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A B S T R A C T

The application of large-language models (LLMs) to single-cell gene-expression data has introduced a new type of data that includes a gene-embedding matrix, in 
addition to the experimentally obtained gene-expression matrix. This paper addresses a fundamental problem in analyzing such data: how to effectively combine 
the information from both matrices to better define cell-to-cell distance. We identify a computationally feasible solution that demonstrates superior ability to cluster 
cells of the same type across all six real datasets we tested, underscoring its advantage as a measure of cell-to-cell distance.
1. Introduction

The integration of transformer models [36] and large language 
models (LLMs) [10] into the analysis of gene-expression data has gar-

nered increasing interest. Recently developed models and tools, such 
as scBERT [38], Geneformer [34], scGPT [16], and scFoundation [18], 
have demonstrated their ability to improve predictive capabilities across 
numerous applications. These models typically employ a transfer learn-

ing framework [30], wherein transformer-based architectures are ini-

tially trained on extensive collections of single-cell RNA-seq data, com-

prising thousands of datasets and millions of cells. The models are then 
fine-tuned on much smaller, user-specific datasets for various applica-

tions. This approach has proven to be particularly effective, leveraging 
the rich, albeit indirect, information about gene interactions embed-

ded in the training data to capture complex gene-gene relationships 
[38,34,16,18]. However, developing these models from scratch requires 
substantial resources. The extensive data collection and computational 
demands render the process prohibitively expensive for most research 
groups.

GenePT [12] offers an innovative solution that eliminates the need 
for training models from scratch. It utilizes ChatGPT, a robust pre-

trained general LLM, to elucidate gene-gene interactions. Specifically, 
GenePT leverages ChatGPT’s embedding function to transform stan-

dard NCBI gene descriptions [9] into “embeddings,” which are numeric 
vectors that effectively capture the textual information [29]. This pro-

cess ensures that details about interactions or functional regulations 
between genes, typically found in NCBI descriptions, are accurately rep-

resented in the embeddings. Thus, these embeddings provide a novel 
method for summarizing and utilizing prior knowledge about genes 
and their interactions, serving a similar function to that of transformer-
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based models developed from scratch, but with significantly greater 
cost-effectiveness, enhancing its potential for widespread adoption. Fur-

thermore, this method of using ChatGPT-generated embeddings could 
be broadly applied to encapsulate prior knowledge in textual form for 
various biological entities beyond genes.

This novel strategy, however, introduces a new problem: how to ef-

ficiently utilize the information contained in the embeddings. Typically, 
original gene expression data is stored as a data matrix. If the scRNA-seq 
experiment measures the expression of 𝑝 genes in 𝑛 cells, the resulting 
gene-expression matrix is of size 𝑛 × 𝑝, with the element in row 𝑖 and 
column 𝑗 representing the expression of gene 𝑗 in cell 𝑖 [22]. Similarly, 
gene embeddings can be stored as a data matrix. If the dimension of each 
embedding is 𝑑, then this matrix is of size 𝑝 × 𝑑, with the 𝑖-th row rep-

resenting the embedding of gene 𝑖 in the 𝑑-dimensional space. We refer 
to these as the “gene-expression matrix” and the “gene-embedding ma-

trix”, respectively, as illustrated in Fig. 1. The gene-expression matrix 
encapsulates the experimental data, whereas the gene-embedding ma-

trix provides supplementary information about the features of the genes 
involved in the experiment. While traditional scRNA-seq data analysis 
has solely considered the gene-expression matrix [21,4], we now face 
the challenge of integrating and efficiently utilizing both matrices in our 
analyses.

The solution to this question may vary by application, and a uni-

versal approach is unlikely to exist. This paper explores one specific 
aspect of this challenge: how to effectively integrate information from 
two matrices to more accurately define cell-to-cell distance. Measuring 
the distance between two observations (cells) is a fundamental problem 
in machine learning and holds intrinsic importance [39]. For instance, 
many commonly used visualization and classification methods depend 
entirely on the distance matrix between observations [19]. As shown 
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Fig. 1. The new form of data that includes two matrices: a gene-expression 
matrix and a gene-embedding matrix. Their dimensions are 𝑛 × 𝑝 and 𝑝 × 𝑑, 
respectively.

in Fig. 2A, traditional methods for assessing cell-to-cell distance focus 
solely on the gene-expression matrix, typically employing cosine dis-

tance between the expression vectors of two cells, which we refer to 
as “gene-space distance.” In contrast, the GenePT paper [12] proposes 
matrix-multiplying the two matrices to create a cell-embedding matrix 
of dimensions 𝑛 ×𝑑, and then computing a distance matrix based exclu-

sively on this new matrix, again utilizing cosine distance between cell 
pairs. This methodology is illustrated in Fig. 2B. Recognizing that the 
cell-embedding matrix can be viewed an expression matrix in the em-

bedded space, we call this measure “embedded-space distance.” How-

ever, we suggest that this approach may still be inefficient, a topic that 
will be further examined in the Results section.

In this paper, we propose a new method to compute cell-to-cell dis-

tance that effectively combines the information in the gene-expression 
and gene-embedding matrices. We will test the efficiency of our method 
using multiple real scRNA-seq datasets and compare it with both the 
gene-space distance and the embedded-space distance.

2. Methods

2.1. Limitations of the embedded-space distance

As introduced in the introduction section and illustrated in Figs. 1

and 2, we have two pieces of data: the gene-expression matrix and 
the gene-embedding matrix. The traditional method for computing cell-

to-cell distance, which is called gene-space distance, considers only 
the gene-expression matrix, calculating the cosine distance between its 
row vectors to obtain the cell-to-cell distance matrix. The embedded-

space distance, proposed by GenePT [12], defines the distance in two 
steps: first, the gene-expression matrix (dimension: 𝑛 × 𝑝) and the gene-

embedding matrix (dimension: 𝑝 × 𝑑) are matrix-multiplied to produce 
a cell-embedding matrix (dimension: 𝑛 × 𝑑); then, the cell-to-cell dis-

tance is determined by calculating the cosine distance between the row 
vectors of this cell-embedding matrix.

We argue that GenePT’s procedure may be problematic in two as-

pects. First, the initial transformation from the gene space to the em-

bedded space, which represents each cell by 𝑑 embedded dimensions 
instead of 𝑝 genes through matrix multiplication, is linear, although 
there is no inherent reason why this transformation must be linear. 
Second, the embedded-space distance is computed solely based on the 
cell-embedding matrix, but this matrix contains much less informa-

tion than the gene-expression and gene-embedding matrices combined. 
Matrix multiplication can be seen as a weighted average of gene em-

beddings and does not take into account the distances between gene 
embeddings. In fact, this matrix may even contain less information than 
the gene-expression matrix alone. This can be easily understood when 𝑑
is very small: in this case, each cell is represented by far fewer features 
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in the embedded space than the number of genes in the gene space. Con-
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sequently, the embedded-space distance may be even less informative 
than the gene-space distance. Real data analysis will demonstrate such 
examples, even when 𝑑 is not small.

2.2. A plausible solution: word mover’s distance

In seeking a definition of distance that efficiently combines infor-

mation from both the gene-expression and gene-embedding matrices, 
we found that our problem is analogous to the problem of document 
retrieval (see, e.g., [11] for an introduction to document retrieval). In 
document retrieval, the goal is to find the document most similar to 
a given document, which involves efficiently defining the distance be-

tween two documents.

In this context, each document is a collection of words, each with its 
appearance frequency in the document. Each word can be represented 
by an embedding vector, obtained using techniques such as “word2vec” 
[27]. The challenge here is to define the document-to-document dis-

tance based on the embeddings of individual words and their frequency 
vectors.

We realized that by replacing words with genes, documents with 
cells, and the frequency vectors of words with gene expression profiles, 
the two problems become identical, provided that we disregard the or-

der of words as they appear in documents in the document retrieval 
problem. Therefore, we conducted a comprehensive literature review, 
focusing primarily on relevant works in computer science and machine 
learning journals. We identified a metric called “word mover’s distance” 
(WMD) [23], also known as “Earth mover’s distance” or “Wasserstein 
metric,” depending on the context and application area. This metric is 
highly popular and has proven its efficiency across many real datasets 
(e.g., [37,24]). Below, we briefly introduce WMD as it is applied to our 
problem.

Consider measuring the distance between cell 1 and cell 2. Let 
�̃�1𝑗 = 𝑥1𝑗∕ 

∑𝑝

𝑘=1 𝑥1𝑘 and �̃�2𝑗 = 𝑥2𝑗∕ 
∑𝑝

𝑘=1 𝑥2𝑘 be the frequency (i.e., stan-

dardized expression) of gene 𝑗 in the two cells. The WMD between these 
two cells is defined as

WMD(�̃�1, �̃�2) = min
Γ∈ℝ𝑝×𝑝

+

𝑝∑
𝑖=1

𝑝∑
𝑗=1

Γ𝑖𝑗𝑑𝑖,𝑗 (1)

subject to the constraints

𝑝∑
𝑗=1

Γ𝑖𝑗 = �̃�1𝑖, ∀𝑖 ∈ {1,… , 𝑝}, (2)

and

𝑝∑
𝑖=1

Γ𝑖𝑗 = �̃�2𝑗 , ∀𝑗 ∈ {1,… , 𝑝}. (3)

In the above, Γ is the transport plan, Γ𝑖𝑗 denotes the amount of “mass” 
transported from gene 𝑖 in cell 1 to gene 𝑗 in cell 2, and 𝑑𝑖,𝑗 is the 
Euclidean distance between the embeddings of gene 𝑖 and gene 𝑗. The 
goal is to find the transport plan Γ that minimizes the overall transporta-

tion cost, which is the sum of transported mass (reflected by the gene 
expression) weighted by the distances between the source and destina-

tion of the transportation (reflected by the gene embeddings). Therefore, 
WMD efficiently combines information from both gene-expression and 
gene-embedding matrices, making it a promising definition of cell-to-

cell distance.

Unfortunately, the computational cost of WMD is very high. The time 
complexity of computing the WMD distance between a pair of cells con-

taining 𝑝 genes is 𝑂(𝑝3 log𝑝) [23]. Considering that the number of genes 
𝑝 is usually larger than 103, 𝑝3 log𝑝 becomes quite large. The situation 
is exacerbated when calculating not just a single distance, but 12 𝑛(𝑛 −1)
pairwise distances between 𝑛 cells, where 𝑛 is often not less than 103. 
Therefore, we were compelled to find a more computationally efficient 

definition of distance.
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Fig. 2. Current methods for defining cell-to-cell distances. (A) gene-space distance, defined as the cosine distance between rows of the gene-expression matrix. (B)

embedded-space distance, defined as the cosine distance between rows of the cell embedding matrix, which is obtained by the matrix multiplication of the gene-

expression and gene-embedding matrices. The dimensions of the cell embedding matrix are 𝑛 × 𝑑.
2.3. Attempts with other WMD variants

Variants of WMD with higher computational efficiency have been 
proposed in the literature of document retrieval, and we have considered 
many of them.

For example, Relaxed WMD (RWMD) [23] reduces the computa-

tional complexity to 𝑂(𝑝2 log𝑝) by dropping one of the two sets of 
constraints in WMD. However, in our application of defining cell-to-

cell distance, RWMD always equals 0, rendering it useless. The proof of 
this property is given in Section 1 of the Supplementary Material.

Another computationally efficient method is the Word Centroid Dis-

tance (WCD) [23], which approximates documents by averaging the 
embedding vectors of all words to form a centroid. However, studies 
have demonstrated that this method performs significantly worse than 
the original WMD [8,23].

To improve WCD, it was proposed to combine WCD with Iterative 
Constrained Transfers (ICT) for pruning [3]. ICT reduces the computa-

tion of WMD by iteratively narrowing the search space after pre-sorting 
with WCD. However, the additional effectiveness brought by the prun-

ing strategy is limited in high-dimensional spaces, where the distance 
distribution between points tends to be uniform, affecting the effective-

ness of pruning [6].

2.4. The scHOTT algorithm

After extensive exploration, we have settled on the Hierarchical Op-

timal Topic Transport (HOTT) algorithm [41], which was also origi-

nally developed in the context of natural language processing. We have 
adapted it to single-cell RNA-seq data, and we refer to it as scHOTT. 
Below, we provide a brief introduction to this methodology. A more de-

tailed mathematical description is available in Sections 2 and 3 of the 
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Supplementary Material.
The computation of WMD between two cells is notably intensive due 
to the large number of genes, 𝑝, in a cell’s expression profile. scHOTT 
addresses this issue by introducing a hierarchical structure by adding a 
layer termed “cell functions” (it is termed “topics” in the original pub-

lication) between the expression profile of a cell and the expression of 
individual genes. The method posits that the expression profile can be 
decomposed into a set of 𝐾 cell functions, each with a specific weight, 
referred to as function weights (originally “distribution of topics”). Each 
cell function is subsequently composed of a set of 𝑟 genes, each also 
weighted, referred to as gene weights (originally “distribution of fea-

tures”). It is important to note that these 𝐾 cell functions are shared 
among all cells, though each cell has its own set of weights for these 
functions. Moreover, each cell function comprises a fixed set of 𝑟 genes 
with a fixed set of gene weights, which are independent of its func-

tion weight within a cell. Additionally, the same gene may contribute 
to multiple functions with varying probabilities, which reflects the bio-

logical complexity where genes often participate in multiple biological 
processes and pathways. In the scHOTT algorithm, a probabilistic model 
known as Latent Dirichlet Allocation (LDA) (developed by [7] and ap-

plied to genomic data in previous studies such as [40,17,1]) is employed 
to identify the 𝐾 cell functions and to determine the function and gene 
weights.

As depicted in Fig. 3, WMD between a pair of cells is computed in a 
bottom-up approach. Initially, the WMD distance between each pair of 
cell functions is determined by considering the Euclidean distance be-

tween a pair of gene embeddings as 𝑑𝑖,𝑗 in Equation (1) and treating 
the gene weights as the frequencies �̃�1𝑖 and �̃�2𝑗 in Equations (2) and 
(3). This step involves a computational complexity of 𝑂(𝑟3 log 𝑟). Sub-

sequently, the WMD distance between each pair of cells is computed by 
utilizing the WMD distance between a pair of cell functions, calculated 

in the first step, as 𝑑𝑖,𝑗 in Equation (1) and treating the function weights 
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Fig. 3. The Workflow of the scHOTT Algorithm. In the middle row, the LDA algorithm provides the function weights and gene weights. In the top row, from left to 
right, the Euclidean distances between gene embeddings are first computed and then combined with the gene weights to calculate the WMDs between functions. In 
the bottom row, from right to left, the WMDs between functions are combined with the function weights to determine the WMDs between cells.

Table 1

Summary of the six datasets used in this study.

Dataset # Cells # Cell Types Tissue References

Aorta 9,625 12 Human ascending aorta Li et al. [25]

Artery 14,352 9 Human carotid artery Alsaigh et al. [2]

Bones 9,380 7 Human knee Chou et al. [14]

Myeloid 13,178 21 Human cancers Cheng et al. [13]

Pancreas 14,767 15 Human pancreas Tran et al. [35]

Multiple Sclerosis 21,312 18 Human Brain Schirmer et al. [33]
as the frequencies �̃�1𝑖 and �̃�2𝑗 in Equations (2) and (3). This phase has 
a computational complexity of 𝑂(𝐾3 log𝐾).

Consequently, the total computational complexity of computing 
WMD between all cell pairs is 𝑂

(
𝑛(𝑛−1)

2 𝐾3 log𝐾
)
+𝑂

(
𝐾(𝐾−1)

2 𝑟3 log 𝑟
)
≈

𝑂

(
𝑛(𝑛−1)

2 𝐾3 log𝐾
)

, since 𝑛 ≫ 𝐾 while 𝐾 is on the same scale as 𝑟. 

This complexity is significantly lower than the 𝑂
(
𝑛(𝑛−1)

2 𝑝3 log𝑝
)

com-

plexity of the traditional method. For our computations, we set 𝐾 = 90
and 𝑟 = 50. In our real-dataset analysis involving 3000 highly vari-

able genes (i.e., 𝑝 = 3000), the computational load is approximately 
(𝑝∕𝐾)3 log𝑝∕ log𝐾 > 6 × 104 times faster. Before computing the pair-

wise WMD between cells, the computation of LDA takes some time, 
which we have found to be similar in scale to the computation of pair-

wise WMD between cells. Thus, the overall computational time using 
this strategy is markedly shorter than the traditional method of WMD 
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computation.
3. Results

3.1. Data collection and pre-processing

The GenePT paper [12] evaluated its performance using six real 
datasets, all of which are utilized in this study. A brief summary of these 
datasets is provided in Table 1, with more detailed information avail-

able in Section 4 of the Supplementary Material.

The normalized and logarithmic-transformed data for the Aorta [25], 
Myeloid [13], and Multiple Sclerosis [33] datasets were directly down-

loaded from the GenePT study. The Artery [2], Bones [14], and Pancreas 
[35] datasets were obtained from the original publications and subse-

quently normalized and logarithmic-transformed by us. For all datasets, 
3000 highly variable genes were used for the analysis.

Gene embeddings were obtained by embedding the gene names using 
the “text-embedding-3-large” model offered by OpenAI [29]. The length 

of each embedding is 3,072.
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Fig. 4. 2D UMAP visualizations using three different distance metrics (from left to right: gene-space distance, embedded-space distance, and scHOTT) in three 
different datasets (from top to bottom: Aorta, Artery, and Bones). In each plot, a cell is represented by a point colored according to cell type. Ideally, cells of the 
same color should cluster together.
We computed our scHOTT distance using the default settings: 𝐾 = 90
functions and 𝑟 = 50 genes per function. The computation time varied 
from 50 minutes to 3.5 hours, depending on the number of cells in each 
dataset, on an Apple MacBook Pro 16-inch with an M2 Max chip featur-

ing a 12-core CPU.

3.2. Evaluation based on UMAP visualization

We first assessed the performance of scHOTT on the UMAP [26]

plot and compared it with gene-space distance and embedded-space dis-

tance. The UMAP plot is a highly popular visualization tool in scRNA-seq 
data, known for its ability to clearly display cell clusters [5]. Ideally, dif-

ferent cell types should form their own clusters. UMAP allows users to 
input their own definitions of distance. Therefore, by examining how 
well different cell types are clustered together and separated from other 
cell types in a UMAP plot, we can evaluate the quality of the distance 
definition.

We ran UMAP using three different distances: scHOTT, gene-space 
distance, and embedded-space distance. Fig. 4 shows the UMAP plots for 
the Aorta [25], Artery [2], and Bones [14] datasets, and Fig. 5 shows 
the UMAP plots for the Myeloid [13], Pancreas [35], and Multiple Scle-

rosis [33] datasets. In each UMAP, the points represent the cells and are 
colored by their cell types.

These plots reveal interesting patterns. First, cells of the same type 
typically form partial ring shapes in all UMAP plots based on embedded-

space distance (i.e., all plots in the middle column). This is undesired, 
as cell types do not form tight clusters, indicating difficulty in using a 
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clustering algorithm to separate different cell types.
Second, both the scHOTT distance (i.e., plots in the right column) 
and gene-space distance (i.e., plots in the left column) yield relatively 
tight clusters, each roughly consisting of cells from the same cell type. 
However, there are instances in every dataset where cell clusters based 
on scHOTT distance are better separated than those based on gene-space 
distance. Below we provide several examples.

In the Aorta dataset, the UMAP generated using gene-space distance 
shows MSCs (light orange) and fibroblast cells (dark orange) intermixing 
with indistinct boundaries. Similarly, the boundaries between T cells 
(dark brown) and NK cells (red) are unclear. In contrast, the separations 
between these cell types are clearer in the results obtained using the 
scHOTT distance.

In the Artery dataset, the UMAP reveals partial intermixing between 
endothelial cells (LEC) (dark orange) and stromal cells (purple), as well 
as between epithelial cells (MECHi.GFP-.ADULT) (dark green) and fi-

broblasts (FRC.CFA) (pink) when using the gene-space distance. The 
separations are more distinct when using the scHOTT distance.

The Bones dataset presents a considerable challenge; however, the 
scHOTT distance yields better results. The UMAP generated using 
gene-space distance shows stem cells (SC.CMP.DR) (red) intermixed 
with B cells (proB.FrBC) (light blue), and three types of macrophages 
(MF.480HI.NAIVE, MF.480INT.NAIVE, MF.F480HI.CTRL) also inter-

mingle. The scHOTT distance significantly reduces these overlaps.

In the Myeloid dataset, the scHOTT distance significantly reduces 
the overlap between two types of macrophages: Macro_LYVE1 (red) and 
Macro_C1QC (dark blue).

In the Pancreas dataset, both distance measures effectively separate 

most cell types, but the scHOTT distance results in slightly tighter clus-
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Fig. 5. 2D UMAP visualizations using three different distance metrics (from left to right: gene-space distance, embedded-space distance, and scHOTT) in three 
different datasets (from top to bottom: Myeloid, Pancreas, and Multiple Sclerosis). In each plot, a cell is represented by a point colored according to cell type. Ideally, 
cells of the same color should cluster together.
ters for alpha cells (dark orange) and beta cells (light orange) compared 
to the gene-space distance.

In the Multiple Sclerosis dataset, the scHOTT distance significantly 
enhances the separation of cell types within the large cluster at the bot-

tom of the plot, particularly between cortical layer 2-3 excitatory neuron 
A (light green) and cortical layer 4 excitatory neuron (light red). Addi-

tionally, it markedly improves the distinction among the four cell types 
at the top of the plot.

3.3. Evaluation based on kNN classification

Although UMAP provides rich details for comparison, it does not pro-

vide a statistic for an overall impression or conclusion of the comparison. 
Therefore, in this section, we use the performance of a k-nearest neigh-

bor (kNN) classifier, a supervised classification method, to evaluate the 
performance of different distances in a more concise and objective man-

ner.

We chose kNN as the classifier because its performance directly relies 
on the quality of the distance metric used to identify neighbors [31]. The 
kNN classifier assigns a test sample to the majority class of its nearest 
neighbors in the training data. A good distance metric assigns small 
values to those “true” neighbors, which are expected to be of the same 
class label (i.e., cell type in our problem), making the kNN classifier 
more likely to give the correct classification. Thus, the performance of 
kNN provides a good measure of the quality of the distance.

Following the GenePT paper [12], we summarize the performance 
of the kNN classifier using four summary statistics: accuracy, precision, 
3934

recall, and F1-score. Fig. 6 presents these metrics for the six real datasets. 
We find that overall, the four summary statistics are highly consistent 
with each other for each dataset. Therefore, we select one of them, the 
F1-score, for further discussion.

scHOTT outperforms the other two methods in all six datasets. Com-

pared to the gene-space distance and the embedded-space distance, 
the average improvement of scHOTT across the six datasets is 35.35% 
and 58.37%, respectively. Its advantage is especially substantial in two 
datasets: Bones (F1-score 0.82 vs. 0.52 vs. 0.48) and Multiple Sclero-

sis (0.66 vs. 0.21 vs. 0.31). These statistics underscore the effectiveness 
and robustness of scHOTT, highlighting its substantial advantage over 
the other two methods in measuring cell-to-cell distances in scRNA-seq 
data.

4. Discussion

The application of LLMs and ChatGPT to gene-expression data has in-

troduced new opportunities and challenges. The gene-embedding matrix 
adds valuable information to the traditionally obtained gene-expression 
matrix, yet how to effectively utilize this additional information remains 
unclear. This paper addresses a fundamental aspect of this problem: how 
to combine information from both matrices to better define cell-to-cell 
distance in single-cell RNA-seq data. We have discovered the intrin-

sic similarity of this problem to the document retrieval problem and 
identified an algorithm called scHOTT that can be computed in a reason-

able amount of time. Across all six real datasets we examined, scHOTT 
demonstrated superior performance in terms of separating different cell 
types in the UMAP plot and achieving better classification accuracy in 

kNN classification.
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Fig. 6. Performance of three different distances (gene-space distance, embedded-space distance, and scHOTT) across six real datasets. The performance is measured 
using Accuracy, Precision, Recall, and F1-Score, as shown in different sub-figures. Error bars represent the standard deviation based on results from 10 random seeds.
The scHOTT distance has two parameters: the number of functions 
𝐾 and the number of genes per function 𝑟. For all real datasets we con-

sidered, we used the default values: 𝐾 = 90 and 𝑟 = 50. Fig. 7 shows the 
performance of scHOTT on the Multiple Sclerosis dataset under differ-

ent values of 𝐾 and 𝑟. It appears that scHOTT’s performance is quite 
stable across a wide range of parameter values.

In the scHOTT algorithm, each gene may contribute to multiple cell 
functions. An alternative approach could involve dividing genes into 
non-overlapping groups, though this strategy would fall outside the LDA 
framework. To explore this, we divided the 3000 genes in the Aorta 
dataset into 100 random, non-overlapping groups, each containing 30 
genes, and calculated the cell-to-cell WMD for each group. The over-

all cell-to-cell distances were then obtained by summing up the 100 
WMDs from the groups. We refer to this measure as the “random-split 
distance.” Fig. S2 displays the accuracy, precision, recall, and F1-score 
for both the random-split distance and our scHOTT distance. It is evident 
that the random-split distance significantly underperforms compared to 
scHOTT. Furthermore, although calculating the random-split distance is 
considerably faster than computing WMD traditionally, it is still more 
than ten times slower than scHOTT.

With the intention of focusing on the use of the gene-embedding 
matrix, we deliberately narrowed the scope of our paper, concentrating 
3935

our comparisons on distances defined in the original space (which ig-
nores the gene-embedding matrix), the embedded space (the intuitive 
and previously sole method utilizing the gene-embedding matrix), and 
our combination of both matrices. Consequently, we did not conduct 
a comprehensive review of various advanced distance measures in the 
original space that do not use gene embeddings, such as those described 
in [28,15,20,32]. In the Supplementary Material, we briefly explored 
the use of PHATE [28], an advanced distance measure in the original 
space, for distance computation. We found that although the PHATE 
distance measure performs significantly better than those in both the 
embedded-space and gene-space, it is still clearly outperformed by our 
scHOTT distance.

Our performance comparison is based on UMAP plots and numerical 
measures derived from kNN classification. One could also consider other 
measures, such as Silhouette score and Adjusted Rand Index (ARI), al-

though both have clear limitations. The Silhouette score performs poorly 
in evaluating non-globular-shaped clusters. ARI compares the true cell 
type labels with the inferred cell type labels, and thus, it depends on 
the choice of clustering methods. Fig. S5 presents the Silhouette score 
and ARI for the six datasets. It is evident that our scHOTT distance con-

tinues to significantly outperform the other distances when evaluated 
using these metrics.

Finally, while the scHOTT algorithm is significantly faster than the 

original WMD algorithm, calculating all pairwise distances between 
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Fig. 7. Changes in scHOTT’s performance on the Multiple Sclerosis dataset with respect to (A) 𝐾 , the number of functions, and (B) 𝑟, the number of genes for each 
function. Lines of different colors represent Accuracy, Precision, Recall, and F1-Score, respectively. Error bars represent the standard deviation based on results from 

10 random seeds.

cells still requires 3.5 hours for datasets containing approximately 
20,000 cells. Developing an even faster algorithm remains an area of 
ongoing interest.

The Python code for the scHOTT algorithm is available at https://

github .com /Fangfang -Guo /scHOTT.
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