal and parasitic signatures that differ from the findings in
healthy ovarian tissues [43]. Lastly, cervical neoplasia has been constantly associated with an increased
diversity of vaginal microbiota [44], a relationship that will be further addressed in this review.

Altogether, the reports mentioned above harbor evidence from distinct organs linking the
microbiome to cancer outcomes. However, the direction of this relationship is not completely
understood. Whether microbes could act as carcinogenic agents leading to neoplasia or the tumor
microenvironment modulates its surrounding microbial community still remains to be elucidated.
Despite that, several microbial carcinogenesis mechanisms are being described, suggesting a driver role
of microbes on cancer development (Figure 1). For example, microorganisms can produce toxins able
to modify host cells and even modulate the immune system affecting its functionality [45,46]. In this
context, some bacterial strains were reported to produce compounds referred to as genotoxins able to
induce DNA damage [46]. As an example, specific Escherichia coli strains harboring the pks genomic
island produce colibactin, a toxin that causes DNA double-strand breaks (DSB) in cultured mammalian
cells [47]. Besides the DSB-induced damage response, colibactin-producing E. coli were also reported
to modify the physiology of intestinal epithelial cell lines leading to an increased production of growth
factors and, therefore, stimulating cell proliferation [48]. The cytolethal distending toxins (CDTs) are
genotoxins commonly found in gram-negative pathogens and are composed of three subunits referred
to as CdtA, CdtB, and CdtC. CDTs have tripartite structures and, while CdtA and CdtC are required to
deliver properly CdtB into cells, CdtB induces DNA damage [49]. Indeed, CDT exposure of human
colon epithelial cells lines increased genetic instability, especially in APC- or p53-deficient cells [50].
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Figure 1. The impact of microbiota dysbiosis in carcinogenesis. Dysbiotic microbiota (blue and pink 
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promoting immune response alterations and DNA damage, or by directly eliciting tissue damage, 
thus facilitating infection by oncoviruses. 

In addition to genotoxic effects, microbial communities have also been reported to modulate 
cancer through induction of an inflammatory milieu. In fact, microbial components induce 
activation of tumor-associated myeloid cells, leading to enhanced secretion of IL-23 and IL-17, 
cytokines able to stimulate colorectal tumor growth in mice [51]. Similarly, E. coli was shown to 
induce a pro-carcinogenic effect only when an inflammatory host response was present [52] and 
colorectal tumors with high abundance of Fusobacterium nucleatum exhibited a proinflammatory 
expression pattern [53]. Taken together, although all of those previous reports were described for 
colorectal cancer (CRC), they strongly suggest inflammation-associated carcinogenesis as a 
mechanism by which microbiota affect the immune system and participate in neoplasia 
development. Accordingly, mice with toll-like receptor 4 (TLR4, a receptor for bacterial 
lipopolysaccharide) constitutively activated registered colitis-associated neoplasia more often than 
WT counterparts [54], while TLR4 knockout animals developed significantly less colonic tumors 
when compared to controls [55]. However, it is noteworthy that bacteria can also signal directly to 
other cells independently from the immune system. For example, the adhesin FadA expressed by F. 
nucleatum binds to E-cadherin expressed by CRC cells, inducing signaling pathways that lead to 
proliferation and other oncogenic responses [56], therefore participating in carcinogenesis without 
necessarily eliciting inflammation. 

Several studies have reported a microbial-dependent immune evasion that could facilitate 
tumor establishment. The γ-glutamyl transpeptidase (GGT) protein produced by H. pylori was able 
to abrogate T lymphocyte proliferation and induced its cell cycle arrest in G1 phase [57], while F. 
nucleatum density in CRC tissues was inversely proportional to T-cell abundance [58]. Those are 
suggestive evidence that microbes can act by hindering immune responses, creating a mechanism 
that favors tumor cell survival. In this context, the F. nucleatum Fap2 protein was reported to interact 
with an inhibitory receptor of NK cells (TIGIT), leading to cytotoxic activity blockade and tumor 
survival [59]. Also, gastric epithelial cells incubated with H. pylori expressed B7-H1 (PD-L1) and 
induced naïve T-cells to differentiate into a regulatory T-cell (Treg) phenotype, an 
immunosuppressive pathway [60]. Those results suggest that the bacterial composition within the 
tumor microenvironment can directly drive immune escape. Even the efficacy of anticancer 
immunotherapy using antibodies that target and block CTLA-4 (an inhibitory immunoreceptor) was 
demonstrated to change according to the gut microbiota constitution [61]. Therefore, microbiome 
composition is being currently proposed as a predictive marker for immunotherapy success [62,63]. 

Figure 1. The impact of microbiota dysbiosis in carcinogenesis. Dysbiotic microbiota (blue and pink
rods and circles) may drive carcinogenesis either by modulation of host mechanisms, such as promoting
immune response alterations and DNA damage, or by directly eliciting tissue damage, thus facilitating
infection by oncoviruses.

In addition to genotoxic effects, microbial communities have also been reported to modulate
cancer through induction of an inflammatory milieu. In fact, microbial components induce activation
of tumor-associated myeloid cells, leading to enhanced secretion of IL-23 and IL-17, cytokines able to
stimulate colorectal tumor growth in mice [51]. Similarly, E. coli was shown to induce a pro-carcinogenic
effect only when an inflammatory host response was present [52] and colorectal tumors with high
abundance of Fusobacterium nucleatum exhibited a proinflammatory expression pattern [53]. Taken
together, although all of those previous reports were described for colorectal cancer (CRC), they
strongly suggest inflammation-associated carcinogenesis as a mechanism by which microbiota affect
the immune system and participate in neoplasia development. Accordingly, mice with toll-like receptor
4 (TLR4, a receptor for bacterial lipopolysaccharide) constitutively activated registered colitis-associated
neoplasia more often than WT counterparts [54], while TLR4 knockout animals developed significantly
less colonic tumors when compared to controls [55]. However, it is noteworthy that bacteria can also
signal directly to other cells independently from the immune system. For example, the adhesin FadA
expressed by F. nucleatum binds to E-cadherin expressed by CRC cells, inducing signaling pathways
that lead to proliferation and other oncogenic responses [56], therefore participating in carcinogenesis
without necessarily eliciting inflammation.

Several studies have reported a microbial-dependent immune evasion that could facilitate tumor
establishment. The γ-glutamyl transpeptidase (GGT) protein produced by H. pylori was able to abrogate
T lymphocyte proliferation and induced its cell cycle arrest in G1 phase [57], while F. nucleatum density
in CRC tissues was inversely proportional to T-cell abundance [58]. Those are suggestive evidence
that microbes can act by hindering immune responses, creating a mechanism that favors tumor cell
survival. In this context, the F. nucleatum Fap2 protein was reported to interact with an inhibitory
receptor of NK cells (TIGIT), leading to cytotoxic activity blockade and tumor survival [59]. Also,
gastric epithelial cells incubated with H. pylori expressed B7-H1 (PD-L1) and induced naïve T-cells to
differentiate into a regulatory T-cell (Treg) phenotype, an immunosuppressive pathway [60]. Those
results suggest that the bacterial composition within the tumor microenvironment can directly drive
immune escape. Even the efficacy of anticancer immunotherapy using antibodies that target and block
CTLA-4 (an inhibitory immunoreceptor) was demonstrated to change according to the gut microbiota
constitution [61]. Therefore, microbiome composition is being currently proposed as a predictive
marker for immunotherapy success [62,63].
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4. Cervicovaginal Microbiome

4.1. Cervicovaginal Bacterial Composition and Profiles

The cervicovaginal microbiota can be classified into five groups based on the 16S rRNA
high-throughput sequencing (16S-HTS) data according to the bacterial species present [64]. Those
groups are called community state types (CSTs), a term that was first attributed by Ravel in 2011 [64].
CSTs were named from I to V according to dominant bacteria. CSTs I, II, III, and V contain Lactobacillus
crispatus, L. gasseri, L. iners, and L. jensenii as the dominant species, respectively. CST IV exhibit bacterial
high diversity, with increased frequency of anaerobic species such as Gardnerella, Megasphera, Atopobium,
and Prevotella [64–66]. The cervicovaginal microbiota unbalanced composition, consisting of high
diversity and low Lactobacillus abundance, like CST IV, characterizes a state named dysbiosis. Some
women with dysbiosis develop symptoms such as abnormal vaginal discharge, inflammation, odor,
and pruritus, being diagnosed, under these conditions, with bacterial vaginosis [67,68]. Although some
women show symptoms, a great part of them are asymptomatic [65]. However, both symptomatic and
asymptomatic women are more likely to acquire HIV, HPV, and other infections [66].

In general, the Lactobacillus genus shows high abundance in cervicovaginal microbiota and was
first described in 1892 by Döderlein [69]. Lactobacillus species like L. crispatus, L. gasseri, and L. jensenii
are able to produce lactic acid and hydrogen peroxide (H2O2), which inhibit the growth of other
bacteria and viruses [70]. On the other hand, L. iners is considered a transitional species to the dysbiosis
state [71].

The composition of the cervicovaginal microbiota is dynamic, changing due to the hormonal
fluctuations that occur during women’s reproductive cycle, use of oral contraceptives, sexual activity,
vaginal douching, lactation, diabetes mellitus, and stress [72]. During puberty, there is an increase
in estrogen promoting the maturation, proliferation, and accumulation of glycogen in the vaginal
epithelium [72]. Glycogen is catabolized to smaller polymers by the alpha-amylase present in the vaginal
epithelium, which is further metabolized to lactic acid by Lactobacillus species [72]. Of the two acid lactic
isomers (D- and L-lactic acid), D-lactic acid is more protective against infections [72,73]. Interestingly,
differently from other Lactobacillus species, L. iners has a small genome and is unable to produce D-lactic
acid and H2O2 [71,72]. Instead, L. iners produces L-lactic acid and several studies correlate the presence
of the latter with viral infections. L. iners can produce inerolysin, a cholesterol-dependent cytolysin [74].
Inerolysin is a pore-forming toxin like the vaginolysin protein secreted by Gardnerella [71,74,75] which
forms pores in vaginal epithelium, compromising its integrity and favoring viral infections. Besides
lactic acid production, Lactobacillus species also produce antimicrobial peptides such as bacteriocins
and biosurfactants, which inhibit pathogen growth and establishment [11,72].

4.2. Cervicovaginal Microbiota and Relationship to Viral Infection

The microbiota plays an important role controlling viral infections, such as those caused by HPV
or HIV [10,76–79]. Viral infections are responsible for approximately 15% of cancer cases worldwide
and viruses that are associated with cancer include HIV, Epstein-Barr virus (EBV), Kaposi’s sarcoma
herpesvirus (KSHV) or human herpesvirus type 8 (HHV-8), human papillomavirus (HPV), and hepatitis
B and C viruses [80]. Those viruses use different strategies that lead to carcinogenesis either affecting
directly the cellular machinery or through of an indirect mechanism, by immune response inhibition
or chronic inflammation. On the other hand, viruses may not be the sole determinants of certain
malignancies. HPV infection, for example, is a necessary but not sufficient cause for cervical cancer
development. It is not known why most women infected by HPV eliminate the infection and do
not develop cervical cancer. Interestingly, the microbiota is the first line of contact against infections,
and depending on its composition is able to produce lactic acid and H2O2 that have a protective
effect against viral and bacterial infections [11,72] (Figure 2). Cross-sectional studies demonstrate a
negative relationship between HPV infection and CIN with Lactobacillus dominance, except for L. iners.
The L. iners microbiota (CST III) has also been associated with higher frequency of HIV, HPV, and HSV-2
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infection [71,81]. A longitudinal study comparing the microbiota of HPV-positive and negative women
also demonstrated that the presence of L. gasseri is positively associated with HPV elimination [79].
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Figure 2. Bacterial bioproducts modulate cervical microenvironment. Bacterial cervical communities
named CSTs (community state types) are displayed on the top of the Figure (A,B) in roman numerals
(I, II, III, IV). (A) CST I, II, and V contain dominant Lactobacillus (non-iners) species (dark blue rods)
and produce high level of lactic acid, hydrogen peroxide, and bacterial bioproducts (bacteriocins and
biosurfactants). (B) CST III shows the Lactobacillus iners-dominant community (pink rods) and CST IV
displays bacterial high diversity (light blue rods and circles) with increased frequency of anaerobic
species. They both produce less lactic acid and exhibit inerolysin, sialidase, and butyric acid production.
In addition, CST III and IV modulate immune responses by induction of proinflammatory cytokine
production and recruitment of CD4+CCR5+ lymphocytes to the cervical region.

Although there are several studies on the cervicovaginal microbiome and its association with
viral infections, little is known about the role of microbiome on carcinogenesis and on the mechanisms
responsible for HPV elimination or persistent infection. Recently, a general model of virus–bacteria–host
interaction highlighting two distinct mechanisms was proposed for the contribution of microbiota to
virus-associated cancers [76]. The first one suggests that the microbiota affects directly viral infectivity
through generation of bioproducts that could be able to module virus-host interactions. The second
proposes that bacteria-host interactions affect the host gene expression and this modulation on its turn
affects viral production and could promote the tumorigenesis associated with viral infection. It is
important to highlight that the microbiota is also able to protect the host from viral infections and these
mechanisms vary depending on the microbiota composition as discussed above.

The presence of CST IV in the cervicovaginal niche is associated with a higher risk of developing
HPV persistent infections and consequently cervical lesions [10,11]. Gardnerella vaginallis, present in
CST IV, is able to secrete sialidase that degrades the vaginal mucus by cleaving its glycoproteins [72,82].
The mucus contain proteins such as mucin that provide a physical barrier to the vaginal mucosal
surface and inhibit bacteria-host interactions [11,72], and its degradation compromises the mucosal
barrier and favor genital tract infections. Moreover, the cervicovaginal microbiota metabolism can also
influence virus infectivity. Women that carry Gardnerella-dominant microbiota metabolize tenofovir
administered intravaginally as a microbicide, which reduces the antiretroviral activity of the drug and
increases risk of HIV infection acquisition [83]. Further, bacteria present in CST IV are also able to
produce butyric acid that is able to regulate histone acetylation and many studies have shown the
epigenetic regulation of that metabolite in the reactivation of latent HIV-1 proviruses, indicating a
potential involvement of microbiota in AIDS progression [84].

The profile of CSTs varies according to women’s ancestry [64,65]. While women of European
ancestry show a high frequency of CST I, women of Asian and African ancestries show high frequency of
CST III and IV, respectively [64]. As discussed above, CST IV is associated with the acquisition of some
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viral infections, like HPV and HIV [8,11]. Recent studies show that women with the CST IV have high
production of proinflammatory cytokines, which increases the recruitment of activated CD4+CCR5+

cells to the vaginal mucosa, favoring the acquisition of HIV [8]. Furthermore, the stimulation of
cytokine production by the microbiota (such as TNF-alpha) damages the epithelial barrier, which
could promote HPV infection, and this has been shown in women with CST IV [9]. Thus, women with
dysbiosis can develop chronic inflammation, being this an important factor for cancer development in
different tissue types, including cervical cancer [85]. On the other hand, the lactic acid produced by
Lactobacillus is also able to modulate immune responses and influence viral infections. In vitro, lactic
acid can act directly on the cervicovaginal epithelium, inducing the production of the anti-inflammatory
cytokine IL-1Ra and reducing pro-inflammatory cytokine production. This has been observed in
three distinct in vitro cellular models, cervicovaginal epithelial cell lines, primary vaginal epithelial
cells and in organotypic 3D tissue (EpiVaginal tissue model) [86]. The ability of lactic acid to inhibit
pro-inflammatory cytokine production induced by pathogen-associated molecular patterns can affect
virus infection, such as that by HIV, since some immune mediators recruit and activate HIV target cells,
favoring infection.

Proteomic studies have been performed on cervicovaginal fluid to analyze and understand the role
of the microbiota on the cervical region metabolism [87–89]. A study using proteomic data showed that
dysbiosis causes cervicovaginal inflammation and detrimental changes within the mucosal barrier [90].
Another recent study shows that cervicovaginal microbiome proteomic analysis may be conducted using
the residual Papanicolaou test supernatants for community composition and functional microbiota
characterization [87]. Proteomic analysis can be used in research to understand the cervicovaginal
microbiome and its contribution to women’s health and disease in the metabolic context.

5. Microbiota as a Biomarker for HPV and Cervical Dysplasia

Although HPV infection is a necessary cause, it is not determinant for cervical cancer development.
HPV infects squamous epithelial basal cells, inducing lesions and even cervical cancer when it is not
eliminated [91]. However, the majority of HPV infections are cleared and only a small fraction of
infected women progress to premalignant lesions and cancer [91]. Pap smear has been used for cervical
screening, which resulted in a decrease in deaths from cervical cancer. Nevertheless, the assay has low
sensitivity (60–80%), high false-negative rates (30%), and significant false-positive rates, ranging from
15–50% [92,93]. On the other hand, introduction of HPV-DNA assays for screening has improved the
results from equivocal cytology triage with Pap smear [94].

In many countries, Pap cytology is the primary screening test either alone or in conjunction with
HPV DNA test (co-testing), although in some European countries a switch to primary HPV-DNA
technique followed by cytology (Pap smear) has been recommended [95]. The American Cancer Society
recommends the use of the HPV test as part of follow-up for an abnormal Pap result in women aged
21–29, while for women aged >31 co-testing screening is recommended every five years [96].

The HPV-DNA test is a high-sensitive method, so the absence of high-risk HPV-DNA indicates low
risk for CIN3 and cancer development, which may allow safe prolonging of cervicovaginal screening test
intervals [95]. Additionally, even when HPV-DNA scores positive, the majority of HPV infections are
eliminated and do not progress to cervical dysplasia. Nevertheless, since the risk of cancer development
still exists, screening at short intervals is strongly recommended. Therefore, the characterization of
novel biomarkers is important in order to decide precisely how each HPV-positive women will be
treated (colposcopy) and whether HPV-DNA-negative women have high risk to acquire a new HPV
infection and progress into CIN. They may function as secondary markers after HPV-DNA test and
Pap smear to identify women under risk to HPV acquisition, persistent infection and cervical cancer,
contributing to better follow-up/treatment strategies.

Acknowledging a biomarker potential, high diversity microbiota has been frequently shown
to correlate with HPV status and different severities of cervical dysplasia, suggesting a potential in
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indicating vaginal health and disease (Figure 3). Therefore, we further discuss the cervicovaginal
microbiome as a promising biomarker not only for HPV status but also for cytologic abnormalities.
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Figure 3. Bacterial diversity distribution in intraepithelial neoplasia progression. The scheme displays
the progression of the cervical epithelium from normal to invasive cervical cancer, as well as the
bacterial diversity (alpha-diversity) and the species abundance in the cervical microenvironment at
each cytological stage. The normal cytology is commonly associated with CSTs I, II, or V, which are
Lactobacillus species (non-iners)-dominant (light green rods). However, following the cervical disease
progression, the relative abundance of Lactobacillus non-iners species start to decrease. Concomitant to
that, alpha-diversity increases and the microbiota is changed to CST III (pink rods and circles) or IV
(light blue and pink shapes). Some bacterial species were found, in different studies, associated with
cervical disease progression. They are also displayed in this figure in a representative graph of relative
abundance (lower panel).

Different reports consistently demonstrated the relationship between HPV infection and/or
persistence and microbiome composition. In fact, a study reported that HPV+ women exhibited a
more complex microbiome diversity than HPV- counterparts [97]. Similarly, a work with Korean twins
reported that HPV+ patients had a high-diversity vaginal microbiome with reduced proportion of
Lactobacillus spp. when compared to their HPV- matches. Moreover, bacteria of the Sneathia genus
was remarkably associated with HPV positivity and suggested as a biomarker for viral status [78].
Taken together, those reports strongly suggest a relationship between microbiome increased diversity
and HPV infection. On the other hand, they do not demonstrate a causality link between a shift in
microbiota composition and HPV acquisition, since those studies were not longitudinal with a patient’s
follow-up through time.
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In this scenario, a study following women for 16 weeks showed that a vaginal microbiota dominated
by L. gasseri was related to a faster HPV clearance, while microbiomes with lower Lactobacillus levels
and higher abundance of Atopobium, Gardnerella, and Prevotella were associated with a slower infection
resolution [79]. Further, L. crispatus was the most prevalent Lactobacillus spp. in Italian women that
cleared HPV infection or were consistently HPV-, while a microbiome composition characterized for
lower Lactobacillus spp. counts and higher abundance of Gardnerella, Prevotella, Atopobium, and Sneathia
(a combination commonly associated with bacterial vaginosis) was the most frequent among women
with persistent hr-HPV infection during one year. Also, among patients with persistent HPV infection,
L. iners was the most abundant Lactobacillus species [98]. Accordingly, a longitudinal observation
of African/Caribbean women living in Canada showed that a microbiome with lower abundance of
Lactobacillus spp. and greater representation of anaerobic bacteria was more frequent in HPV+ than in
HPV- subjects [99]. Altogether, those studies are important to elucidate the cause-effect relationship
between vaginal microbiota and HPV status. Since they report a temporal dynamics in which infection
resolution and persistence are associated with different bacterial compositions, microbiome alteration
is suggested as a factor that could occur before HPV acquisition, modulating, and facilitating viral
maintenance. Moreover, a possible protective role for Lactobacillus spp. dominated microbiota is
noteworthy, while its paucity and increased amounts of other bacterial genera is related with higher
HPV risk. Nevertheless, a study has recently provided some insights into possible interactions between
viruses and the vaginal microbiome. The authors demonstrated that cervicovaginal samples with
CSTs I or IV that were positive for oncogenic viruses (HPV and/or polyomaviruses) showed increased
abundance of L. crispatus as well as P. timonensis and S. sanguinegens, respectively, when compared to
its counterparts without any virus detected [100]. That suggested that the presence of viruses may also
exert influence in the cervicovaginal microbiome composition. Ethnicity is another important factor
that must be considered, since L. gasseri (together with G. vaginalis) was more frequent in HPV+ subjects
compared to HPV- in a Chinese cohort [97] as well as L. mucosae and Enterococcus faecalis were the most
dominant species among women from Northeast India [101], which opposes previous findings.

It is also important to highlight that microbiome composition has also been related to other
viral infections. For example, African women with L. crispatus-dominated microbiota registered
significantly less frequent HIV, HSV-2, and HPV infections and bacterial STIs when compared to other
compositions [81]. A report studying Caucasian Italian women demonstrated higher rates of HPV
infection among samples belonging to CSTs III or IV, as well as a higher frequency of polyomaviruses
in women with CSTs III or I. Although the L. crispatus-dominated environment has been associated
with the presence of polyomaviruses, a longitudinal analysis of those patients revealed that CST I was
associated with increased rates of viral clearance, while women harboring CSTs III or IV commonly
progressed to persistent infections [100].

As discussed above, the vaginal microbiota composition has been extensively associated with HPV
positivity and suggested as a promising biomarker for HPV risk. Accordingly, HPV infection is strongly
recognized as a necessary, but not sufficient, cause for cervical carcinogenesis. Therefore, since specific
bacterial compositions are linked with increased viral infections, the microbial community could also
be associated with cervical dysplasia development and inform about cytological abnormalities. Indeed,
different studies have already described a cervicovaginal microbiome shift with increased proportions
of bacteria such as Gardnerella, Prevotella, Atopobium, and decreased abundance of Lactobacillus spp.
occurring together with CIN and cancer. However, again, the cause–effect relationship between
microbiome and cervical dysplasia has not been elucidated well [11].

Differences in microbiota composition were found between normal cytology, cervical lesions
and cancer. That is, while L. crispatus and L. iners were respectively the predominant species for
HPV- and HPV+ women without cytologic alterations, Sneathia spp. and Fusobacterium spp. were
predominant in squamous intraepithelial lesions and cervical cancer, respectively [9]. Similarly, CST IV
(high diversity microbiome lacking Lactobacillus spp.) frequency was shown to be directly proportional
to cervical abnormalities severity: the cluster was gradually more abundant in low-grade squamous
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intraepithelial lesions (LSIL), high-grade SIL (HSIL) and cervical cancer. Moreover, HSIL samples had
greater abundance of Sneathia sanguinegens, Anaerococcus tetradius, and Peptostreptococcus anaerobius
than LSIL, suggesting shifts in microbiome composition according to disease severity [13]. Likewise,
Lactobacillus dominance decreased together with cervical dysplasia severity while Sneathia spp. were
increased in low/ high grade precancerous lesions and invasive cervical carcinoma [102]. In this context,
different analyses suggest a paucity of Lactobacillus and increased relative abundance of other species
as a factor associated with cervical abnormality development. Those reports also indicate that each
stage of cervical dysplasia is associated with a corresponding microbial pattern. For example, while
Lactobacillus spp. are more associated with normal cytology and absence of HPV, a higher abundance of
Sneathia spp. was observed throughout cancer development and, therefore, could be used as indicative
of vaginal disease together with other species mentioned above.

Additional evidence corroborates the findings described above. First, the presence of A. vaginae,
G. vaginalis, and L. iners together with L. crispatus in low levels was suggested as the most hazardous
combination for CIN development, with an odds ratio of 34.1 for CIN in the presence of hr-HPV [14].
Moreover, a report indicated that B. fragilis, L. delbrueckii, and S. agalactiae had an indirect effect on
cervical cancer mediated by HPV infection, while A. vaginae and P. stutzeri also exhibited a direct
effect on cervical carcinogenesis independently of HPV status [103]. Of note, a study evaluated the
impact of loop electrosurgical excision procedure (LEEP), a method to treat CIN 2/3 to avoid cancer
development, in the microbiome composition. The authors noticed that a microbiota containing
Prevotella and lacking a consistent dominant species shifted significantly to an L. iners dominated
community after three months of LEEP intervention [104]. However, in sharp contrast to those findings,
it has been reported that a microbiome dominated by unclassified Lactobacillus spp. and L. iners was
significantly associated with CIN 2 and CIN 3 in women with hr-HPV [105]. Although L. iners was
already described to be related with CIN [14] or HPV positivity [9], the dominance by other Lactobacillus
species was previously reported as a protective factor, but this cohort showed a different observation
for unclassified Lactobacillus spp. In this scenario, Hispanic ethnicity by itself was associated with a
decrease in Lactobacillus dominance and Sneathia spp. enrichment when compared to non-Hispanic
women living in the U.S [102].

HIV-positive women show increased risk of HPV acquisition and CIN development [106–108].
A study that analyzed the cervicovaginal microbiome in the postpartum period of HIV-positive women
showed a high frequency of L. iners, Moryella, Schlegelella, and Gardnerella associated with CIN with
significant odds ratios of 40 for Moryella and of 3.5 for Schlegelella [12]. In a longitudinal analysis,
when comparing the bacterial microbiome of women that showed CIN regression to normal cytology,
Gardnerella appeared with a higher frequency in CIN when compared to normal status [12]. Similarly,
a report from HIV+ pregnant women in Zambia showed that they had higher microbiome diversity,
greater abundance of G. vaginalis and A. vaginae and lack of L. crispatus when compared to HIV- pregnant
participants. Also, L. iners enrichment was observed in HIV- individuals and in HIV+ subjects with
preconceptional ART exposure [109]. These findings corroborate the association of specific bacteria
with cervical premalignant lesions. Despite such association, it is important to highlight that little is
known about the longitudinal nature of changes in microbiome in the development of CIN and cervical
cancer in HPV+ women. However, the association seen in cross-sectional and in some longitudinal
studies indicates that the microbiome could be used as a sensor for cervical alteration and risk for
CIN progression.

6. Clinical Molecular Diagnostics

The bacterial abundance in the cervicovaginal microenvironment is variable and the term CST is
used to indicate the dominant species present, as described above. CST IV is the most diverse type
and has bacterial species linked with CIN, such as Gardnerella, Prevotella, and Atopobium as dominant
species, and other diverse species with variable abundance, like Anaerococcus sp., Peptostreptococcus
sp., Fusobacterium sp., Moryella, Sneathia, and Schlegelella [11–13]. The current approach to detect
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bacterial species in scientific studies is the 16S-HTS. This technique is able to efficiently detect the
complexity of bacteria present in a unique sample and recent studies have discussed its use as clinical
diagnostics [110].

Clinical samples encompass a complex array of multiple bacterial species, posing a challenge to
proper microbial identification methods. The cost of 16S-HTS has decreased during the last decade
and can be applied as a diagnostic method in medical microbiology laboratories [110]. The main
challenge of its introduction as a diagnostic method is data analysis. However, the recent development
of user-friendly pipelines and softwares for 16S analysis bypassed this obstacle [111–115]. On the
other hand, alternative molecular diagnostic tests such as direct probe assays and real-time PCR
have also been developed and commercialized to identify specific bacteria in the cervicovaginal
microenvironment using smear samples.

Women with bacterial vaginosis (BV), irrespective of their symptomatic status, show higher
frequency of viral infections and cervical lesions [11,66]. In general, diagnosis is done by Amsel criteria
and direct Gram staining of vaginal secretions (Nugent score) [116,117]. The Amsel criteria is based on
observation of at least three out of four parameters: clue cells on microscopy, thin watery homogeneous
discharge, pH > 4.5, and fishy odor upon addition of 10% potassium hydroxide to the secretion.
The Nugent score varies from 0–3 (normal), 4–6 (intermediate), to 7–10 (BV) and the values are attributed
according to the number of large gram-positive rods (Lactobacillus morphotypes), gram-negative or
gram-variable (BV flora) bacteria observed from the secretion collected through a Pap exam. Due to their
limitations, novel methods using molecular diagnostics have been developed [118–120]. Commercial
tests using DNA probes are able to detect G. vaginalis with high sensitivity (90–94%) and specificity
(97–81%) when compared to Amsel criteria and Nugent score methods [120]. Further, there are
some commercial real-time PCR tests that can also be used in BV diagnosis. The tests are based in
semi-quantitative or quantitative multiplex real-time PCR assays and are able to identify different
bacterial species, such as A. vaginae, BVAB-2, Megasphaera type 1 and 2, L. acidophilus, L. crispatus,
L. jensenii, and G. vaginalis with high sensibility (90–99%) and variable specificity (70.2–95%) when
compared to Nugent score and Amsel criteria [120,121]. The variable specificity can be explained
by the high occurrence of asymptomatic vaginal dysbiosis [121]. Some bacteria measured in these
tests are associated with HPV infection, persistence, cervical lesions, and cancer [11]. Therefore, all
these methods, including 16S-HTS, can be implemented to analyze HPV+ women with potential risk
to develop cervical lesions or viral persistence. In fact, the use of molecular techniques in clinical
diagnostics has evidenced a wide range of suboptimal vaginal microbiome compositions. That is,
the entities that were referred to as BV after Amsel or Nugent diagnosis (Amsel or Nugent-BV)
represent only a small fraction of the altered microbiome compositions detected by molecular methods
(Molecular-BV). In this scenario, the molecular detection of BV is clinically relevant since it is associated
with unfavorable outcomes such as increased HIV acquisition risk and is also informative for patients
whose suboptimal bacterial flora could not be detected by Amsel criteria and/or Nugent score [122].

7. Probiotics and Microbiota Manipulation

Women with BV show a high diversity microbiota and the most traditional treatment is the use
of prescribed antibiotics such as metronidazole and clindamycin that do not ensure cervicovaginal
recolonization by Lactobacillus spp. [11] and could in turn lead to relapse. Indeed, high rates of BV
recurrence have already been documented after oral treatment with metronidazole [123]. Moreover,
antibiotic therapy is related with side effects [124], lack of efficiency due to resistant strains [125],
and interference with the normal vaginal microbiota [126]. In this context, the emergence of novel
therapeutic strategies can be helpful to improve treatment outcomes.

Probiotics are “live microorganisms which, when administered in adequate amounts, confer
a health benefit on the host” [127]. Therefore, the application of beneficial microbes such as
Lactobacillus spp. could overcome the presence of pathogens and promote a healthy state to the
vaginal microbiome [128]. Over the past years, different evidence has been published acknowledging
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the clinical relevance of probiotics as an adjuvant component together with antibiotic therapy (Table 1).
For example, the consumption of an oral probiotic containing L. fermentum 57A, L. plantarum 57B,
and L. gasseri 57C, together with metronidazole, was able to lengthen the intervals without BV
when compared to antimicrobial therapy alone [129]. Moreover, administration of vaginal tablets
with L. rhamnosus BMX 54 as an adjuvant to antimicrobial therapy was shown to improve the rates
of healthy vaginal microbiota in BV-diagnosed patients comparing to those receiving antibiotics
alone [130]. In agreement to that, oral capsules of L. rhamnosus GR-1 and L. reuteri RC-14 together with
tinidazole significantly reduced Shannon’s diversity of vaginal microbiota in BV-diagnosed women
and increased the relative abundance of Lactobacillus spp. when compared to patients treated only
with antibiotics [131].

The potential of probiotics as a single therapy has also been documented (Table 1). In this
context, vaginal suppositories containing L. rhamnosus IMC 501 and L. paracasei IMC 502 were tested
in apparently healthy women. The authors registered 40% of patients with an intermediate Nugent
score before the treatment and half of them returned to a normal state (low Nugent score) after
the intervention [132]. Besides, when compared to placebo, vaginal capsules of L. fermentum 57A,
L. plantarum 57B and L. gasseri 57C were able to significantly reduce vaginal pH and Nugent score,
suggesting a shift to a healthy vaginal microbiota profile. Also, probiotic administration caused a
transient increase in the abundance of Lactobacillus spp. originally present in the capsules. That is,
the preparation significantly increased Lactobacillus spp. amounts after seven days of treatment, but the
levels slowly declined during the following eight days without intervention [133]. Likewise, in vitro
co-culture assays showed an antimicrobial activity of L. acidophilus GLA-14 and L. rhamnosus HN001
against pathogens associated with BV (Gardnerella vaginalis and Atopobium vaginae) [125]. Altogether,
these data suggest a relevant role for Lactobacillus-based probiotics concerning the maintenance of
vaginal microbiome homeostasis.

Interestingly, Lactobacillus spp. strains have been isolated from healthy women and their potential
as probiotics has been investigated. L. plantarum and L. fermentum strains isolated from healthy Cuban
women exhibited antagonic activity against G. vaginalis, C. albicans, as well as remarkable adhesive
capacities and lactic acid production [134]. Similarly, L. fermentum 9LB6, 4LB16, and 10LB1 and
L. plantarum 9LB4 strains were isolated from Algerian women and suggested as probiotic candidates
based on their relevant inhibitory activity of pathogens, lack of hemolytic capability and other beneficial
properties according to in vitro studies [135]. However, the reports mentioned above lack clinical
evidence. Based on in vitro assays, L. crispatus LbV 88, L. gasseri LbV 150N, L. jensenii LbV 116,
and L. rhamnosus LbV96 strains, originally obtained from healthy pregnant women, were selected
as relevant for vaginal health [136] and further used in a pilot clinical trial in which a yoghurt
preparation containing those beneficial microbes were administered to BV-diagnosed women together
with metronidazole. The study showed that the group receiving probiotics significantly improved the
recovery rate from BV when compared to patients treated only with antibiotics [137].

Evidence linking probiotics to HPV clearance has been published [11]. When the SiHA cell
line naturally infected with HPV-16 was co-cultured with Bifidobacterium adolescentis, a reduction in
HPV E6 and E7 mRNA production was noticed. Acknowledging the relevance of HPV for cervical
cancer development, probiotics could also be linked to cancer prevention. In this context, in vitro
studies demonstrated that the combination of L. gasseri and L. crispatus present cytotoxic effect in
HeLa cervical cancer cells naturally infected with HPV-18 and this effect did not occur in normal
cervical cell lines [138,139]. An interventional study that recruited HPV-positive women with LSIL
reported that patients treated with oral L. casei had a significantly higher chance of resolving cytological
abnormalities compared to untreated women, yet both groups did not differ significantly with respect
to HPV clearance [140] (Table 1). Similarly, a cohort of women with BV or HPV infection and Pap smear
abnormalities were exposed to metronidazole/fluconazole along with Lactobacillus rhamnosus BMX 54
delivered as vaginal tablets. The authors showed that the group receiving long-term probiotic treatment
(for 6 months) exhibited not only a significant higher chance of resolving cytological abnormalities
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but also showed increased rates of HPV clearance when compared to the group receiving short-term
probiotic therapy (for 3 months) [141] (Table 1). Taken together, those reports suggest an interface
between the microbiome constitution, HPV clearance and cervical lesions, raising the possibility that
microbiota modification can avoid cervical cancer development, yet further clinical trials are required
to elucidate this relationship.

Table 1. Highlights of clinical trials that explored the use of probiotics to bacterial vaginosis treatment,
HPV infection and abnormal cervical cytology. BV, bacterial vaginosis; AV, aerobic vaginitis; VVC,
vulvovaginal candidiasis.

Study Treatment Study Characteristics Main Outcomes

Heczko et al.,
2015 [129]

Oral metronidazole 500 mg
twice daily for seven days
together with an oral probiotic
preparation (prOVag®)
containing L. fermentum 57A,
L. plantarum 57B and L. gasseri
57C twice daily for ten days.

578 participants (118 receiving
antibiotic together with
prOVag and 241 treated with
antibiotic together with
placebo);
Patients recruited from nine
private gynaecological clinics
in Poland;
Women with history of
recurrent BV/AV and with
current symptoms were
recruited and underwent
five assessments.

Treatment with probiotics lengthened the
time to a clinical relapse. The average time
to a BV/AV relapse event was 71.4 days for
women treated with prOVag and 47.3 days
for the placebo group (p = 0.0125).
Microbiologically confirmed BV/AV
patients at visit V were significantly less
frequent in the prOVag group (p = 0.04632).
Nugent score achieved statistically
significant differences between visits I and
III, I and IV and IV and V for prOVag group.
For placebo subjects, differences were found
only between visits I and III, III and IV.

Recine et al., 2016
[130]

Oral metronidazole 500 mg
twice a day for seven days
together with vaginal tablets
of L. rhamnosus BMX 54
(NORMOGIN®).
Administration of the
probiotic occured once a day
for 10 days, twice a week for
15 days and once every 5 days
for 7 months.

250 participants (Group A: 125
women subjected to
metronidazol alone and Group
B: 125 patients receiving
antibiotic together with
probiotic).
Women sexually active,
non-pregnant and with BV
diagnostic were recruited at
University of Rome.
Patients were assessed after 2,
6 and 9 months.

After 2 months of treatment, 90.4% of
Group B patients showed BV clinical
remission, compared to 79.4% in Group A
subjects (p = 0.014).
After 6 months, physiological vaginal
microbiota was found in 74.6% of Group B
participants, compared to 25.4% of Group A
women (p < 0.0001).
After 9 months, healthy microbiota were
observed in 79.7% of Group B subjects,
compared to 20.3% in Group A (p < 0.001).
Vaginal pH was significantly higher in
Group A compared to that of Group B at
6-month (p = 0.034) and at 9-month
(p < 0.001) follow-ups.

Laue et al., 2018
[137]

500 mg of oral metronidazole
twice a day for seven days
together with 125g yoghurt
drink twice daily for 4 weeks.
The yoghurt drink (verum)
contained L. crispatus LbV 88,
L. gasseri LbV 150N, L. jensenii
LbV 116 and L. rhamnosus
LbV 96

36 participants were randomly
assigned to a metronidazole
plus probiotic arm (n = 18) or a
metronidazole plus placebo
arm (n = 18).
Women newly diagnosed with
BV were recruited from
Schleswig-Holstein region
in Germany.

Post-intervention, all women receiving
antibiotic plus probiotics showed recovery
from BV, while 35.3% of patients after
antibiotic plus placebo remained with the
condition according to Amsel criteria
(p = 0.018).
Amsel score decreased by 3.41 ± 0.71 for the
probiotic group compared to 1.94 ± 1.95 for
placebo subjects (p = 0.037).
Nugent score decreased by 4.65 ± 2.85 for
probiotic subjects compared to 2.82 ± 3.59
for the placebo group (p = 0.158).

Verdenelli et al.,
2016
[132]

Vaginal suppository
SYNBIO®gin containing
L. rhamnosus IMC 501 and
L. paracasei IMC 502 once daily
for seven days.

35 apparently healthy women
from Italy were enrolled.
Assessments were made three
times: before treatment,
immediately after treatment
and 21 days after treatment.

After treatment, 50% of the women with an
intermediate Nugent score reverted to the
normal state.
There were no significant differences in
vaginal pH comparing the time points
before and after the treatment.
After SYNBIOgin, L. rhamnosus IMC 501 and
L. paracasei IMC 502 exhibited increased
abundance in the vaginal microbiota that
slowly declined over the following 21 days.
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Table 1. Cont.

Study Treatment Study Characteristics Main Outcomes

Tomusiak et al.,
2015
[133]

InVag® vaginal capsules
containing L. fermentum 57A,
L. plantarum 57B and L. gasseri
57C once a day for seven days.

160 women of European
descent and with dysbiotic
vaginal microbiome
were enrolled.
Patients were randomly
assigned either to a group
receiving the InVag
preparation or to a
placebo group.
Four visits were included in
the trial. Assessments were
made at visits I, III and IV.

For InVag subjects, there was a significant
reduction in vaginal pH between visits I
and III (p < 0.0016) and visits I and IV
(p < 0.0001). For placebo patients,
differences were not significant.
For the InVag arm, Nugent score decreased
significantly from visits I to III (p = 0.0001),
I to IV (p < 0.0001) and III to IV (p = 0.0238).
For the placebo arm, Nugent score also
decreased significantly from visits I to III (p
< 0.0001) and I to IV (p = 0.0002). However,
visits III and IV were not significantly
different from each other.
InVag subjects significantly increased L.
plantarum and L. fermentum in their vaginal
microbiota by approximately 1,000 times at
visit III and the levels slowly declined until
visit IV. In placebo subjects, L. plantarum
and L. fermentum increased much more
slowly, by approximately 10 times at visit IV.
L. fermentum 57A, L. plantarum 57B and L.
gasseri 57C were confirmed to be present on
the vaginal epithelium of 82% of InVag
participants at visit III and on 47.5% at
visit IV.

Palma et al., 2018
[141]

500 mg of metronidazole twice
a day for 7 days or daily
fluconazole (150 mg) for two
consecutive days together
with vaginal tablets of L.
rhamnosus BMX 54 for
3 months (short-term) or
6 months (long-term).

117 subjects were randomly
assigned to the short-term
probiotic administration
(group 1, n = 60) or to the
long-term Lactobacilli
implementation (group 2,
n = 57) at University of Rome.
Women diagnosed with yeast
vaginitis / BV together with
HPV infection / cytological
abnormalities were enrolled.
Assessments were made before
treatment, and at 3, 6 and
9 months after intervention.

3 months after treatment, statistically
significant differences were not found
between groups 1 and 2.
After 9 months, 79.4% of patients subjected
to the long-term probiotic administration
solved the cytological abnormalities,
against 37.5% in group 1 (p = 0.041).
After 9 months, 11.6% women from group 1
cleared HPV infection, compared to 31.2%
from group 2 (p = 0.044).

Verhoeven et al.,
2012
[140]

Daily consumption of a
commercially available
probiotic drink (Yakult)
containing L. casei Shirota
during the study period
(6 months).

54 HPV+ women with LSIL
were assigned to a group
receiving probiotics or to a
group without intervention
(control).
The study was developed at
the University of Antwerp,
Belgium.
Assessments were made at
study entry (t1), 3 months after
(t2) and 6 months after (end of
the study, t3).

60% of probiotic-consuming patients solved
the cytological abnormalities against 30.7%
patients without intervention (p = 0.047).
After 3 months, 16% of probiotic subjects
cleared the HPV infection against 7.7% in
control women (p = 0.13).
After 6 months, 29.2% of probiotic intakers
cleared the HPV infection compared to
19.2% of control subjects (p = 0.41).

Given the potential use of probiotics in vaginal health, new approaches for their administration
are being developed. A mucoadhesive vaginal tablet containing Lactobacillus spp. was designed
with two layers: one for rapid dissolution and fast release and another for prolonged release of
remaining microbes [142]. Interestingly, the use of intravaginal probiotics could be further indicated
in situations in which a faster restoration of vaginal health is required such as after chemotherapy,
radiotherapy, or antibiotics use, while oral probiotics would be recommended to avoid recurrent
infections, for example [133]. Moreover, the use of probiotics containing transgenic bacteria has also
been proposed. A vaginal tablet of L. jensenii 1153–1666 genetically altered in order to express an HIV-1
entry inhibitor (cyanovirin-N protein) promoted a successful vaginal colonization by the strain when
tested in macaques [143].
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After the currently recognized effectiveness of fecal microbiota transplant, vaginal microbiota
transplant (VMT) has also been proposed as an interesting field of research for future probiotic
therapy [144]. In this context, the vaginal microbial transfer or vaginal seeding practice for babies
delivered by Cesarean section (C-section) has been discussed [145]. The natural transfer of commensal
bacteria from mother to infant during vaginal delivery birth is essential for a healthy infant, since the
bacteria transferred during this process stimulate the immune system, regulate gut development and
produce vitamins for the host [146–148]. Several studies have reported an association between C-section
and an increase in frequency of asthma, immune disorders, and risk of obesity in the child [149–152].
Vaginal seeding is a technique in which the vaginal microbiota is transferred from the mother using a
cotton gauze or cotton swab with vaginal fluids to the mouth, nose and skin of her newborn [153].
The first study that described vaginal seeding and the microbiota vaginal colonization in newborns was
published in 2016 [153]. This study showed that the microbiome of infants delivered by C-section that
were exposed to maternal vaginal fluids at birth resembled the microbiota of vaginally delivered infants.
However, the health effect on infant’s life promoted by vaginal microbiome transferred artificially via
vaginal seeding is still unclear.

In addition to mother-to-infant transplantation, VMT has been recently evaluated as a treatment
option for patients with recurrent BV after being subjected to different antimicrobial regimens [154].
Vaginal fluid was collected from healthy donors to test its potential therapeutic effects in five patients
with relapsing BV. After being evaluated according to pH and microscopy, the discharge from healthy
donors was diluted with 1 mL of sterile saline and introduced in the posterior fornix of the recipients.
Out of five patients enrolled, four showed BV long-term remission after receiving the VMT, while
the remaining participant experienced a partial response. VMT was able to change the recipient’s
microbiome composition. One month after treatment, four out of five patients exhibited a remarkable
shift in its microbiome composition. The post-VMT microbiota was characterized by an increase in
Lactobacillus species coupled with a simultaneous decrease in members of Bifidobacterium, Prevotella,
and other genera. Interestingly, three patients required repeated VMT (and even a donor change for
one of them) to reach BV remission [154], suggesting that the VMT dosage and possible donor-recipient
specifications are still to be determined with confidence.

A potential risk limiting VMT feasibility is the transmission of pathogens between donor and
recipient. DeLong and collaborators proposed a screening protocol for cervicovaginal fluid from
Lactobacillus-dominated donors in order to reduce the risk of pathogen transmission. The authors
suggested a list of tests to perform on donor candidates before VMT, such as HIV (1 and 2), HAV,
HBV, HCV, EBV, Treponema pallidum, Chlamydia trachomatis, Neisseria gonorrhoeae, Toxoplasma gondii,
and others. According to their criteria, from 20 candidates enrolled in the study, only seven were
eligible for vaginal fluid donations, indicating the importance of donor screening prior to VMT [155].

8. Conclusions

The cervicovaginal microbiome is a dynamic network of microorganisms able to modulate a
host’s immune responses and promote an environment susceptible to viral infection acquisition
and development of CIN. Recent studies showed the association between high-diversity cervical
microbiota and HPV infection, CIN and cervical cancer. On the other hand, women with dominant
Lactobacillus species (except for L. iners-dominant) can promote HPV clearance and the absence of
cervical lesions. Thus, specific bacteria or the high diversity microbiota may function as biomarkers for
cervical alterations, and can as well as be used to identify women at high risk to develop persistent
HPV infection, CIN, and cancer. However, the mechanisms involved in the role of the microbiota on
the promotion of, or protection to those conditions are yet to be fully elucidated.

The use of probiotics is demonstrated in vivo and in vitro for HPV clearance and significant
CIN regression. Therefore, the manipulation of the microbiota by the use of probiotics or by VMT
may be a feasible option to induce HPV infection clearance, CIN regression, and stop progression to
cervical cancer.
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