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CNT Sheet Air Electrode for the 
Development of Ultra-High Cell 
Capacity in Lithium-Air Batteries
Akihiro Nomura, Kimihiko Ito & Yoshimi Kubo

Lithium-air batteries (LABs) are expected to provide a cell with a much higher capacity than ever 
attained before, but their prototype cells present a limited areal cell capacity of no more than 
10 mAh cm−2, mainly due to the limitation of their air electrodes. Here, we demonstrate the use of 
flexible carbon nanotube (CNT) sheets as a promising air electrode for developing ultra-high capacity in 
LAB cells, achieving areal cell capacities of up to 30 mAh cm−2, which is approximately 15 times higher 
than the capacity of cells with lithium-ion battery (LiB) technology (~2 mAh cm−2). During discharge, 
the CNT sheet electrode experienced enormous swelling to a thickness of a few millimeters because 
of the discharge product deposition of lithium peroxide (Li2O2), but the sheet was fully recovered after 
being fully charged. This behavior results from the CNT sheet characteristics of the flexible and fibrous 
conductive network and suggests that the CNT sheet is an effective air electrode material for developing 
a commercially available LAB cell with an ultra-high cell capacity.

Due to the increasing demand for vast energy storage media, battery systems far exceeding the current 
lithium-ion battery (LiB) technologies, such as lithium-sulfur, multivalent ions, or metal-air batteries, have been 
under development. Lithium-air batteries (LABs), which deliver electric energy from the aerial oxidation of lith-
ium metal, have large theoretical energy densities of up to 3,500 Wh kg−1 (based on the weight of lithium peroxide 
(Li2O2) as a discharge product), which is more than 10 times that of current LiBs and is the largest among those 
developing batteries1–4. By leveraging this high energy density nature, LABs are expected to be used to develop a 
cell with a larger capacity than ever before. Since the pioneering work by Abraham et al. on a rechargeable LAB 
cell in 19965, researchers have focused on assembling practically available LAB cells while concurrently working 
to fundamentally understand the battery reaction. The cell capacities of actual LAB cells are dominated by the 
oxygen-breathing cathode (air electrode), in which the discharge product Li2O2 is deposited/decomposed along 
with the discharge/charge through the fundamental electrochemical reaction of 2Li+ +  O2 +  2e− ↔  Li2O2. Several 
nanocarbons, such as carbon black (such as Super-P® or Ketjenblack®)6–8, graphene9–12, carbon aerogels13, car-
bon fibers14–16, or carbon nanotubes (CNTs)17–22, have been proposed as air electrode materials. Some of these 
nanocarbons exhibit very high specific capacities of ~10,000 mAh gcarbon

−1 owing to their huge surface areas of 
~1,000 m2 g−1. However, their lean carbon loadings mostly below 1 mg cm−2 limit their resulting cell capacities 
per electrode area to no more than 10 mAh cm−2. Although this areal capacity is 5 times larger than the capacity 
of the current LiB cells of ~2 mAh cm−2, an even larger areal capacity is needed to assemble practical LAB cells 
with the expected energy density. In fact, enhancing the cell capacity per electrode area (mAh cm−2) is essential 
to developing a practical cell with an extremely large energy density.

Among the proposed nanocarbons, CNTs have a unique character stemming from their nanofibrous struc-
ture. Powdery carbon materials require rigid solidification to be handled as air electrodes, but such firm solid 
electrodes are often not tolerant of the mechanical stress triggered by the discharge solid deposition, especially 
in deeply discharged conditions. In contrast, CNTs provide paper-like flexible sheets as a result of their tubular 
constitution that are ready for use as air electrodes in LABs17–22. The fibrous network of CNTs is also beneficial for 
retaining the conductive network in the electrode during the deposition/decomposition of the discharge solid. 
Here, we report that CNT sheets can be used to attain an ultra-high cell capacity in LAB cells to achieve a much 
higher areal cell capacity of up to 30 mAh cm−2, which is 15 times higher than the capacity of current LiB cells.
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Results and Discussion
Single-walled CNTs (SWCNTs) with metallic conductivity and a relatively small tube diameter of approximately 
2 nm (Figure S1) were chosen as the starting material in the fabrication of a CNT sheet air electrode to obtain a 
surface area that was as large as possible. Two types of CNT sheets were prepared through vacuum filtration of 
CNTs that had been ultrasonically dispersed in isopropanol (IPA) or N-methyl-2-pyrrolidone (NMP). CNT-IPA 
and CNT-NMP denote the corresponding CNT sheets prepared from the CNT slurries in IPA and NMP, respec-
tively. CNT-IPA and CNT-NMP were composed of a non-woven textile of CNT bundles with ~50 nm and 
~150 nm average widths, respectively, based on scanning electron microscopy (SEM) observations (Figure S2) 
and had 65% and 60% porosity based on the sheet weight-thickness relationships (Figure S3) for CNT-IPA and 
CNT-NMP, respectively. The LAB cells in the CR2032 configuration (2.0 cm2 electrode area) using CNT-IPA or 
CNT-NMP as air electrodes had a constant discharge voltage of 2.65 V and a gradually increasing charge voltage 
of up to 4.5 V (Figure S4). The CNT-IPA cell emitted an output current of up to 0.4 mA cm−2 (Figure S5), and the 
cell repeated the discharge/charge cycle up to 73 times with a limited cycle capacity of 0.5 mAh cm−2 (Figure S6); 
all of these cell performance parameters are comparable to those of LAB cells using solidified Ketjenblack®8 or 
graphene air electrodes12.

Figure 1(a) shows the discharge capacities of cells possessing different CNT sheet thicknesses before reaching 
the cutoff voltage of 2.0 V. The capacities were plotted against the electrode weight, which is directly propor-
tional to the sheet thickness. Although a negligible difference in battery performance was observed between 
the CNT-IPA and CNT-NMP cells in the limited cycle capacity operation (Figure S4), the CNT-NMP cells had 
smaller discharge capacities not exceeding 1 mAh cm−2 regardless of their thickness, excluding a few outliers, 
owing to the difference in the CNT bundle width and hence the inhomogeneous occurrence of the LAB reaction 
inside the CNT-NMP, which will be discussed later. In contrast, most of the CNT-IPA cells had much higher dis-
charge capacities. Though their capacities varied widely with the differences in each cell, the maximum discharge 
capacity at each electrode weight linearly increased with the sheet weight up to 5 mg (56 μ m thick), illustrating 
the efficiency of the sheet electrode at a discharge capacity of 5,000 mAh gCNT

−1 (linear dotted line). As a result, 
the CNT-IPA cell achieved a maximum discharge capacity of 12 mAh cm−2 (24 mAh per cell), which was 6 times 
higher than the capacity of the conventional LiB cells of approximately 2 mAh cm−2. Figure 1(b) shows the dis-
charge profile. Even though the efficiency of the discharge capacity (5,000 mAh gCNT

−1) is not outstanding com-
pared to the efficiencies of all reported air electrode materials, the maximum cell capacity of 12 mAh cm−2 is quite 
competitive. The rechargeability of the cell was also confirmed, as shown by the dotted line in Fig. 1(b). However, 
the maximum capacity was not further improved by simply increasing the sheet thickness, which implies that the 
sheet electrode was becoming suffocated as the thickness was increased.

After the discharge experiment, the CNT sheet was observed to have expanded considerably by extruding into 
the 0.8 mm-diameter holes perforated on the stainless-steel case of the cathode for oxygen intake (Fig. 2(a)). The 
cross-sectional SEM image of the sheet (Fig. 2(b)) revealed that the part of the CNT sheet that faced the open per-
forated holes (b,i) experienced the increase in sheet thickness, but the part harnessed by the cathode case (b,ii) did 
not expand from its initial thickness. Figure 2(c) shows the swelling ratio of the initial sheet thickness (~50 μ m) at 
the protruding parts (b,i) of CNT-IPA and CNT-NMP during the discharge/charge cycle. In the discharge process, 
CNT-IPA began to swell at 1 mAh cm−2 discharge and kept swelling to an approximately 3-fold thickness (~150 μ m) 
at 5 mAh cm−2 discharge. In the charge process, the sheet thickness of CNT-IPA monotonously shrank with increas-
ing charge, returning to its initial thickness in the fully charged state. The CNT-NMP sheets abruptly distended by 

Figure 1. (a) Discharge capacities of LAB coin cells with CNT-IPA ( ) and CNT-NMP (• ) air electrodes. The 
capacity was plotted against the weight of the CNT sheet electrode in a φ 16 mm disk shape. The red dotted 
straight line shows the capacity per CNT electrode weight of 5,000 mAh gCNT

−1. A maximum discharge capacity 
of 12 mAh cm−2 (24 mAh per cell) was obtained using a cell with a 5 mg CNT-IPA electrode. (b) Discharge 
profile of the CNT-IPA cell that has a discharge capacity of 12 mAh cm−2 (solid line). A typical discharge-charge 
cycle profile of the cell at a fixed cycle capacity of 5 mAh cm−2 is shown by the dotted line.
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4.8 times at 3 mAh cm−2 discharge with their extending error bars. The large error values for CNT-NMP resulted 
from the considerable roughness and layered voids created inside the sheet. The cross-sectional SEM observation 
and the corresponding energy-dispersive X-ray spectroscopy (EDS) analysis of CNT-IPA and CNT-NMP revealed 
that the battery reaction occurred inhomogeneously inside CNT-NMP (Figure S7), which explains why the most 
of the CNT-NMP cells stopped discharging at low discharge capacities; the inhomogeneous reaction and hence the 
localized deposition of the discharge product suffocated the rest of the sheet, rendering it unusable for the discharge 
reaction and resulting in lower discharge capacities in the CNT-NMP cells.

Figure 2. (a) Photographic image of a typical CNT sheet after the discharge experiment. The sheet was cut with 
precision scissors along the orange dotted line for cross-sectional SEM observation. (b) Typical cross-sectional 
SEM image of the CNT sheet after the discharge experiment (up) and its schematic illustration (low). The 
orange dotted line highlights the edges of the cross section. (c) Swelling ratios of CNT-IPA ( ) and CNT-NMP 
(• ) after discharge. The ratios of CNT-IPA after charging from a 5 mAh cm−2 discharged state were plotted as 
open red circles ( ). (d) SEM images of CNT-IPA after discharges of 1 mAh cm−2 (i), 2 mAh cm−2 (ii), and 
5 mAh cm−2 (iii) and after being fully charged following a 5 mAh cm−2 discharge (iv). The dotted yellow squares 
show the magnified areas superimposed in each image. (e) Low- (i) and high- (ii) magnification TEM images of 
CNT-IPA after a 9 mAh cm−2 discharge. (f) XRD spectra of pristine CNT-IPA (i) and after discharges of 
1 mAh cm−2 (ii), 2 mAh cm−2 (iii), and 5 mAh cm−2 (iv) and after being fully charged following a 5 mAh cm−2 
discharge (v). The *symbols denote Li2O2 crystal reflections of 100, 101, 102, 004, and 110 at 2theta ≈ 32.9, 35.0, 
40.6, 48.7, and 58.6, respectively.
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The sheet was subjected to microscopic analysis after the discharge/charge experiment to investigate what 
triggered the swelling/shrinkage of the sheet. Figure 2(d) shows magnified SEM images of CNT-IPA after the dis-
charge/charge experiment. The images obtained after discharge illustrate the deposition process of the discharge 
product; first, disk particles 50–150 nm in diameter were deposited on CNT bundles, and the number of particles 
then increased, with the particles evolving into a toroidal shape. Additionally, the bundles slightly thickened as 
the discharge progressed. The characteristic toroid shape suggests the formation of Li2O2 as a discharge product, 
which has been reported in a wide range of LAB cells with non-carbonate electrolytes and carbonaceous air elec-
trodes7,11,12,15,23–27, and the detailed mechanism of the morphological evolution has been discussed by Yang and 
Thompson21. The full charge from a 5 mAh cm−2 discharged state completely decomposed the discharge product, 
restoring it to the initial bundle network structure. Transmission electron microscopy (TEM) observations of the 
CNT bundles after discharge (Fig. 2(e)) revealed the presence of a filmy product with a thickness of 5 nm or less 
covering the CNT bundles, in addition to the particle deposits of 50–150 nm observed in the SEM images. The 
deposition/decomposition of the discharge product in these toroidal or filmy morphologies caused the CNT sheet 
to reversibly swell/shrink, maintaining the conductive fibrous network of CNT bundles. X-ray diffraction (XRD) 
analysis of the CNT sheets after the discharge/charge experiment (Fig. 2(f)) showed peaks that were identically 
attributed to Li2O2 crystal diffraction after 2 mAh cm−2 discharge. As no other peaks aside from Li2O2 were found, 
Li2O2 was the exclusive discharge product of the discharge/charge reaction of the LAB. The peaks increased in 
intensity with further discharge to 5 mAh cm−2 but completely disappeared after reaching full charge, which is 
consistent with the toroid evolution observed by SEM.

These microscopic analyses revealed that the large discharge capacity of the cell with the CNT sheet air elec-
trode was a result of the flexible sheet characteristic with discharge-dependent swellability. The fixed position 
of the CNT sheets inside the cell cases raises concern that the attained discharge capacity might have been sup-
pressed by the limited sheet swelling within the range of the windows of the cathode case holes. In an attempt to 
extend the swelling range of the CNT sheet during discharge, a gas diffusion layer (GDL), an array of solid carbon 
fibers ~10 μ m in diameter (TGP-H-060, 190 μ m thickness, Toray, Japan), was placed on both sides of the CNT 
sheet air electrode, which dramatically increased the discharge capacity relative to the cells without GDL inser-
tion. Figure 3(a) shows a schematic illustration of the GDL-inserted air electrode. The red solid line in Fig. 3(b) 
shows a discharge profile of a cell with the air electrode of CNT-IPA sandwiched between two GDLs, recorded 
before reaching the cutoff voltage of 2.0 V. The cell achieved a 30 mAh cm−2 discharge capacity (60 mAh attained 
per cell), which is 15 times higher than that of conventional LiB cells. The authors believe that this ultra-high 
discharge capacity was a result of the inserted GDLs, which provided the CNT sheet with additional space for 
swelling during discharge. Importantly, the cell capacity purely resulted from the CNT sheet, as the GDL itself 
contributed little, less than 0.05 mAh cm−2 by a single GDL, to the discharge capacity. The cell with the CNT-GDL 
composite air electrode was also fully rechargeable, as shown by the dotted line in Fig. 3(b). Although the cyclic 
performance of this cell is being studied by our group, further studies on the anode and electrolyte are required 
to collect subsequent discharge/charge cycle profiles. The behaviors of the Li metal and the TEGDEM electrolyte 
during such long-term operation are currently unknown. The bumpy discharge voltage observed in the discharge 
profiles reflects the progress of the swelling of the CNT sheet inside the GDL. To the best of our knowledge, this 
cell capacity is the highest among the prototype LAB cells reported to date.

The cell with the CNT-GDL composite air electrode was disassembled after discharge, which revealed the 
enormous amount of CNT swelling over the GDL as the result of Li2O2 deposition. Figure 4(a) shows photos of 
each electrode from the cell discharged at 20 mAh cm−2. The lithium metal anode (200 μ m thickness) was partly 
depleted, revealing the stainless-steel anode case at the bottom (a, i), and this depletion could have stopped the 
discharge. Further increases in the discharge capacity to 40 mAh cm−2 (80 mAh per cell) can be obtained by 
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Figure 3. (a) Schematic illustration of the CNT-GDL composite air electrode. (b) Discharge profile of the cell 
with a CNT-GDL composite air electrode that discharged to 30 mAh cm−2 (60 mAh per cell, red solid line). The 
dotted line shows the typical discharge-charge cycle profile of the cell at a capacity of 26 mAh cm−2.
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using thicker lithium metal (1 mm), but these data will be reviewed in a subsequent report. The CNT sheet was 
turned into a crisp solid after 20 mAh cm−2 discharge, implying that the CNT bundle network was completely 
filled with the discharge product (a, ii). The CNT sheet thickness was approximately 150 μ m (swelling ratio ~3) at 
15 mAh cm−2 discharge. The inserted GDL had a black mound on the surface (a, iii) in the area where the lithium 

Figure 4. (a) Photographic images of each electrode of the CNT-GDL cell after a 20 mAh cm−2 discharge. 
Lithium metal anode (i), CNT sheet (ii), and GDL (iii) with its edge-on image (iv). The yellow dotted lines in 
(i) and (iii) highlight the depleted lithium metal and the sections of protruded deposit on the GDL surface, 
respectively. (b) XRD spectra of the CNT sheet (red line) and the GDL (black line) after a 20 mAh cm−2 
discharge. The *symbols denote Li2O2 crystal reflections, as shown in Fig. 2(f). The ‡symbols denote graphite 
reflections of 101 and 004 at 2theta ≈ 42.9 and 54.4, respectively. (c) Raman spectrum of the GDL after a 
20 mAh cm−2 discharge. The two intense peaks are attributed to the D (1350 cm−1) and G (1580 cm−1) bands 
of graphitic carbon fiber. The other two peaks at 260 and 790 cm−1 belong to Li2O2 vibrations. (d) SEM images 
of the CNT sheet after 20 mAh cm−2 discharge ((i) low and (ii) high magnification). The yellow dotted squares 
show the magnified areas. TEM image of the CNT bundles (iii). SEM image of the CNT sheet after being fully 
charged following a 15 mAh cm−2 discharge (iv). (e) SEM images of the GDL after a 20 mAh cm−2 discharge 
((i) low and (ii) high magnifications). The yellow dotted squares show the magnified areas. TEM image of the 
discharge product deposited inside the GDL (iii). SEM image of the GDL after being fully charged following a 
15 mAh cm−2 discharge (iv).
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anode had been depleted. The mound was 1–2 mm thick when viewed edge-on (a, iv), corresponding to ~10-fold 
swelling from the pristine GDL (initially 190 μ m thickness). Since the GDL itself contributes little to the discharge 
reaction, the black mound generated on the GDL surface is deemed to be the discharge product grown from the 
CNT bundles that had penetrated inside the GDL. The intruding CNT bundles into the GDL are discussed later. 
Additionally, the deposit mound was observed on the GDL that faced the separator, and little deposition appeared 
on the air side.

XRD (Fig. 4(b)) and Raman spectroscopy (Fig. 4(c)) analyses of the CNT-GDL composite air electrode 
revealed that Li2O2 was the exclusive discharge product on both the CNT and GDL parts, even in an ultra-high 
discharge state, because their spectra contained peaks that can be attributed only to Li2O2, except for the carbon 
graphite substrate. The SEM observation of the CNT part after discharge (Fig. 4(d)) displayed several grooves 
corresponding to traces of carbon fibers from the GDL (d, i), and the magnified image of the sheet surface showed 
heavily beaded particles of ~100 nm around the CNT bundles (d, ii), implying that no additional space existed to 
accommodate Li2O2 particles on the bundle surface. The TEM image of the sheet (d, iii) also showed the beaded 
deposits on the CNT bundles observed the SEM image, and even from the densely packed state, the sheet was 
recovered to the non-woven bundle textile state at full charge (d, iv). On the other hand, the SEM observation of 
the black mound on the GDL (Fig. 4(e)) indicates a densely filled deposit between the gaps in the carbon fibers of 
the GDL (e, i). The magnified image of the deposit revealed granular particles of ~100 nm captured by thin fibers 
(e, ii), and the TEM observation revealed fine aggregates of the particles (e, iii). The presence of CNT bundles that 
had seeped into the GDL was clearly confirmed by the image of the GDL after being fully charged, depicting CNT 
bundles remaining inside the carbon fibers (e, iv).

The evidence supporting Li2O2 as the exclusive discharge product indicates that the ideal LAB reaction nom-
inally written as 2Li+ +  O2 +  2e− →  Li2O2 is occurring even during the discharge to ultra-high capacity. The 
30 mAh cm−2 discharge capacity achieved by the cell with the CNT-GDL composite air electrode consumed 150 μ 
m of the thickness of the Li metal anode to form 120 μ m of bulk thickness of Li2O2 on the cathode. This thickness 
of Li2O2 could barely be held by the rigid carbon cathode but was successfully stored in the flexible CNT sheet 
by the swelling of the sheet to a thickness of a few millimeters. The CNT sheet (CNT-IPA, ~50 nm bundle width) 
had a calculated surface area of 60 m2g−1. Although this surface area is much less than that of the rigid carbon 
cathode, the swellable nature of the sheet provides distinctive advantage to LAB cells for extending their areal cell 
capacity. The 120 μ m-thick Li2O2 deposit on CNT-IPA numerically leads to ~80 nm-thick Li2O2 on the CNT bun-
dle surface, which is close to the particle size observed by SEM and TEM in Figs 2 and 4. However, the detailed 
reaction mechanism by which the Li2O2 discharge product grows is not clear at this time. “Plating” and “precip-
itation” processes have been discussed for Li2O2 growth in LABs28. In the “plating” process, which is considered 
a two-electron reaction, the LAB reaction occurs only on the cathode surface to form Li2O2, but the insulative 
nature of Li2O2 limits its growth to only a few nm in thickness. This process indicates that the filmy deposit on the 
CNT bundles observed in Fig. 2(e, ii) was Li2O2 but would hardly be able to produce particles with thicknesses 
of ~100 nm. On the other hand, the “precipitation” process involves a one-electron reaction in an electrolyte to 
form solvated LiO2 (Li+ +  O2 +  e− →  LiO2), which is subsequently precipitated (disproportionated) on the cath-
ode surface as Li2O2 while producing O2 (2LiO2 →  Li2O2 +  O2). Contaminated protons promote the solvation of 
LiO2, and micron-sized toroidal Li2O2 shapes have been observed on the cathode in an electrolyte containing a 
few thousand ppm H2O29,30. The presence of small particles with ~100 nm thickness in Figs 2 and 4 suggests that 
Li2O2 was generated through the precipitation process in this study. However, the experiments were performed in 
a dry state (H2O <  30 ppm), and it is uncertain whether this process can provide the mechanical stress needed to 
swell the CNT sheet to a thickness of a few millimeters. Since the mechanism of Li2O2 growth is directly related 
to the design of the air electrode for deriving cell performance, further study is in progress to determine the Li2O2 
deposition process.

In summary, LAB cells with CNT sheet air electrodes were prepared to extend the actual cell capacity of the 
LAB cell, exploiting the sheet characteristics of the flexible and fibrous network. The CNT sheet air electrode 
swelled along with the discharge and resulted in LAB cells that can discharge up to 30 mAh cm−2. This discharge 
capacity is 15 times higher than that of current LiB cells and is the highest among the prototype LAB cells reported 
to date, to the best of our knowledge. As a result, the sheet electrode experienced enormous expansion owing to 
deposition of the discharge product on the CNT bundles and grew into an expanded cathode with a thickness of a 
few millimeters. The discharge product deposit was solely identified as Li2O2 based on XRD and Raman analyses, 
which implies that the ideal LAB reaction was occurring inside the cathode during the discharge. Therefore, the 
CNT sheet is a promising air electrode material for achieving an ultra-high cell capacity in LAB cells. In addition, 
the invention of long-lasting air electrode provide paths for studying appropriate designs of Li metal anodes and 
electrolytes for LAB. These push new frontier for constructing practically available LAB cells in the future.

Methods
Preparation of the CNT Sheet Air Electrode. Seventy-five milligrams of SWCNTs with an average tube 
diameter of 2 nm (EC2.0, Meijo Nano Carbon) was dispersed in 150 g of IPA or NMP with an ultrasonic homog-
enizer (450D, Branson) equipped with a 1/8” micro-tip for 3 h in an ice bath. The prepared slurry of SWCNTs 
was filtered under vacuum through a PTFE membrane (OmniporeTM, 1 μ m pore size, EMD Millipore) to obtain 
a free-standing and binder-free CNT sheet. After drying in a vacuum oven at 60 °C overnight, the CNT sheet was 
deliberately peeled off from the membrane and cut into a 16 mm-diameter cathode (air electrode, 2 cm2 effective 
area). Air electrodes of various thickness (10–250 μ m thick) were prepared by adjusting the filtered amount of 
the slurry.

Battery Assembly and Testing. Batteries were assembled in a CR2032 coin cell with perforated 
stainless-steel cases (Hohsen Corp.) in a dry room with a supply-air dew point of < − 90 °C (< 0.1 ppm of H2O) 
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and an environmental dew point of approximately − 60 to − 50 °C. The cell comprised layers of a Li metal foil 
anode (16 mm in diameter, 200 μ m thick, Honjo Metal), glass fiber separator (GF/A, Whatman), and CNT sheet 
air electrode facing the perforated side of the cell. Two films of a PP/PE/PP trilayer porous membrane (20 μ m 
thick) were placed on both sides of the GF/A separator to prevent the glass fibers from sticking to the anode and 
air electrode. An ether-based electrolyte, composed of 1 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI, 
Kishida Chemical Co., Ltd.) dissolved in anhydrous tetraethylene glycol dimethyl ether (TEGDME, < 10 ppm 
H2O, Japan Advanced Chemicals) was prepared in an Ar-filled glovebox (Glovebox Japan Inc.) and immersed in 
the GF/A glass fiber separator and the CNT sheet air electrode. The prepared electrolyte had a water content of 
less than 30 ppm, determined by Karl Fisher titration before the immersion. Discharge and charge profiles were 
collected under oxygen gas flow at a constant current density of 0.1 mA per cell (0.05 mA cm−2) using a battery 
discharge-charge system (HJ1001SD8, Hokuto Denko). The lower limit of the discharge voltage was set at 2.0 V, 
where the LAB normally reaches its fully discharged state.

Characterization. After the discharge/charge experiment, the batteries were disassembled in the dry room to 
collect the CNT sheet air electrode for analysis. The collected CNT sheets were copiously rinsed with super dehy-
drated tetrahydrofuran (< 10 ppm H2O, Wako Pure Chemicals) and then dried under vacuum. The completely dried 
CNT sheets were transported using air-isolated sample holders to prevent possible reactions with the humidity in 
ambient air. The morphologies and structures of the CNT sheet air electrode were analyzed using a JSM-7800F 
field-emission scanning electron microscope (FE-SEM, JEOL) with a 5 keV accelerating voltage. EDS was performed 
using an X-MaxN analyzer (Oxford Instruments) attached to the SEM. TEM images of the CNTs and discharge 
product were obtained from a JEOL JEM-ARM 200 F at 200 or 80 keV accelerating voltage. XRD measurements 
were carried out on a D8 ADVANCE (Bruker) powder X-ray diffractometer with a CuKα  source (λ CuKα =  1.542 Å).
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