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Lung cancer is the leading cause of cancer deaths in the world. At present,
immunotherapy has made a great breakthrough in lung cancer treatment. A variety of
immune checkpoint inhibitors have been applied into clinical practice, including antibodies
targeting the programmed cell death-1, programmed cell death-ligand 1, and cytotoxic T-
lymphocyte antigen 4. However, in the actual clinical process, about 30%–50% of patients
still do not receive long-term benefits. Abnormal antigen presentation, functional gene
mutation, tumor microenvironment, and other factors can lead to primary or secondary
resistance. In this paper, we reviewed the immune mechanism of immune checkpoint
inhibitor resistance, various combination strategies, and prediction of biomarkers to
overcome resistance in order to accurately screen out the advantageous population,
expand the beneficiary population, and enable precise and individualized medicine.
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BACKGROUND

This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates
of cancer incidence and mortality produced by the International Agency for Research on Cancer.
Worldwide, an estimated 19.3 million new cancer cases and almost 10.0 million cancer deaths
occurred in 2020. Lung cancer is one of the most commonly diagnosed cancers after breast cancer,
with an estimated 2.3 million (11.7%) new cases and 1.8 million (18%) deaths in 2020. Lung cancer
has not only become the leading cause of cancer death. It is also the leading burden on global health
care (1). Through the traditional treatment methods [radiotherapy (RT), chemotherapy, targeting],
lung cancer patients have little benefit. Recently, immune checkpoint inhibitors (ICIs) have become
the most promising treatment for several kinds of cancer, especially in lung cancer. Nivolumab,
pembrolizumab, and atezolizumab have been approved by the Food and Drug Administration
(FDA). However, as clinical use becomes more widespread, approximately 30%–50% of patients
receiving first-line ICIs experience temporary or no benefit. Immune drugs can also be divided into
endogenous and exogenous drug resistance. Endogenous drug resistance refers to drug resistance
caused by changes in tumor cells themselves, such as abnormal antigen presentation, functional
gene mutation and inactivation, reduced immunogenicity, and tumor microenvironment.
Exogenous drug resistance refers to external factors that affect all processes of T-cell activation.
Therefore, in the current era of precision medicine, it is an urgent problem to clarify the mechanism
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of drug resistance and screen the beneficiaries. In this review, the
known mechanisms of immune resistance and potential
therapeutic strategies to reverse immune resistance and to
predict poor prognosis are reviewed.
DRUG RESISTANCE MECHANISM

Abnormal Antigen Presentation
The activation of T cells requires two signals. The first signal is
the T-cell receptor (TCR) signal formed by the combination of
TCR and peptide-major histocompatibility complex (MHC)
molecules, but this signal is not enough to activate resting T
cells. Only in the case of the second costimulatory signal
provided by CD28 and its receptor, T-cell activation-related
RNA and proteins will be synthesized, the key cytokine
interleukin (IL)-2 will be secreted, and cells will enter from G0
phase to G1 phase. Therefore, it is the costimulatory signal and
TCR signal that complete the activation of T cells. Studies have
shown that B2M, as an important part of human leukocyte
antigen (HLA)-I molecules, participates in the folding and
transport of MHC-I molecules and plays an important role in
the processing and presentation of tumor antigens. B2M
mutation can lead to impaired expression of MHC-I molecules
on the surface of antigen-presenting cells (APCs) and then lead
to impaired antigen presentation, resulting in immunotherapy
resistance (2). In addition, negative costimulatory molecules
such as cytotoxic T-lymphocyte antigen 4 (CTLA-4) and
programmed cell death-1 (PD-1) and their ligands CD80,
CD86, PD-L1, and PD-L2 can prevent the body from
producing second signals, resulting in downregulation or
termination of T-cell activation (3).
Immune Cells: Tumor-Associated
Macrophages, Myeloid-Derived
Suppressor Cells, Regulatory T Cells
A large number of studies have shown that immune cells play a
key role in tumor progression and inflammation. First, tumor-
associated macrophages (TAMs) showed significant plasticity
toward environmental cues (4, 5). In the early stage of the tumor,
TAMS mainly showed M1 phenotype, while in the late stage,
TAMS mostly belonged to M2 phenotype (6). M1 macrophages
are pro-inflammatory cells, but they have an antitumor effect,
which is related to the cytotoxicity and immunostimulatory
function to cancer cells. M2 macrophages expressing anti-
inflammatory cytokines such as IL-10, C-C motif chemokine
ligand 22 (CCL22), and CCL18 can reduce inflammatory
response but can promote tumors due to immunosuppression
and angiogenesis induction (4, 7, 8). In tumors, microenvironment,
such as hypoxia, nitric oxide (NO), can promote TAMs to M2
polarization. In addition, macrophage colony-stimulating factor
(M-CSF) produced by tumor cells can also promote the
polarization of TAMs to M2, resulting in tumor escape. The main
secretion of M2 suppresses cytokines IL-10 and transforming
growth factor-b (TGF-b), and the presence of antigen is weak,
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which inhibits T-cell activation and contributes to tumor immunity
(7, 8).

Second, regulatory T (Treg) cells exert their immunosuppressive
function through a variety of mechanisms. The high expression of
IL-2 receptor on the surface of Treg cells can neutralize IL-2 to limit
the proliferation and activation of T cells and produce inhibitory
cytokines (TGF-b, IL-10, and IL-35) and cytotoxic substances
(perforin and granulase) to inhibit and kill the excitation of
effector T cells (9). CTLA-4 expressed by Treg cells binds to
CD80/86 to impair APC maturation and inhibit T-cell
proliferation, such as dendritic cells (DCs) (10). In addition, Treg
cells had low expression of Nrf2, which is a key transcription factor
of antioxidant reaction. Oxidative stress can induce apoptosis of
Treg cells and release a large number of ATP, which is metabolized
into adenosine by CD39 and CD73, which are highly expressed in
Treg cells. Adenosine binds to A2A receptor (A2AR) to inhibit
effector T cells (9, 11).

Last, myeloid-derived suppressor cells (MDSCs) can promote
tumor growth through immunological inhibition and non-
immunological inhibition, in which immunosuppressive
mediator ARG1 and inducible NO synthase (INOS) can
decompose L-arginine into 1-ornithine and urea, NO and
nitrite, an important mediator of the IL-2 pathway, resulting in
T-cell expression incompetence (12, 13). MDSC also expressed a
high level of indoleamine 2mine3-dioxygenase (IDO), which can
degrade 1-tryptophan to N-formylcanine, inhibit the
proliferation and activation of T cells and NK cells, and
promote CD4+ T cells to differentiate into Treg (14, 15). In
addition, MDSC secretes immunosuppressive cytokines and
growth factors (TGF-b and IL-10) to reduce the antitumor
activity of effector T cells, recruit Treg cells, and increase
reactive oxygen species (ROS) and NO in the microenvironment
to inhibit the antitumor activity of natural killer (NK) cells and
effector T cells (7, 16–18). The latest research shows that MDSCs
can exert an immunosuppressive effect by upregulating PD-L1 (19).
In addition, MDSCs can also promote tumor progression through
non-immunological mechanisms (20). MDSCs can produce a large
number of matrix metalloproteinases (MMPs), especially MMP9, to
promote the infiltration of metastatic cells (21) and secrete high
levels of vascular endothelial growth factor (VEGF) and basic
fibroblast growth factor (bFGF) to promote angiogenesis (22). To
sum up, MDSCs play an important role in the occurrence and
development of tumors.
Tumor Endothelial Cells
Solid tumors tend to secrete a variety of pro-angiogenic factors,
such as VEGF, hepatocyte growth factor, and platelet-derived
growth factor. In 1971, Folkman (23) proposed that tumor
growth was angiogenesis dependent, with further research.
From 1983 to 1989, Senger et al. (24) proposed vascular
permeability factor (VPF)/VEGF and Ferrara et al. (25)
established the important position of VEGF until Terman
isolated and purified VEGFR2 in the 1990s. These results fully
indicate that VEGF (VEGFR2) plays an important role in the
process of tumor growth, recurrence, and metastasis. VEGF/
VEGFR is expressed in most tumors, including non-small cell
August 2021 | Volume 11 | Article 739191
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lung cancer (NSCLC), and it has been found to increase the risk
of tumor recurrence, metastasis, and death. Angiogenic factors
are continuously secreted in the tumor microenvironment,
resulting in abnormal angiogenesis. On the one hand,
neovascularization usually lacks some adhesion molecules, and
the downregulation of adhesion molecules leads to T-cell
extravasation (26). At the same time, circulating VEGF hinders
the maturation and function of DCs and helps tumors escape
immune surveillance. On the other hand, neovascularization
cannot offset the increase in oxygen consumption, so the
hypoxia environment will directly damage the function of
tumor-infiltrating lymphocyte (TIL). In addition, on the one
hand, hypoxia can upregulate the inhibitory signals of antitumor
immune response, such as PD-L1, IDO, IL-6, and IL-10 (27).

On the other hand, hypoxia induces upregulation of
chemokine expression, which makes Treg cells reenter the
tumor (28, 29). In addition, hypoxia can also promote the
polarization of TAM to M2-like phenotype of TAMs (30). To
sum up, angiogenesis can participate in tumor growth and
immune escape through a variety of ways.

Functional Gene Mutation and Inactivation
PTEN gene plays an important role in maintaining cell
proliferation, differentiation, and apoptosis. PTEN can inhibit
phosphoinositide 3-kinase (PI3K) pathway, which plays a
regulatory role in some key cell processes such as tumor
survival and proliferation. On the other hand, the lack of
PTEN expression can activate the PI3K–AKT pathway, thus
reducing the infiltration of lymphoid T cells and reduce the
tumor killing effect of effector T cells (31). Similar to Janus kinase
(JAK), it plays an important role in cytokine signal transduction.
The JAK protein tyrosine kinase family consists of four members:
tyrosine kinase (TYK)2, JAK1, JAK2, and JAK3. Patients with
JAK1/2 gene mutations may be resistant to primary
immunotherapy (32). Although JAK2 mutant tumor cells can
produce interferon (IFN)-g, the JAK2–signal transducer and
activator of transcription _(STAT) signal pathway cannot be
activated by IFN-g and cannot upregulate the expression of PD-
L1, which leads to the weak killing effect of IFN on JAK2 mutant
tumor cells. However, the mutant cells of JAK1 were not sensitive
to all kinds of effects of IFN. The above results suggest that the
mutant tumor cells of the JAK1/JAK2 gene are not sensitive to
the killing effect of IFN, and the expression level of PD-L1 is low,
which makes the mutated tumor cells resistant to ICIs (33).

RAISING DRUG RESISTANCE

Combined Application With Chemotherapy
Immune combined chemotherapy can not only increase the
cross-presentation of antigens by dendritic cells (34) but also
weaken the immunosuppressive components of the tumor
microenvironment (35), such as Treg cells, MDSCs,
immunosuppressive cytokines, etc., and then increase toxic
lymphocytes and the ratio of Treg cells (36). In 2019, the
American Society of Clinical Oncology (ASCO) published a
three-phase clinical trial KEYNOTE-189 to evaluate the
Frontiers in Oncology | www.frontiersin.org 3
efficacy of NSCLC first-line treatment for advanced non-
squamous NSCLC: pablizumab combined with chemotherapy
compared with chemotherapy alone. The results showed that the
immune combined chemotherapy group could significantly
double the levels of overall survival time (OS), progression-free
survival (PFS), and PFS2 [mean OS (mOS): 22.0 vs. 10.7 months,
hazard ratio (HR): 0.56, 95% confidence interval (CI): 0.45–0.70;
mean PFS (mPFS): 9.0 vs. 4.9 months, HR: 0.48, 95% CI: 0.40–
0.58; and mPFS2: 17.0 vs. 9.0 months, HR: 0.49, 95% CI: 0.40–
0.59]. From the safety analysis, the incidence of treatment-
related select adverse events (AEs) of any grade in the
combinat ion chemotherapy group and the s imple
chemotherapy group was 26.4% vs. 12.9%. The grade 3–5
treatment-related select AEs were 10.9% vs. 4.5%. It further
confirmed the safety and efficacy of this first- l ine
chemotherapy regimen combined with pablizumab in the
treatment of non-squamous NSCLC (37). In addition,
KEYNOTE407 3-year follow-up data were released at this
year’s European Lung Cancer Congress (ELCC) to evaluate the
efficacy of immunotherapy combined with chemotherapy and
chemotherapy alone. Studies have shown that immunotherapy
combined with chemotherapy provides more lasting benefits to
patients than chemotherapy (mOS: 17.1 vs. 11.6 months, HR:
0.71, 95% CI: 0.58–0.88; mPFS: 8.0 vs. 5.1 months, HR: 0.57, 95%
CI: 0.47–0.69; mPFS2: 13.8 vs. 9.1 months, HR: 0.59, 95% CI:
0.49–0.72). Three-year follow-up data showed that OS: 29.7% vs.
18.2%, PFS: 16.1% vs. 6.5%; in terms of safety, the two groups of 3
and above treatment related adverse reactions were 74.8% vs.
70.0% (38). In the latest Camel-sq study released by the ELCC in
2021, carrizumab combined with carboplatin and paclitaxel
combined with carboplatin chemotherapy regimen in the
treatment of advanced non-small cell lung squamous cell
carcinoma, objective response rate (ORR) and PFS were
significantly prolonged (ORR: 64.8% vs. 36.7%, PFS: 8.5 vs. 4.9
months) (39).

Combined Radiotherapy With
Immunotherapy
Preclinical evidence points to RT as a priming event for
immunotherapy. By modulating the host’s immune system, RT
can render tumor cells more susceptible to T cell-mediated attack.
RT promotes the release of tumor neoantigens from dying tumor
cells, enhances MHC-I expression, and upregulates chemokines, cell
adhesion molecules, and other immunomodulatory cell surface
molecules, thereby potentiating an antitumor immune response
by triggering immunogenic cell death (40). Just as the PACIFIC trial
evaluated the efficacy of durvalumab consolidation therapy in
patients with NSCLC after simultaneous RT and chemotherapy,
the results showed that the mPFS was 16.9 vs. 5.6 months (HR: 0.55,
95% CI: 0.45–0.68), and the mOS was 47.5 vs. 28.1 months (HR:
0.55, 95% CI: 0.45–0.68) (41). In addition, a retrospective study at
the 2020 ASCO conference showed that local treatment can
significantly improve survival benefits (42). After immune
resistance, local therapy combined with immunotherapy can
reverse drug resistance to some extent, providing new treatment
ideas for patients with immune drug resistance.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Kong et al. NSCLC: Challenge and Improvement of Immune Drug Resistance
Combined With Targeted Drugs
Anti-angiogenic therapy can change the function of tumor
vascular endothelial cells to regulate immunosuppression and
reduce the inhibitory effect of VEGF on DC migration and
immune function (43, 44). Studies have shown that CTLA-4 or
PD-1 inhibitors can reduce tumor vascular density, improve
vascular perfusion, relieve hypoxia of tumor tissue, normalize
blood vessels, and reduce the immunosuppressive effect of Treg,
TAMS, and MDSCs (44–46). Therefore, the combination of
immunosuppressive and anti-angiogenic drugs may play a
synergistic role. As the latest results of the IMpower150 trial
were presented at the American Association for Cancer Research
(AACR) 2020 meeting of the AACR, the mOS of ABCP
(atezolizumab+carboplatin+paclitaxel+bevacizumab) vs. BCP
(carboplatin+paclitaxel+bevacizumab) was 19.5 vs. 14.7 months
(HR: 0.80, 95% CI: 0.67-0.95), the mPFS was 8.4 vs. 6.8 months,
and the ORR was 63.5% vs. 48.0%, mOS was 29.4% vs. 18.1%,
respectively. In the liver metastasis subgroup, the mOS of ABCP
vs. BCP was 13.2 vs. 9.1 months, and the PFS was 8.2 vs. 5.4
months. From the data survey, it can be seen that compared with
BCP, ABCP can significantly improve the PFS and OS of patients
(47, 48). From the above trial results, for epidermal growth factor
receptor (EGFR) and anaplastic lymphoma kinase (ALK) mutant
population, the combination of four drugs can bring significant
survival benefits to patients with advanced NSCLC (49).

The Phase I/II KRYSTAL-1 test (NCT03785249) included
patients with KRASG12C mutation-positive, unresectable, or
metastatic NSCLC. After adagrasib monotherapy, the results
showed that in patients with NSCLC, the overall remission rate
of adagrasib treatment reached 45% and the disease control rate
(DCR) reached 96%, and for NSCLC patients with STK11
mutation, the overall remission rate reached 64%. In terms of
safety, the most common AEs of adagrasib treatment included
nausea (54%), diarrhea (51%), vomiting (35%), and fatigue
(32%) (50, 51). The researchers indicated that they plan to
verify the efficacy of adagrasib in combination with other
drugs or treatments in future trials, such as pembrolizumab,
Keytruda (52). The Phase II KRYSTAL-7 trial (NCT04613596)
of adagrasib combined with pimumab is under preparation, and
the results are worth looking forward to. And now there are more
and more data supporting the combination of immunotherapy
and other targeted treatments.
COMBINED APPLICATION OF DOUBLE
IMMUNITY

PD-1 is highly expressed on T cells and interacts with its ligands
PD-L1 and PD-L2 to inhibit T-cell activation and proliferation
(53). CTLA-4 can reduce T-cell activity to maintain immune
tolerance and homeostasis (54). The two interact to enhance the
efficacy of immunotherapy. For example, in patients with
advanced melanoma, the results showed that the ORR and PFS
of double immunotherapy were higher than those of single-drug
immunotherapy (55, 56). The Checkmate-227 test was used to
evaluate the efficacy of dual immunotherapy and chemotherapy
Frontiers in Oncology | www.frontiersin.org 4
alone in the treatment of advanced NSCLC. The study showed
that the OS and duration of response (DOR) of patients with PD-
L1 ≥1% and PD-L1 <1% were significantly longer than those in
the chemotherapy group (PD-L1-positive patients: mOS was
17.1 vs. 14.9 months, ORR value was 31.9% vs. 30%; mOS was
17.2 vs. 12.2 months, ORR value was 27.3% vs. 23.1%) (57, 58). In
addition, like the Checkmate-227 study, the Checkmate-9LA
trial, presented at the 2020 World Conference on Lung Cancer
(WCLC), aims to evaluate the efficacy of chemotherapy alone or
navulizumab combined with two cycles of chemotherapy in the
treatment of metastatic NSCLC in Asian populations. The results
showed that no matter what the expression of PD-L1 was, the
combination of immunotherapy and chemotherapy could
improve the expression of OS, without considering the
expression of PD-L1. According to the expression analysis of
PD-L1, the risk of death of patients with PD-L1 <1% (HR: 0.62,
95% CI: 0.45~0.85) and PD-L1 ≥1% (HR: 0.64, 95% CI: 0.5~0.82)
decreased by 38% vs. 36% (HR: 0.64, 95% CI: 0.5~0.82) (59, 60).
In addition, for the study of immune checkpoints, some new
checkpoints have been explored, such as T-cell immunoreceptor
with immunoglobulin (Ig) and ITIM domains (TIGIT), IDO,
and lymphocyte activation gene (LAG)-3. Among the many new
combinations and new targets, T-cell immune receptor (TIGIT)
inhibitors carrying Ig and ITIM domains have attracted
particular attention. A phase II study of atrizumab combined
with TIGIT inhibitor tiragolumab vs. placebo combined with
atrizumab was released at the 2020 ASCO Congress (61). The
main characters were ORR and PFS. The results showed that for
people with PDL1 >50%, tiragolumab+atrizumab significantly
increased ORR and PFS time in the intention-to-treat (ITT)
population compared with those in the control group, but for 1%
~49% of PD-L1, the benefit of ORR and PFS time was limited.
This study is still under further study, and the results are worth
looking forward to.
DISCUSSION

Although the research ideas of immunotherapy drug resistance
emerge endlessly, there are also some problems that cannot be
ignored in the clinical trials of reversing immune drug resistance.
In recent years, with the rapid development of medicine, we
advocate “individualized medical treatment” and “precision
treatment” in the field of oncology. Biomarkers have important
clinical significance for the discovery, treatment, and prognosis
of tumors. At present, PD-L1 is the most commonly used marker
for predicting the efficacy of immunotherapy, but it still has some
limitations and cannot be used as a routine marker in the clinic.
Other related studies have shown that tumor mutation load,
TILs, and microsatellite instability are important biomarkers to
predict the efficacy of immunotherapy.

According to the retrospective analysis of CHECKMate-026
and the survival data of CHECKMate-227, the efficacy of
immunotherapy in patients with high tumor mutation burden
(TMB) was significantly better than that of chemotherapy (57,
62). In 2019, the National Comprehensive Cancer Network
August 2021 | Volume 11 | Article 739191
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TABLE 1 | Data on the results of trials related to non-small cell lung cancer.
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(46, 47),
(NCT02366143)

Previously untreated non-
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without EGFR/ALK aberrations

Atezolizumab+Carboplatin+Paclitaxel+
Bevacizumab (ABCP); Atezolizumab+
Carboplatin+Paclitaxel (ACP); Carboplatin+
Paclitaxel+ Bevacizumab (BCP)

PFS (Teff-high WT): N
OS (ITT-WT): median
14.7 months median
14.7 months ABCP
liver metastasis and

Keynote189
(36),
(NCT02578680)

Patients with advanced non-
squamous (NSCLC) without an
EGFR/ALK alteration
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OS: median, 22.0 vs
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(NCCN) guidelines recommended TMB as one of the indicators
to evaluate the efficacy of immunotherapy for NSCLC. At the
AACR 2019 meeting, Wang et al. (63) reported the latest
research results on the blood-based tumor mutant (bTMB) and
realized bTMB’s effective prediction of PFS, especially OS, by
redefining bTMB. However, due to the influence of different
critical values, different sampling time, tumor heterogeneity, and
other factors, TMBmay still be a biomarker for clinical reference,
and the selection of its effective threshold and the feasibility of
detection need to be further verified by clinical data. Also at the
ASCO conference in 2019, Johns Hopkins and Memorial Sloan
Kettering Cancer Celter (MSKCC) published the results of trials
on patients with NSCLC who received nivolumab before
operation, suggesting that circulating tumor DNA (CtDNA)
clearance and peripheral blood T-cell expansion can be used as
biomarkers to predict recurrence and treatment efficacy (64).
The WCLC in 2021 also reported on CtDNA. In addition, new
biomarkers are being discovered. For example, a retrospective
trial was conducted in Japan to evaluate the efficacy of nivumab
or pembrolizumab in patients with advanced NSCLC with
positive antibodies (rheumatoid factor, antinuclear antibodies,
thyroid antibodies) before selection. The results showed that the
ORR, DCR, and PFS of antibody-positive patients were
significantly better than those of non-antibody-positive
patients. Although the sample size included in this study is
relatively small, its research is worthy of further study (65).

At present, with the further study of biomarkers, some studies
also have found that Tumor Protein p53 (TP53) or Kirsten Rat
Sarcoma Viral Oncogene Homolog (KRAS) gene mutations can
increase the expression of PD-L1 and CD8+ T-cell infiltration;
when both mutations are present, the expression of PD-L1 will
be more significant, the tumor mutation load is often high, and
the clinical benefits of pembrolizumab therapy are often better.
Therefore, KRAS or TP53 mutations combined with PD-L1 or
CD8+ T cells may be of better predictive value (66).
Frontiers in Oncology | www.frontiersin.org 6
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There is still a certain problem of drug resistance in the clinical
application of immunotherapy for NSCLC, although the
combination of drugs can expand the effect of immunotherapy
and improve immune drug resistance. However, based on these
results, there are still several important problems to be solved:
how to accurately grasp the dose and time sequence of the
combination, and the choice of the dominant population is the
key to improving the efficacy of drugs. The development
of immunotherapy is a great breakthrough in tumor therapy
and the cornerstone of advanced NSCLC therapy. In the
future, looking for biomarkers to predict the efficacy of
immunotherapy can make immunotherapy individualized
and accurate. The research and development of new drugs
will further improve the prognosis of patients with lung
cancer (Table 1).
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26. Valach J, Fıḱ Z, Strnad H, Chovanec M, Plzák J, Cada Z, et al. Smooth Muscle
Actin-Expressing Stromal Fibroblasts in Head and Neck Squamous Cell
Carcinoma: Increased Expression of Galectin-1 and Induction of Poor
Prognosis Factors. Int J Cancer (2012) 131(11):2499–508. doi: 10.1002/
ijc.27550

27. Reck M, Garassino MC, Imbimbo M, Shepherd FA, Socinski MA, Shih JY,
et al. Antiangiogenic Therapy for Patients With Aggressive or Refractory
Advanced Non-Small Cell Lung Cancer in the Second-Line Setting. Lung
Cancer (2018) 120:62–9. doi: 10.1016/j.lungcan.2018.03.025

28. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, et al. Specific
Recruitment of Regulatory T Cells in Ovarian Carcinoma Fosters Immune
Privilege and Predicts Reduced Survival. Nat Med (2004) 10(9):942–9. doi:
10.1038/nm1093

29. Facciabene A, Hagemann IS, Balint K, Barchetti A, Wang L-P, Gimotty PA,
et al. Tumour Hypoxia Promotes Tolerance and Angiogenesis via CCL28 and
T(reg) Cells. Nature (2011) 475(7355):226–30. doi: 10.1038/nature10169

30. Movahedi K, Laoui D, Gysemans C, Baeten M, Stangé G, Van den Bossche J,
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