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Abstract

Although genes carry information, proteins are the main role player in providing all the func-
tionalities of a living organism. Massive amounts of different proteins involve in every func-
tion that occurs in a cell. These amino acid sequences can be hierarchically classified into a
set of families and subfamilies depending on their evolutionary relatedness and similarities
in their structure or function. Protein characterization to identify protein structure and func-
tion is done accurately using laboratory experiments. With the rapidly increasing huge
amount of novel protein sequences, these experiments have become difficult to carry out
since they are expensive, time-consuming, and laborious. Therefore, many computational
classification methods are introduced to classify proteins and predict their functional proper-
ties. With the progress of the performance of the computational techniques, deep learning
plays a key role in many areas. Novel deep learning models such as DeepFam, ProtCNN
have been presented to classify proteins into their families recently. However, these deep
learning models have been used to carry out the non-hierarchical classification of proteins.
In this research, we propose a deep learning neural network model named DeepHiFam with
high accuracy to classify proteins hierarchically into different levels simultaneously. The
model achieved an accuracy of 98.38% for protein family classification and more than 80%
accuracy for the classification of protein subfamilies and sub-subfamilies. Further, DeepHi-
Fam performed well in the non-hierarchical classification of protein families and achieved an
accuracy of 98.62% and 96.14% for the popular Pfam dataset and COG dataset
respectively.

Introduction

Proteins are the main functional body of living organisms. Inside cells, there is a large number
of proteins involved in different unique functionalities such as growth and maintenance, caus-
ing biochemical reactions, acting as a messenger, providing structures and protection. There-
fore, understanding the functionality of proteins is essential for different fields such as drug
designing, and disease identification. According to the main functional roles played by pro-
teins, they can be categorized into different groups such as structural, contractile, transport,
enzyme, storage, hormonal, and protection [1]. Since the genome projects and technological
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advancements, the number of known novel protein sequences grew rapidly. Therefore, there is
a massive amount of uncharacterized proteins available in the databases. There are nearly 175
million protein sequences in Uniprot according to statistics in 2020 and the lengths of these
polypeptide chains vary from 6 to 37,000 amino acid residues [2].

Although the number of protein sequences grows rapidly, these proteins can be categorized
into protein families depending on their evolutionary relatedness, similarities in their structure
or function. Accurate classification of proteins is important for functional prediction of a
given protein sequence and it also helps to provide a more complete picture of the body func-
tionalities of an organism. Protein databases such as GCPR [3], SCOP [4] classify and store
proteins hierarchically as classes, families, and subfamilies. COGs [5], Pfam [6], Uniprot [7]
are proteins sequence databases that provide both manually and automatically reviewed pro-
teins using computational methods.

Protein characterization to identify protein structure and function is done accurately using
biological experiments such as X-Ray crystallography or nuclear magnetic resonance [8]. It is
difficult for these experimental characterizations to deal with the rapidly increasing huge
amount of novel protein sequences, as the biological laboratory experiments are expensive,
time-consuming, and laborious. Therefore, computational methods have been used in protein
characterization with the development of computer software and hardware performances [9].

Machine learning methods are widely applied for protein classification. Among the other
protein classification methods, Naive Bayes is a probabilistic classifier based on Bayes theorem
used for protein classification. A Naive Bayes classifier with feature selection was used to clas-
sify Phage Virion proteins (Phage is a virus that uses bacteria as hosts) using a benchmark
dataset of 307 sequences. This benchmark set includes 99 phage virion protein sequences and
208 Phage non-virion protein sequences from the UniProt database [10]. This method has
achieved 79.6% accuracy using the jackknife testing method than the other famous traditional
methods used to compare the performance such as Random Forest and Support vector
machine. This research on protein classification has also used the Naive Bayesian tree for
multi-level G-protein-coupled receptor(GPCR] classification [3]. Their results show higher
accuracy when compared with the other classification methods. However, Naive Bayes
assumes that all attributes are mutually independent and equal in the dataset and this method
would also suffer from oversensitivity if there are redundant or irrelevant attributes in the data
set.

Random Forest method also has been used for protein fold recognition [11]. Authors have
claimed that the Random Forest with a hundred decision trees performed well compared with
17 other different methods. The performance of their method achieved 84.5%, 63.4%, and
40.8% accuracy at protein family, superfamily, and fold levels respectively. However, the Ran-
dom forest is not much efficient in the classification of temporal data such as sequences and
texts as it uses a large number of decision trees. Further, the computational and time costs of
this random forest method are high since it generates a large number of decision trees.

Profile Hidden Markov model (pHMM) based protein classification has performed well
eliminating the major challenges of alignment-based modeling such as dealing with insertion
and deletions of amino acids [12]. pHMM uses a position-specific scoring system according to
the level of conservation of each amino acid in each column of the alignment. Profile hidden
Markov models (pHMMs) are often used to represent protein families [13]. pHMM models
determine homologies among multiple distant protein sequences. As pHMM is one of the
state art of modeling methods for protein modeling, a method based on pHMM has also been
used in the protein family database, Pfam for protein annotations [6]. In a research-based on
profile Hidden Markov Models, authors [14] have built 62 pHMMs to predict and classify the
protein type called Cono-peptide superfamilies and families, using various parts of the protein
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sequences. This model has shown the accuracy of pHMMs as 100% for the classification of the
pro and signal-peptides and as 96% accuracy for the mature peptides classification.

With the rapid improvement of the computational performances, deep learning methods
have provided better results when compared with the other existing computational methods.
Recently many research works have been done using deep learning for protein classification
[15,16]. Deep learning methods have shown better performance when it is compared with the
existing methods like famous pHMM [17,18] and Random Forest [19]. DeepSF [20] is a
30-layer convolutional neural network (CNN) that classifies protein sequences from 1195 fold
classes taken from the SCOP database. This model claims better fold recognition abilities than
the state of the art tool HHsearch [21]. However, these deep learning models have not per-
formed so well on finer-grained superfamily and family levels [22].

A model called Deepre [23] combines a CNN with a recurrent neural network (RNNs) and
has been used to extract convolutional and sequential features from protein sequences. This was
used to predict enzyme classifications. The model was tested using cross-fold validation and the
experiments were conducted on two large-scale datasets of the SwissProt database [24].

In another recent work, A deep CNN [25] has also been trained to classify 521,527
sequences from the Uniprot database with 698 families of class labels showing AUC accuracy
0f 99.99% [26]. It consists of 6 convolutional layers with 2 fully connected layers with nearly 1
million total network parameters. However, deeper neural networks with more parameters
give higher accuracy while leading to the overfitting if the number of parameters is too high.
ProtCNN [17] (a single deep convolutional neural network), is a recent approach that uses
residual networks [27] based deep convolutional architecture to classify protein sequences of
Pfam [6] full dataset. In this work, they have compared the performance of ProtCNN with pro-
file HMMs and BLASTp [28] on the benchmark dataset of the Pfam seed dataset. Their model
outperformed BLASTp with 200 times faster than BLAST by training 80% of Pfam [6] dataset
and also had a lesser error.

DeepFam [18] is a deep learning model that is used for classifying proteins to their families.
This model consists of a convolution layer and a fully connected layer. The convolutional layer
consists of 8 parallel convolutional units with filter sizes from 8 to 36. This method models
arbitrary protein subsequences in a position-specific manner and it provides an end to end
model which extracts features and predicts simultaneously. This model is trained and tested
using the COG dataset [5] and the cross-validation shows higher accuracy. The model is fur-
ther used to classify G-protein coupled receptor datasets [3] into multiple levels, with higher
accuracy than the state of art methods such as DeepFam and pHMM. However, all of the
above discussed models except DeepFam has been tested on non-hierarchical datasets. Deep-
Fam model classifies protein sequences to in multiple levels: families, subfamilies, sub-subfam-
ilies in separate rounds and authors have also emphasized the importance of hierarchal
classification or multi-task algorithm in deep learning.

As discussed above, although many methods have been proposed for protein family classifi-
cation with good accuracies, there is a requirement for a model for the hierarchical classifica-
tion of proteins at multiple levels simultaneously with high accuracy at a low computational
cost. In this research work, we propose a model for the hierarchical classification of proteins at
multiple levels based on DeepFam [6] with lesser complexity, computational cost, and training
time. We name our model as DeepHiFam and we use the concepts that are used in natural lan-
guage processing and computer vision for designing the model to achieve better performance.
DeepHiFam outperforms other existing models such as DeepFam [18], pHMM, 3-mer logistic
regression, Naive Bayes [3] with the highest accuracies for classes, subfamily, and sub-sub fam-
ily predicting simultaneously. Further, this model outperforms DeepFam, BiLSTM model, and
ProtCNN.
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The rest of this paper is organized as follows. Section 2 discusses the methodology including
the architecture of DeepHiFam, the model we propose. Section 3 provides the results and dis-
cussion of this model. In Section 4, we present the conclusion of this research.

Methodology

In this section, we explicitly present our improved deep learning model for protein family clas-
sification. We conducted our experiment by following several steps that conform to Chou’s
5-steps rule [24]. Since it was proposed in 2011, the “5-steps rule” or “5-step rules” has been
widely used in bioinformatics for both theoretical and experimental types of research. The
essence of the Chou’s 5 steps is as follows, 1) select or construct a valid benchmark dataset to
train and test the model; 2) represent the data samples by encoding them with an effective for-
mulation; 3) introduce or develop a powerful algorithm for predictions; 4) perform cross-vali-
dation tests to evaluate the expected prediction accuracy; 5) establish a user-friendly web-
server for the model which can be accessed by the public. The following notable merits are
achieved by the predictors established in compliance with above-mentioned steps: a) crystal
clear in logic development; b) completely transparent in operation; c) easiness to repeat the
reported results by other investigators; d) with high potential in stimulating other predictors;
e) very convenient to be used by the majority of experimental scientists. Many recent Bioinfor-
matics researches that present predictors using Machine learning methods have used these 5
steps and achieved the advantages of it [29-32]. Accordingly, we have followed this method in
our research work and developed a novel deeper model with higher accuracy based on Deep-
Fam [18].

Benchmark dataset

We have selected the most widely used datasets, Cluster of orthologues (COG) [5,33], and G-
protein coupled receptor (GPCR) [3] for testing our model performance that has also been
used to train and test DeepFam [18]. COG database presents a phylogenetic classification of
proteins from complete genomes and its main purpose is to serve as a platform for functional
annotation of newly sequenced genomes [5]. Since 1997, the COG dataset has been publicly
available and it includes manually curated protein clusters which provide us an assurance of
reliability. GPCR is the largest family of receptor proteins and plays a major role by causing
communication among the recognition of different kinds of diverse ligands, including bioac-
tive peptides, amines, nucleosides, and lipids [34].

As shown in Table 1, 6 datasets were used from the selected 3 databases for developing and
extensive testing of the proposed model. These datasets helped us for a better comparison of
our model with other methods. Our first dataset extracted from the COG dataset includes
1652408 sequences from 4655 families. This number corresponds after filtering the sequences
which have a length longer than 1000, as most of the sequence lengths are less than 1000. Fur-
ther, we filtered the families which have less than 100 sequences since a more balanced
dataset always tends to provide the reliability of the measurement of the model accuracy. The
final COG dataset is divided into 3 parts that have 100, 250, and 500 sequences per each family
(see the first row of Table 1). We name these datasets as COG—A of 1,565,976 protein
sequences for 2892 families, COG—B of 1,389,595 protein sequences for 1796 families, and
COG—C of 1,129,428 sequences of 1074 protein families respectively. We also use the GPCR
dataset [3] which includes 8222 protein sequences for 5 classes, 38 subfamilies, and 86 sub-sub-
families for K-fold cross-validation. Further, we used the GPCR dataset (see the second row of
Table 1) to evaluate the model performance in predicting the multiple levels of protein hierar-
chical classification simultaneously. For further evaluation of our model performance over the
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Table 1. Details of datasets.

DataSet Resource Dataset Name
COGs database *COG-A
*COG-B
*COG-C
The BIASPROFS project— *GPCR
GDS
Pfam database Pfam seed random
split

https://doi.org/10.1371/journal.pone.0258625.t001

Number of Families Number of Sequences Sequences Per Family
(minimum)
2892 1565376 100
1796 1389595 250
1074 1129428 500
Classes Sub- Sub- Traning(80%)/Validation(10%)
Family SubFamily
5 38 86 8222 10
Training Validation(10%)/Test
(80%) (10%)
1000 439493 54378 200
3000 715645 87755 98

methods that have been experimented using the Pfam dataset [6], due to the limited computa-
tional power we had, 3000 and 1000 families with respective maximum sequence lengths of
100 and 200 were used to test the model performance (see the third row of Table 1).

Encoding

Humans are capable of working with categorical data directly as their brains can do feature
extraction and classification very fast with memorization. For deep learning networks, data
sets are needed to be converted into a network understandable format without losing informa-
tion on the original format. In this research work, we use a similar approach to ordered one-
hot encoding [17,18] for converting an aligned protein sequence to numerical vectors. We
used 4 steps in encoding a raw sequence to the model input.

STEP 1: Padding the amino acid sequence—In the first step, we prepare the sequence length
into a fixed value: 1000 to input to the network since each protein has different lengths
which were mostly less than 1000 [35]. For instance, when there is an amino acid sequence
with 650 amino acids, it is converted as its length into 1000 by appending any special char-

« »

acter such as underscore “_” which is not an amino acid.

STEP 2: Designing an amino acid table with numeral codes: We use the TUPAC amino acid
naming list [36] in this work to provide each amino acid a number orderly.

STEP 3: Representing each amino acid as a vector in 2D space: We take x-axis as the ordered
amino acid codes and y-axis as the amino acids in the sequence as shown in Fig 1. We used
non-amino acid positions as zeros and amino acid positions as ones with 2 exceptions as
mentioned in the next step 4.

STEP 4: Encoding labels: Each label is provided with an integer code and represented using
ordered one-hot encoding. For the hierarchical classification of multiple levels, we created
3 label sets per sequence for multi-label classification of the GPCR dataset.

Architecture

The model (DeepHiFam): Multi-scale convolutional neural network. We designed the
model as a multi-scale convolutional neural network. Fig 2 summarizes the details of the
designed model. The model consists of 2 main sections. Those are the feature extraction sec-
tion and the classification section. The classification section is further divided into two sections
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Fig 1. A sequence as a matrix. Representation of a sequence as a matrix (2D array) after encoding the raw amino acid
sequence. The x-axis represents invariant 20 positions of amino acids and 1 position for non-amino acids. y-axis
represents the sequence with fixed length of at most 1000 amino acids positions.

https://doi.org/10.1371/journal.pone.0258625.9001

with a single output (Fig 2A) and multiple outputs (Fig 2B). The feature extraction section con-
sists of an input layer, blocks of feature extraction units, the concatenation layers, max-pooling
layer, and flattening layer. The blocks of feature extraction are designed using the concept of
residual blocks of the ResNet [27].

We re-designed the model network adding a block of the feature extraction as shown in
Figs 2 and 3. The single block of the blocks used in the feature extraction unit (Fig 3) consists
of a sequentially connected convolution unit, batch normalization unit, activation unit, and
another convolution unit respectively. The first convolutional layers of all blocks are parallelly
connected to the input layer. We can consider the 1* level convolutional layers of all blocks as
a set of 9 parallel convolution units. In the 1** level, multi-scale kernel sizes are from 8 to 40.
Each output feature map of each 1** level convolutional layer is batch normalized to standard-
ize the output of the 1* level to input to the next level and then activated to introduce the non-
linear property to the output using the rectified linear unit (ReLU) activation function. After
that, all the feature maps are concatenated and the max-pooling layer is used to reduce the
dimension. Next, the dimension reduced output of the max-pooling layer is flattened for clas-
sification. A drop out layer is also used to avoid over-fitting.

A final fully connected layer with softmax activation is used to facilitate protein multiclass
non-hierarchical classification (Fig 2A). For the hierarchical classification of the protein fami-
lies (Fig 2B), we design the classification section of DeepHiFam with 03 separate output layers
of 2 dense layers each, along with a drop out layer to avoid over-fitting. Accordingly, we
designed the model as a multi-scale multi-output convolutional neural network with a lesser
number of parameters and more generalization compared to the existing deep learning mod-
els. All the hyper-parameters of the model are shown in Table 2.

The model was trained and tested for single layer output classification using the COG and
Pfam datasets. GPCRs hierarchical dataset was used for the classification of protein families. In
the classification (Fig 2B), 2 fully connected layers with the sizes of 1000, 500 hidden units, 1
fully connected layer with 500 hidden units, and another 1 fully connected layer with 800 hid-
den units were used for family, subfamily, and sub-subfamily classification along with a drop-
out layer. Early stopping method was used which helps to get rid of the problem of choosing of
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Fig 2. The architecture of the proposed feedforward DeepHiFam model. Encoded sequences are fed into the feature
extraction blocks. Extracted feature maps are concatenated before the 1D max pool layer which reduces the
dimensionality. After the flattening layers, two different classification sections are separately designed as shown in
parts A and B for non-hierarchical and hierarchical multi-class classification respectively. The classification section-A
has a fully connected (Dense) layer with softmax activation function. Section-B has multi-outputs which include fully
connected layers that are connected to the final fully connected layers. Dropout layers are also used with a 0.5 rate after
the flattening layer and the fully connected layers to avoid the overfitting of the model.

https://doi.org/10.1371/journal.pone.0258625.9002

the number of training epochs to use. Early stopping patience as 2 was used for hierarchical
protein classification. We paid our attention to maintaining a lesser number of parameters
when designing the model. Adding more convolutional units with higher numbers of filters to
the model increases the computational cost and the training time significantly. However, we
used the “identity shortcut connection” that is used in ResNet [27] architecture to remove the

1D Convolution

Batch Normalization

Activation

1D Convolution

ADD

Fig 3. The architecture of a block of the feature extraction section of the proposed DeepHiFam. First, encoded
sequence is fed into the 1st convolution unit. The extracted feature maps are batch normalized and input to the Relu
activation, which helps to improve the speed, performance, and stability. The output of the 2nd convolutional unit is
added to the output of the 1st convolution unit. 9 parallel blocks of different kernel sizes (see Table 3) are used for
feature extraction.

https://doi.org/10.1371/journal.pone.0258625.g003
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Table 2. Hyper-parameters of DeepHiFam.

Parameter Range
Sequnce Length 1000
Batch size 100
kernel sizes (1st Layer) (8,12,16,20,24,28,32,36,40]
Number of filters 250
kernel sizes (2st Layer) 4
Activation Relu
Learining rate 0.0001
Epochs 15
Early stopping patience 2
Loss function Categorical Cross Entropy
Kernel Resgulizer 12(0.0001)
Dropout 0.5

https://doi.org/10.1371/journal.pone.0258625.t002

gradient decency error of a deeper network. By using this method, we were able to reduce the
number of parameters and, batch normalization and Relu activation were used to improve the
model performance, speed, and stability.

In this research, all computational experiments were carried out with google co Laboratory-
Pro with P100 GPU support [37]. The model was implemented in python using TensorFlow
Keras. Tensorboard was used to visualize the metrics over epochs [38]. All Source codes and
Datasets are available at the following github repository. (https://github.com/SanduDS/
Research_Protien_Classification).

Results and discussion
Evaluation metrics

We used the following evaluation metrics to have a broader understanding of the learning pro-
cess of the model and to study the performance of the models. We use widely used measures:
accuracy, precision, recall, F1-Score, and area under the receiver operating characteristics
(AUROC) which are further discussed in the following section.

Accuracy. This is an important performance measurement of a model that measures the
ratio of correct prediction amount to the total amount of data samples as defined in Eq (1).
TP = True Positives, FN = False Negative, TN = True Negatives, FP = False Positive

(TP + TN)
(TP + TN + FN + FP)

Accuracy =

(1)

Precision. Accuracy may not be enough to understand the complete picture of the model
performance if the dataset is imbalanced [37]. Precision provides a measurement of the model
performance when the dataset is imbalanced. Further, precision is important when studying
the class-wise performance of the model. Precision is defined in Eq (2) by having the ratio of
the number of true-positives and the number of true and false-positive predictions of a model.

(TP)

Precision = m

(2)
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Recall. As defined in Eq (3), Recall is the metric that provides a measurement of the frac-
tion of samples from a class that is correctly predicted by the model [37].

(TP)

Recall = m

(3)

F1-score. F1_score shown in Eq (4), provides a measurement to take the overall idea of
model performance when both the recall and precision are important. Protein sequence classi-
fication is an application area where the attention should be paid not only to the number of
correct predictions but also to the overall correct and incorrect prediction of the model [37].

2 X Precision x Recall
F1 — score = — (4)
Precision + Recall

AUROC. Areaunder the ROC is the measurement that shows how the model performs at
all classification thresholds. True positive and False positive rates are used to plot the curve. It
measures the 2-dimensional area covered by the entire ROC curve. Better AUC usually lies
between 0.9 and 1 [38].

Comparison of DeepHiFam performance with COG dataset

The model is trained using 3 -Fold cross-validation for COG datasets: A, B, and C. As 3-fold
cross-validation provides validation of the dataset using multiple folds, it helps to have an idea
of the generalizability of the model. One of Tensorflow-Keras input methods for large datasets
(Keras.utils.sequence returning inputs and targets) is used as the memory was not enough to
completely load full training or test dataset at once. Further, categorical cross-entropy was
used as the loss function of the model as our application is a multi-class classification problem.
Adam optimizer was used for model optimization.

Three datasets COG A, B, and C as mentioned in Table 1 were used. Table 3 shows the
results of the application of 3-fold cross-validation to analyze the models. DeepHiFam shows
higher accuracy and F1-score which is the weighted average of precision and recall (sensitivity)
of the model. This shows that the model performs better not only because of the high accuracy
but also considering the false positives and false negative predictions of the model. Fig 4 shows
the curves of the losses values of training and validation at the 1*' iteration of the COG-A data-
set. The loss value graph was randomly chosen as we have obtained all the training and valida-
tion graphs of the model. These graphs show no wide gap between training and validation
curves. This indicates that the model performed well while using COG dataset.

We compared the prediction accuracy of DeepHiFam with other models: DeepFam,
pHMM,3-mer Logistic Regression, ProtVec Logistic Regression for protein classification. As
shown in Table 4, our model has the highest accuracy compared to the other models that were
compared using the COG dataset. Further, DeepHiFam has a lesser number of parameters
than the other existing deep learning methods which makes the model a more generalized one
with the highest accuracy. DeepHiFam is deeper neural network than the DeepFam model
which consists of one convolutional layer with different filter sizes.

Comparison of the model performance with Pfam dataset

A protein family dataset from the Pfam database was also used to compare the model perfor-
mance with the other deep learning methods which has shown higher accuracy on classifica-
tion: BiLSTM network [39] and ProtCNN [17] based classification model. We tested the
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Table 3. 3-fold cross-validation results of COG A, B, and C dataset (see Table 1).

Iteration Number Number of Classes Model: DeepHiFam
Accuracy(%) Precision(%) Recall(%) AUC(%) F1-Score(%)
0 2892 94.95 97.05 93.14 99.45 95.05
1 94.97 97.13 93.15 99.46 95.10
2 94.87 96.97 92.81 99.42 94.84
Average COG-A 94.93 97.05 93.03 99.44 95.00
0 1796 95.32 97.11 93.86 99.55 95.46
1 95.65 97.29 94.26 99.59 95.75
2 95.62 97.22 94.28 99.54 95.73
Average COG-B 95.53 97.21 94.13 99.56 95.65
0 1074 96.16 97.46 95.06 99.67 96.25
1 96.18 97.51 95.03 99.70 96.25
2 96.08 97.45 94.91 99.68 96.16
Average COG-C 96.14 97.47 95.00 99.68 96.22

https://doi.org/10.1371/journal.pone.0258625.t003

DeepHiFam model with two different sequence lengths and the number of classes 250, 1000,
and 100, 3000 respectively as shown in Table 5. The results in Table 5 show that DeepHiFam
has the least number of parameters than the other two considered networks. Further, it shows
the highest accuracy compared with the other models.

The graphs of loss values of training and testing of DeepHiFam model show how it reached
the highest accuracy without overfitting (Fig 5). This is mainly because the training loss values
of every epoch are lesser than the testing loss values. However, after some epochs, ProtCNN
tends to have lesser loss values of training than testing. It also shows the losses and accuracy
graphs of the model highlighting the difference between training and testing approaches of the
model for different sizes of outputs. It gives a clear idea of how well this model performs by
presenting the training and testing behavior of the deep learning model. This concludes that
DeepHiFam model has better performance and generalization than the other existing methods
in protein classification.

epoch_loss

01 2 3 4 5 6 7 8 9 10

Fig 4. Loss value graph of validation and train at the 1st iteration of the of COG-A dataset. It shows that the
DeepHiFam is not overfitting as there is rarely a gap between two curves.

https://doi.org/10.1371/journal.pone.0258625.g004
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Table 4. The prediction accuracy (%) comparison of COG A, B and C datasets.

Dataset COG-A COG-B COG-C
The proposed model 94.93 95.53 96.14
DeepFam* 91.40 94.08 95.40
pHMM* 91.67 91.78 91.75
3-mer LR* 75.44 81.15 85.59
Protvec LR* 37.05 41.76 47.34

Bold values are the highest/* Results obtained from DeepFam [18].

https://doi.org/10.1371/journal.pone.0258625.t004

Table 5. Parameter comparison with ProtCNN and bi-directional LSTM.

Method
The Proposed Model

ProtCNN

BI. LSTM

https://doi.org/10.1371/journal.pone.0258625.t005

Number of Class Accuracy(%) Number of Parameters
1000 98.94 9,611,000
3000 98.04 10,613,000
1000 98.74 10,761,448
3000 97.55 12,811,448
1000 96.82 231,016
3000 95.66 489,016

Hierarchical protein classification of the model using -G Protein-Coupled
Receptor (GPCR)

The GPCR dataset (see Table 1) is used to evaluate the model performance in predicting the
multiple levels of protein hierarchical classification simultaneously. In other available models
such as DeepFam [3,18] the classification of the proteins is done separately in separate rounds.

We used 10-fold cross validation [40] for hierarchical classification. The full data set with
7938 protein sequences belonging to 5 families, 38 subfamilies and 86 sub-subfamilies was ran-
domly split into ten disjoint subsets, each containing (approximately)10% of the data. The
model was trained on the training set and then the validation was carried out. We have used
the same dataset and the approach when using the dataset according to the DeepFam [18] to
ensure a better comparison and fair experiment. Categorical cross-entropy was used as the loss
function and Adam optimizer was used which optimizes the model performance by updating
the weight parameters to reduce the loss.

Fig 6 shows the accuracy comparison of different types of other existing methods. DeepHi-
Fam performed well in the hierarchical classification. The model achieved the highest accuracy
with parallel multiple outputs for 3 different levels and a lesser number of parameters. These
results show that this model can be used to hierarchically classify protein sequences into cor-
rect levels simultaneously. Furthermore, (See Table 6) when the AUC value of each experiment
is considered, it always varies between 93% and 100%, indicating that DeepHiFam model can
perform well in distinguishing between classes. There is a high accuracy in the proposed
model of more than 1% from DeepFam model in Family level classification while other models
achieved lesser accuracy around 95% or less. In the next hierarchical level, proposed model has
shown the highest accuracy than the other models with a 2% difference than the 2nd better
performer at subfamily level. It clearly shows that our model has higher accuracy as a hierar-
chical classification network. In the sub-sub family level, most of the models are achieving
accuracy around 60% and 50%. However, our model has achieved 82.05% average accuracy
than every method we compared.
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Fig 5. Training and validation accuracies without overfitting. (A, B- 1000 classes and 250 sequence length, C, D-
3000 classes and 100 sequence length) Left: Shows DeepHiFam model’s training and validation accuracy vs number of
epochs. Right: Shows DeepHiFam model’s loss vs number of epochs. Both graphs show how the model learns without
over-fitting.

https://doi.org/10.1371/journal.pone.0258625.g005

Not only our model has performed better than the other model which had been tested
using the same dataset but also our model performed well at one time prediction for all three
families rather than running the model for sevel time for each family level as most of the meth-
ods predict multiple levels separately in several rounds.

Conclusion

Protein family classification is very important in protein function prediction, drug designing,
and in disease discovery. In protein family classification, deep learning-based models have
achieved higher accuracy. Most of the currently available deep learning models in protein clas-
sification carry out the classification of proteins in a single layer of the protein hierarchy.

Conjuctive Rules*
AIRS2*

148*

PART*

Nearest Neighbour*
SMO*

Bayesian network*
Naive Bayes*
Selective to-down*
Protvec LR*

3-mer LR*

PHMM*
DeepFam*
DeepHiFam

i

o
N
o
N
(=]
=]
(=]
®
o

100 120

M Sub-subFamily m Sub-Family ® Family

Fig 6. Prediction accuracy (%) comparisons of GPCR dataset. Results are extended from DeepFam [18]. This chart
shows that our model has the power of hierarchical classification simultaneously using multi-outputs.

https://doi.org/10.1371/journal.pone.0258625.9006
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Table 6. Parameter comparison with ProtCNN and bi-directional LSTM.

Method Family | Sub-Family | Sub-subFamily

The Proposed Model (DeepHiFam)—from single round of running 98.38 88.69 82.05
DeepFam* 97.17 86.82 81.17
PHMM* 95.77 85.39 78.5

3-mer LR* 95.59 83.39 77.06
Protvec LR* 88.58 74.98 67.32
Selective to-down* 95.87 80.77 69.98
Naive Bayes* 77.29 52.60 36.66
Bayesian network” 85.24 64.27 50.69
SMO* 80.21 56.67 35.96
Nearest Neighbour* 95.87 78.68 69.40
PART* 93.27 78.73 65.68
48" 92.93 77.49 64.30
AIRS2* 91.98 76.92 64.78
Conjuctive Rules* 76.19 49.93 16.49

*Bold values are the highest./*-Results from DeepFam [18].

https://doi.org/10.1371/journal.pone.0258625.1006

DeepFam, which is a deep learning model introduced recently, is used for hierarchical classifi-
cation separately in different rounds. Here, we propose a deep learning neural network model
called DeepHiFam with higher accuracy and a lesser number of parameters to classify proteins
hierarchically into different levels simultaneously. DeepHifam also shows high accuracy in the
non-hierarchical classification of proteins, outperforming the available models.

DeepHiFam achieved higher accuracies in classifying COG and Pfam datasets than the
existing methods we compared. Not only that, DeepHiFam model performed well in hierarchi-
cal protein classification of the GPCR dataset using multiple output layers with the highest
accuracy than DeepFam and other existing models. The proposed architecture can be applied
generally to any hierarchical classification or classification problem.
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