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A B S T R A C T

Exposure to stress, particularly in periods of rapid brain maturation such as adolescence, can profoundly in-
fluence developmental processes that undergird the organization of structural and functional brain networks and
that may mediate the association between stressful experiences and maladaptive outcomes. While studies in
translational developmental neuroscience often focus on how specific brain regions or targeted connections are
altered by stress and psychiatric disease, the emerging field of network science may be especially valuable for
elucidating the impact of stress on the intricate connectomics of the adolescent brain. Here we review recent
studies that use graph theory and other network science approaches to understand normative adolescent brain
development, effects of childhood maltreatment on the brain, and disorders characterized by pathological re-
sponses to stress in adolescents. Overall, these studies demonstrate that graph theory can be useful in identifying
and quantifying developmental processes related to segregation, integration, and localized hub influence that are
affected by stress exposure and that may lead to psychopathology. Finally, we discuss limitations in the current
application of graph theory in this area and suggest what we believe are important directions for future work.

1. Introduction

Adolescence is a sensitive period of brain development that coin-
cides with significant changes in psychosocial and physical develop-
ment (Blakemore and Choudhury, 2006; Ashby and Isaac, 2011). These
maturational changes include not only synaptic pruning and dendritic
arborization within localized circuits (Ashby and Isaac, 2011;
Huttenlocher et al., 1982), but also significant reorganization of net-
work-level connections throughout the cerebrum (Fair et al., 2009;
Power et al., 2010). While the effects of stress on the developing brain
have been well documented (McEwen, 2012; Lupien et al., 2009;
Nelson, 2007; McLaughlin et al., 2017), investigations in this area have
focused primarily on functional profiles or morphological character-
istics of the three components of the mammalian stress regulatory cir-
cuit: the amygdala, the hippocampus, and the prefrontal cortex (PFC). It
is becoming increasingly clear, however, that the majority of human
cognitive processes—including effective emotion regulation and cog-
nitive control—arise from elaborate coordinated activity across dis-
tributed brain regions (Cole et al., 2013; Dwyer et al., 2014; Shine et al.,
2016). For example, regions with synchronous tonic activity are posited
to constitute intrinsic functional networks (IFNs), which have become a
key target of study because of their role in supporting complex cogni-
tion (Power et al., 2011; Yeo et al., 2011). Indeed, basic neuroscience
research has demonstrated dynamic changes of IFNs in response to

acute stressors and during periods of anxious anticipation (McMenamin
et al., 2014; Najafi et al., 2017); large-scale network interactions are
now widely considered to be useful for understanding the brain basis of
emotional experiences and why systems related to basic cognitive
processing, including perception, motivation, and action, are also im-
plicated in affective processing (Pessoa, 2017; Pessoa and McMenamin,
2017). Consequently, clinical neuroscientists have also sought to un-
derstand human neuropsychiatric disease from the lens of network
connectivity (Menon, 2011; Whitfield-Gabrieli and Ford, 2012).

Developmental neuroscience studies have demonstrated that the
adolescent brain undergoes hierarchical maturation in specific circuits
that are instantiated within larger IFNs (Casey et al., 2017; Power et al.,
2010; Vertes and Bullmore, 2014), the fidelity of which is likely con-
strained by underlying anatomical connections (Betzel et al., 2015;
Vertes and Bullmore, 2014). Thus, understanding the effects of stress on
the developing brain requires that researchers use metrics that: 1)
capture nuanced facets of the brain connectome in biologically inter-
pretable ways; 2) facilitate comparisons across different imaging
modalities (structure and function), as well as across maturational time-
scales; and 3) are statistically reliable yet sensitive to developmental
effects. To this end, graph theory, a mathematical approach from net-
work science, may help translational neuroscientists to characterize
neurobiological mechanisms of stress. In this review, we begin with a
brief background on graph theory and the most relevant metrics used to
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characterize brain networks. We then discuss current diffusion MRI,
anatomical MRI, and resting-state fMRI studies that used graph theory
to study normative adolescent development, and effects of stress and
stress-related psychopathology (i.e., posttraumatic stress disorder and
depression) on brain network topology and organization. Finally, we
discuss implications of these findings and highlight caveats and crucial
gaps in our knowledge that we hope will guide future research efforts in
this area.

2. Background on graph theory

Over the past decade, graph theoretical analyses have increasingly
been used to analyze neuroimaging data as part of the nascent field of
“brain connectomics”(Bullmore and Bassett, 2010; Fornito and
Bullmore, 2014; Rubinov and Sporns, 2010). In the framework of graph
theory, a brain network (or graph) is composed of regions (or nodes) and
their structural or functional connections (or edges). Connectivity values
are estimated between all possible node pairs, resulting in an adjacency
matrix. In the case of an unweighted graph, a threshold is applied such
that an edge is present if it exceeds the threshold value (i.e., takes on a
value of 1; otherwise is 0), ensuring that the most meaningful and/or
reliable connections between nodes are retained. This results in a
binary adjacency matrix from which graph metrics are calculated. For
weighted graphs, edges are described by weights (e.g., number of
streamlines) indicating the strength or some other property of the
connection (van Wijk et al., 2010).

In diffusion MRI, the number of streamlines may be considered to be
a proxy for the number of white matter fiber tracts and, thus, structural
connections; in contrast, in anatomical MRI, structural connectivity
matrices can be calculated by computing covariance in measures of
cortical thickness, across different regions of the cortex. While the exact
mechanism is not well understood, the pattern of structural covariance
may depend on pathways detectable with white matter tractography
(He et al., 2007; Lerch et al., 2006) and could be interpreted as re-
flecting the degree of developmental coordination across the brain. In
functional MRI, connections are typically represented by statistical
dependencies in timeseries data, and can be assessed during resting-
state as well as under experimentally manipulated conditions (see
Fig. 1). Each neuroimaging modality is designed to optimize specific
brain measurements and will inherently reveal not only distinct fea-
tures of network connectivity but also different networks with distinct
nodes and edge strengths. For instance, the structural networks derived
from diffusion MRI are those that are directly connected by white
matter fibers and, thus, may be more suitable than are functionally
derived networks for assessing graph metrics related to neural segre-
gation (Rubinov and Sporns, 2010). Because IFNs typically include re-
gions that are widely distributed throughout the brain and that do not
necessarily contain direct anatomical projections, these networks may
be more suitable for assessing graph metrics related to neural integra-
tion and inter-network communication (Rubinov and Sporns, 2010).
Similarly, networks derived from resting-state fMRI are posited to re-
flect a stable co-history of activation that may predict trait-like cogni-
tive capacities (Congdon et al., 2010; Dosenbach et al., 2007;
Rosenberg et al., 2017); in contrast, quantifying dynamic changes in
functional networks during an environmental challenge may be in-
formative for probing how specific nodes or regional connections
within a given functional network shift adaptively in response to task
demands, and for assessing how integrative communication may
change across several networks(Cohen and D'Esposito, 2016;
Dosenbach et al., 2007). Whether network-based approaches are ap-
plied to a single modality or across modalities, summary metrics from a
graph analysis can provide insight into global brain topology in addition
to properties of local nodes in a given network.

As we alluded to previously, there are two foundational principles of
brain network organization that are captured by graph metrics: segre-
gation and integration (Rubinov and Sporns, 2010). Segregation allows

specialized processing to occur within densely interconnected groups of
brain regions; integration allows the brain to transmit information ra-
pidly across distributed regions. From the perspective of minimizing the
cost of information transfer and maximizing efficiency, a network that
exhibits organizational properties of both segregation and integration
may be capable of efficient processing and communication. As we
discuss below, and as others have described in detail (Grayson and Fair,
2017; Di Martino et al., 2014), segregation and integration—and the
balance between them—are critical concepts in understanding ma-
turational processes in the brain. Thus, although several global and
local metrics may be computed in graph theory, not all metrics ne-
cessarily conform to known principles of neurobiology. In the fol-
lowing, we briefly describe the metrics that are most widely derived
from neuroimaging data. Please see Table 1 for a summary of these
graph metrics and the sections below for more detailed descriptions of
each metric.

2.1. Network measures of segregation

Graph metrics that reflect segregation are those that quantify the
presence of clusters or modules. One such measure is the clustering
coefficient. When computed on an individual node, this local metric
quantifies how connected the node is with its neighbors; when averaged
across the entire network, it yields a global measure of segregation.
Modularity is another measure of segregation that is fundamental to
animal neural systems. Modularity quantifies the degree to which there
are smaller subgroups (or communities) inside larger groups; networks
with high modularity have dense connections between brain regions
within modules, but sparse connections between regions belonging to
other modules (Newman, 2006).

Researchers have used resting-state and task-evoked fMRI data to
identify several modules or communities in the human brain; these are
commonly interpreted in the framework of canonical IFNs (Cole et al.,
2014a; Di Martino et al., 2014; Grayson and Fair, 2017). In addition to
hierarchically organized visual, auditory, sensory, and somatomotor
modules, the primary networks of interest in the study of the neuro-
biology of stress have been the salience network (SN), anchored in the
dorsal anterior cingulate cortex (ACC) and anterior insula (Seeley et al.,
2011; Uddin, 2014); the default mode network (DMN), composed in
part of the medial PFC, posterior cingulate cortex/precuneus, angular
gyrus, and medial temporal cortex (Buckner et al., 2008; Fox et al.,
2005); the central executive network (CEN), centered in frontoparietal
cortices (Cole et al., 2014b; Spreng et al., 2012); basal ganglia and
limbic networks spanning corticostriatal and corticolimbic connections;
and cerebellar networks (Buckner et al., 2011; Power et al., 2011; Yeo
et al., 2011). Please see Table 2 for a summary of these IFNs.

2.2. Network measures of integration

Graph metrics that reflect integration are based on the concept of
path length, formally defined as the number of edges in the shortest path
between nodes (Rubinov and Sporns, 2010). The average shortest path
length between all pairs of nodes in the network is known as the
characteristic path length of the network (Watts and Strogatz, 1998) and
is the most commonly used measure of integration. A related measure is
global efficiency, which is the average inverse of the shortest path length
between all node pairs. Global efficiency is often considered a measure
of the overall capacity of parallel information transfer (Bullmore and
Bassett, 2010).

Networks characterized by both high global efficiency and high
average clustering coefficients are described as exhibiting small-world
organization (Watts and Strogatz, 1998), a property that is considered
essential to biological systems as means to maximize the tradeoff be-
tween the benefits of integration against the costs of long-range wiring
(Collin et al., 2013; Vertes and Bullmore, 2014). Recent work has also
noted that hubs, or highly connected nodes, tend to connect to one
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another to form rich clubs, in which highly connected nodes are dis-
proportionately more connected with one another (i.e., more connected
than would be expected by chance based on distributions derived from
random networks). Thus, the pathways linking rich clubs form high-
cost yet high-capacity modes of communication that permit global
communication and arguably optimize the integration of information
across the connectome (Sporns, 2013; van den Heuvel and Sporns,
2011). Like modularity and the presence of community structures,
small-worldness and rich-club topology are organizational properties
that are evident even in early developmental stages (Thomason, 2018;
Thomason et al., 2014) and remain ubiquitous from childhood through
adulthood (Collin and van den Heuvel, 2013; Power et al., 2010).

2.3. Network measures of centrality

In contrast to global graph metrics, local graph metrics of interest
typically quantify the amount of influence (or centrality) of a single
node. Among the most common local graph metrics are degree, which
reflects a node's total number of connections, and strength, a weighted
graph metric, defined as the sum of a node's connection weights.
Betweenness centrality is a metric frequently used in neuroimaging; it
reflects the frequency with which a node lies on the shortest paths that
connect all other nodes, a property that enables efficient communica-
tion (Rubinov and Sporns, 2010). Finally, of particular relevance to the
study of IFNs, the participation coefficient is also often assessed in order
to index the strength of a node's edges among the modules or com-
munities in a graph. A participant coefficient of 0 indicates that a node's
edges are entirely restricted to its community; a participant coefficient
of 1 indicates that the node's edges are evenly distributed among all
communities in the graph. As other investigators have noted (Meunier
et al., 2010; Power et al., 2013), centrality measures—such as be-
tweenness centrality—identify key hubs, whereas others—such as
participant coefficients—characterize the type or nature of connections
a hub with other nodes.

Thus, by using graph theoretical metrics, investigators can now

address questions related to network segregation, integration, and re-
gional influence across adolescence and how stress exposure may affect
developmental processes.

3. Graph theoretical studies of normative adolescent development

Before understanding how stress, depression, and other related ex-
periences affect the network architecture of the developing brain, we
must understand the typically developing connectome (Di Martino
et al., 2014; Grayson and Fair, 2017; Power et al., 2010). Investigations
of structural (Dennis et al., 2013a) and functional (Grayson et al., 2014)
connectivity have found community organization among anatomically
proximal regions in early childhood that then extends to distributed
brain regions strengthens as an individual approaches adulthood (Fair
et al., 2009). Below we highlight these themes of segregation and in-
tegration in the context of structural and functional network develop-
ment and note important caveats and limitations when interpreting the
extant literature.

3.1. Structural network development

Structural networks derived from diffusion MRI are characterized by
age-related decreases in path length and clustering (although some
investigators have reported increased clustering, see (Wierenga et al.,
2016)), in concert with increases in efficiency, node strength, and rich-
club connectivity (Dennis et al., 2012b, 2013a, 2013b; Hagmann et al.,
2010; Wierenga et al., 2016). Modularity in white matter networks has
less consistent age-related effects: one study shows increases in mod-
ularity suggesting increased network segregation (Dennis et al., 2012a),
one shows decreases in modularity (Chen et al., 2013), and others show
no effects of age on modularity (Hagmann et al., 2010; Zhao et al.,
2015). These divergent results may be due to differences in computing
connectivity matrices (unweighted versus weighted), differences in
node definitions, or differences in the specific age range examined (ages
in these studies ranged from 12-20 years, 18 months-18 years, and 9–85

Fig. 1. Graph metrics can be computed from
neuroimaging data, whether they be struc-
tural or functional, but the selection and
implications of node and edge definitions
differ. In diffusion MRI, the number of
streamlines acts may be considered to be a
proxy for the number of white matter fiber
tracts and, thus, structural connections; in
contrast, in anatomical MRI, structural
connectivity matrices can be calculated by
computing covariance in measures of cor-
tical thickness, across different regions of
the cortex. In functional MRI, connections
are typically represented by statistical de-
pendencies in timeseries data. Adopted with
permission by Bullmore and Sporns (2009)
(Copyright, 2009 Nature Reviews Neu-
roscience).
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years, respectively).
As many studies have documented, developmental changes do not

occur uniformly across the cortex (Gogtay et al., 2004; Sowell et al.,
2004). White matter connectivity among subcortical regions decreases
from adolescence through early adulthood, whereas cortico-subcortical
and cortico-cortical connections show a mixture of increases and de-
creases in connectivity (Baker et al., 2015). Similarly, there is a dis-
proportionate increase in connectivity in hub nodes in the frontal cortex
(Baker et al., 2015), whereas nodes in the temporal cortex are among
the last to mature (Dennis et al., 2013a), showing a later age-of-peak
connectivity than do other areas (Zhao et al., 2015). There is some
evidence that longer tracts, including association fibers, mature more
slowly than do shorter tracts (Chen et al., 2013; Hagmann et al., 2010;
Supekar et al., 2010; Wierenga et al., 2016). Moreover, these changes
do not necessarily occur at the same rate across hemispheres; in fact,
whereas adolescents exhibit greater efficiency in the right hemisphere,

particularly in the temporal cortex, the networks of young adults do not
appear to have this asymmetry (Zhong et al., 2017).

Graph metrics may be calculated on fiber density matrices, or on
matrices that are weighted by diffusivity measures such as fractional
anisotropy (Chen et al., 2013; Koenis et al., 2015; Wierenga et al.,
2016). In contrast to the studies reviewed above, which showed in-
creased efficiency in fiber density-weighted matrices, Koenis and col-
leagues found that efficiency calculated on FA-weighted matrices in-
creased with age, while efficiency calculated on streamline count
showed both increases and decreases with age; in both instances,
however, age-related changes corresponded to increases in cognitive
functioning (Koenis et al., 2015). Again, the issue of computing metrics
based on binarized versus weighted edge matrices may contribute to
these conflicting results.

All of the studies reviewed so far constructed connectivity matrices
from cortical and subcortical parcellations, combined with tracts

Table 1
Common graph metrics in neuroimaging.

Global Metrics

Metric Equation Meaning

Characteristic path
length = ∑ = ∑∈ ∈

∑ ∈ ≠

−
L L

n i n i n i N
j N j i dij

n
1 1 ,

1
Where Li is the average distance between node i and all other nodes

A measure of integration, the average shortest path in the
network; normalized path length (λ) is the characteristic
path length normalized by a series of random networks of
the same size and degree distribution.

Mean clustering
coefficient

= ∑ = ∑∈ ∈ −
C C

n i n i n i N
ti

ki ki
1 1 2

( 1)

Where Ci is the clustering coefficient of node i

A measure of segregation, the fraction of a node's neighbors
that are neighbors of each other, averaged across the
network; normalized clustering (γ) is mean clustering
coefficient normalized by a series of random networks of
the same size and degree distribution.

Global efficiency
= ∑ = ∑∈ ∈

∑ ∈ ≠
−

−
E E

n i n i n i N
j N j i dij

n
1 1 ,

1

1
Where Ei is the efficiency of node i

The average inverse shortest path length in the network.

Small worldness =σ γ
λ

Where γ is clustering normalized by random networks, and λ is path length normalized by
random networks

The balance of integration and segregation in the network,
changes indicate a shift in this balance, better understood
examining λ and γ to see which are contributing.

Modularity = ∑ − ∑∈ ∈Q e e[ ( ) ]u M uu v M uv 2

Where the network is fully subdivided into a set of nonoverlapping modules M, and euv is the
proportion of all links that connect nodes in module u with nodes in module v

A measure of segregation, the degree to which a network
can be subdivided into communities.

Local Metrics

Metric Equation Meaning

Degree = ∑ ∈k ai j N ij Degree of node i The number of edges connected to a node.

Local efficiency
= ∑ = ∑∈ ∈

∑ ∈ ≠
−

−
E Eloc n i n loc i n i N

j h N j i aijaih djh Ni
ki ki

1
,

1 , , [ ( )] 1

( 1)

Where Eloc i, is the efficiency of node i, and d N( )jh i is the length of the shortest path between j
and h, that contains only neighbors of i

Global efficiency computed only on node neighborhoods;
thus, local efficiency of node i characterizes how well
information is exchanged by its neighbors when it is
removed.

Betweenness
centrality

Betweenness centrality of node i, where ρhj is the number of shortest paths between h and j,

and ρ i( )hj is the number of shortest paths between h and j that pass through i

The number of shortest paths in the network that pass
through a node.

Clustering
coefficient

=
∈ ∈

−
Ci

ejk vj vk Ni ejk E

ki ki

2 { : , , }

( 1)

Clustering of node i (undirected graph)

A measure of segregation, the fraction of a node's neighbors
that are neighbors of each other.

Participant
coefficient = − ∑ ∈ ( )y 1i m M

ki m
ki
( ) 2

Participation coefficiency of node i, where M is the set of modules, and k m( )i is the number
of links between i and and all nodes in module M

A measure of the diversity of intermodular connections of
individual nodes.

Table 2
Summary of core intrinsic functional networks.

Network Hub Regions Functional Roles

Salience network (SN) Dorsal anterior cingulate cortex, anterior insula Salience detection, attentional switching
Default mode network (DMN) Medial prefrontal cortex, posterior cingulate cortex Internally directed cognition
Central executive network (CEN) Dorsolateral prefrontal cortex, posterior parietal cortex Goal-directed cognition, cognitive control
Basal ganglia network Striatum, cerebellum Motivation, autonomic function, arousal
Limbic network Amygdala, hippocampus, thalamus Motivation, autonomic function, arousal
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reconstructed from diffusion MRI. In one study of gray matter networks,
consistent with the findings from diffusion MRI graph networks, pri-
mary sensorimotor areas matured earlier than higher order regions
(Khundrakpam et al., 2012). In the same study, global efficiency in-
creased from early to late childhood, and then decreased into adoles-
cence, whereas both local efficiency and modularity decreased initially
and then increased. These age-related changes in graph metrics appear
to reflect a temporary shift to a more random configuration before the
expected small-world organization emerges. Alternatively, dis-
crepancies among these studies may also be due to differences in the
ages of stress exposure, as well as the ages at which event recall and
neuroimaging measures were collected (see also Section 7.3 for a more
extended discussion on this issue).

3.2. Functional network development

Echoing these structural changes is increased network segregation
and integration in functional networks. Structural hubs appear to be
highly determined in early development, but functional hubs appear to
undergo additional refinement and reorganization throughout devel-
opment (Grayson and Fair, 2017). Current views on the development of
functional brain networks rely strongly on studies with resting-state
fMRI data that seek to characterize large-scale IFNs. These studies
generally show an increase in both network segregation and network
integration. In samples of participants ranging in age from childhood to
young adulthood, older individuals generally exhibit decreased short-
range connections and increased long-range connections (Fair et al.,
2009; Sato et al., 2014). The SN, DMN, and CEN in particular become
more cohesive with age, while subcortical and cerebellar networks
become less connected (Fair et al., 2007; Gu et al., 2015; Sato et al.,
2014). These age-related changes are posited to reflect maturation and
an increased reliance on “higher” networks that are distributed more
widely across cortex than are more “basic” sensory networks and sub-
cortical circuits, which tend to be more localized. Indeed, the matura-
tion in connectivity between cortical and subcortical regions that occurs
during adolescence appears to be further reconfigured through young
adulthood with stronger cortico-cortical connections (Fair et al., 2007;
Marek et al., 2015; Supekar et al., 2009). Researchers have typically
described this transition as maturation from local to distributed; net-
works come to be defined more by their converging functional specia-
lizations and connections and less by solely their proximal connections
with anatomical neighbors (Hwang et al., 2013).

In a preliminary investigation, Grayson and colleagues compared
structural and functional graph metrics in samples of children (ages
7–11 years) and young adults (ages 24–35 years). By late childhood,
rich clubs were already well-formed in white matter networks; in
contrast, children showed significantly weaker functional connectivity
among rich-club hubs than did young adults (Grayson et al., 2014).
These results corroborate prior work showing that resting-state func-
tional connectivity between key nodes of the SN, DMN, and CEN is
stronger in adults than in children, and that white matter structural
integrity originating from a critical hub of the SN, the frontoinsular
cortex, supports several of these functional connections (Uddin, 2014).
Together, these results are consistent with the formulation that the
topology of structural networks are stable and established by late
adolescence, and that they give rise to specific connectivity patterns
among the hubs of IFNs, which are still evolving during this develop-
mental period. Thus, it is possible that stressful life experiences may
affect maturational processes by initially shaping structural networks,
which inform the subsequent development of functional networks and
are further remodeled by concurrent environmental influences.

4. Graph theoretical studies on the neurobiological sequelae of
childhood adversity

Neuroimaging studies of stress in adults and adolescents have

consistently documented structural deficits in the stress regulatory re-
gions of the amygdala, hippocampus, and PFC, as well as altered striatal
and amygdala activation and frontoamygdala connectivity (for reviews,
see (Gee and Casey, 2015; Teicher et al., 2016). However, a growing
body of research shows that circuit-level connections are embedded in
larger networks and that coordinated activity across distributed net-
works—particularly among canonical IFNs—supports adaptive cogni-
tive control and other higher order cognitive processes (Casey et al.,
2017; Cole et al., 2014a; Dwyer et al., 2014; Shine et al., 2016). Thus,
graph theory may serve as a useful tool in understanding how stress
influences developmental processes that shape network architecture
and associated cognition throughout adolescence. No studies to date
have examined the effects of life stress on adolescents using such net-
work-based approaches; however, two studies have used graph theo-
retical analyses on anatomical and diffusion MRI to examine effects of
childhood maltreatment on young adults (ages 18–25 years; mean: 22
years).

In a cohort of young adults experiencing varying levels of childhood
maltreatment, Teicher and colleagues computed cortical thickness and
inter-regional partial correlations to construct gray matter brain net-
works (Teicher et al., 2013). Compared to young adults with minimal
levels of childhood maltreatment, individuals with a history of more
severe maltreatment had a lower degree in the left ACC, a region of the
SN that was shown to be a member of the rich club in the network
derived from the comparison group, concurrent with a greater degree in
both the right anterior insula, another region of the SN, and the pre-
cuneus, a region of the DMN. As these hub regions of the SN and DMN
are likely to participate in adaptive behavioral responses relevant for
salience detection, emotion regulation, and self-directed emotional
perception, these alterations in hub centrality in individuals who have
been exposed to more severe levels of maltreatment may serve as a
mechanism for increasing the risk of the development of psycho-
pathology. Even so, it is important to recognize that it is difficult to
interpret gray matter covariance results without examining the under-
lying white matter tracts that connect these regions.

In this context, Ohashi and colleagues used tractography on diffu-
sion MRI in this same cohort of young adults, and found that individuals
with a history of moderate to severe levels of maltreatment exhibited
alterations in several global graph metrics compared to individuals who
had experienced minimal levels of maltreatment (Ohashi et al., 2017).
Specifically, individuals with more severe childhood maltreatment had
lower degree, strength, and global efficiency coupled with higher path
length and a greater degree of small-worldness organization. Surpris-
ingly, the local cluster coefficients did not differ significantly between
these two maltreatment-exposure groups. Because Ohashi and collea-
gues reconstructed tracts, they were also able to estimate the number of
fiber streamlines in each groups; those adults with more severe mal-
treatment exposure had, on average, 7% fewer streamline connections,
with significantly fewer fiber streamlines interconnecting the frontal
region with the basal ganglia, occipital region, thalamus, and insula, as
well as interconnecting limbic regions with basal ganglia and occipital
regions. As small-worldness is the ratio of the clustering coefficient to
the characteristic path length, the finding that individuals with a his-
tory of more severe maltreatment exhibited greater small-worldness
could be due to “preserved local modular architecture” (which is con-
sistent with the comparable local cluster coefficients between the two
groups) but reduced properties reflecting integration (i.e., reduced
connectivity between modules).

The authors suggest that because individuals with minimal mal-
treatment exposure have a greater number of fiber streams between
several interconnecting modular systems, they are able to afford en-
hanced connectivity between modules, as reflected in higher global
measures of degree, strength, and efficiency (Ohashi et al., 2017). From
a developmental neuroscience perspective, these findings are also
consistent with the formulation that exposure to early adversity alters
normative neurodevelopment, which typically shifts from more
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localized to distributed connectivity through the formation of cohesive
IFNs (Fair et al., 2009; Power et al., 2010). Thus, severe maltreatment
during sensitive periods of development may hinder these adaptive
shifts toward integration across modules, which would be manifested as
disruptions in global graph metrics such as characteristic path length,
efficiency, small-worldness, and rich-club topology, particularly in IFNs
that span disparate modules and support higher order cognition (e.g.,
SN, DMN, CEN). However, because the studies conducted in this area
thus far have exclusively examined structural networks in young adults
after maltreatment exposure, it will be important in future research to
also examine IFNs of adolescents and to characterize prospectively the
effects of stress on these metrics of segregation and integration.

5. Graph theoretical studies on stress-related psychopathology in
adolescents

Increasingly, graph metrics and other network science approaches
have been used to better understand the architecture and topology of
structural and functional networks in adolescents diagnosed with
Posttraumatic Stress Disorder (PTSD) and with Major Depressive
Disorder (MDD). We review studies that compare diagnosed adoles-
cents for each respective disorder with healthy controls in the following
sections.

5.1. PTSD

In a study of children exposed to a natural disaster who did or did
not develop PTSD, Suo and colleagues applied graph theory to both
diffusion MRI and resting-state fMRI data (Suo et al., 2015, 2016).
These investigators found no group differences in small-worldness in
graphs derived from diffusion MRI (Suo et al., 2016); however, children
with PTSD showed an increase in characteristic path length accom-
panied by a decrease in global efficiency, as well as reduced nodal
centralities in dorsolateral and ventrolateral PFC, angular gyrus, right
insula, left superior parietal gyrus, left lingual gyrus, left middle occi-
pital gyrus, left putamen, and left thalamus. The researchers then
sought to characterize a PTSD-related subnetwork composed of nodes
that exhibited significant group differences in at least one of the three
nodal centralities, along with edges that linked between any two of
these altered nodes. To accomplish this, they used network-based sta-
tistics (NBS), an approach used to adjust for multiple comparisons when
testing for group or experimental condition effects on graph edges
(Zalesky et al., 2012). The resulting PTSD subnetwork contained 13
nodes and 21 connections composed primarily of prefrontal-limbic-
striatal and ventral and dorsal visual systems.

In this same sample using resting-state fMRI, these researchers also
reported no group differences in small-worldness; however, in contrast
to their finding of reduced global efficiency in white matter networks in
the PTSD group, they found no group differences in this metric in
resting-state functional networks (Suo et al., 2015). The PTSD group
also exhibited significantly higher global clustering coefficient. With
respect to local graph metrics, compared to the non-PTSD controls, the
children with PTSD showed higher nodal centralities in the right dor-
solateral PFC, left lingual gyrus, left superior frontal gyrus, left gyrus
rectus, left superior temporal gyrus, right middle temporal gyrus, bi-
lateral thalamus, bilateral inferior parietal gyrus, and bilateral middle
occipital gyrus. Finally, the authors applied NBS to identify a PTSD
functional subnetwork. This network yielded 13 nodes and 7 connec-
tions composed primarily of hypoconnectivity among dorsolateral PFC,
parietal cortex, thalamus, and occipital regions in the PTSD group
compared to the non-PTSD group.

Mature structural connections are widely regarded as serving the
basis for functional hubs to form an integrative capacity across distinct
modules (Bullmore and Sporns, 2009; Power et al., 2013). From this
perspective, Suo et al.’s findings may signify important developmental
effects of stress exposure that lead to psychopathology. Specifically, Suo

et al. reported that PTSD was characterized by reduced nodal centrality
in structural connections, concomitant with greater nodal centrality in
functional connections among hubs in the SN, DMN, CEN, and visual
networks; further, children with PTSD exhibited pervasively reduced
structural and functional connections between these modules (Suo
et al., 2016). Certainly, these findings reported by Suo and colleagues
will need to be replicated in independent samples but, so far, they are
consistent with work by Teicher and colleagues in young adults with
history of childhood maltreatment. Considered together, these studies
raise the intriguing possibility that stress hampers or prevents adaptive
development towards increased integrative organization across mod-
ules, leading to suboptimal higher-order behaviors associated with the
development of these distributed networks.

5.2. MDD

While a preliminary resting-state fMRI study (n=16 per diagnostic
group) found that, compared to healthy controls, adolescents with MDD
exhibited higher degree in the ACC, amygdala, insula, temporal cor-
tices, and dorsolateral, medial, and inferior PFC (Jin et al., 2011), a
larger resting-state fMRI study by our research team (n = 55 + per
diagnostic group) found no global or local graph metrics that dis-
tinguished adolescents with MDD from healthy controls (Sacchet et al.,
2016). Nevertheless, using NBS, our group found that adolescents with
MDD were characterized by large-scale hypoconnectivity. Specifically,
adolescents with MDD exhibited hypoconnectivity among the dorsal
attention network, SN, DMN, CEN, and somatosensory networks
(Sacchet et al., 2016). Importantly, these results were obtained only
when using IFNs, and not anatomically defined regions, as nodes in
construction of the graphs, which underscores the critical point that
investigators must utilize appropriate parcellation schemes in graph
theory analyses (Rubinov and Sporns, 2010; Zalesky et al., 2010).

As a related point, we wish to emphasize that Sacchet et al. (2016)
based their graph analyses on nodal definitions derived from the 17-
network solution of the Yeo atlas (Yeo et al., 2011), which covered
large swathes of cortex. In a follow-up study in this same cohort, Ho and
colleagues defined 51 smaller, spatially isolated regions spanning the
IFNs derived from the Yeo atlas and computed global and local graph
metrics during resting-state as well as during task-evoked (i.e., during a
cognitive control task) fMRI (Ho et al., 2017). Here, we again did not
find group differences in global graph metrics during resting-state fMRI
or task-evoked fMRI; however, change in local efficiency of the right
dorsal ACC between rest and task states distinguished adolescents with
MDD from healthy controls. Specifically, depressed adolescents showed
little change (or “flexibility”) in local efficiency of the dorsal ACC across
brain states, whereas healthy controls showed flexible local efficiency
of this node (Ho et al., 2017). Consistent with prior work indicating that
large-scale connectivity changes between rest and task-evoked states
predict cognitive control performance (Cole et al., 2013; Dwyer et al.,
2014; Shine et al., 2016), we also found that individuals exhibiting
lower local efficiency of right dorsal ACC during the task relative to rest
performed more poorly on the cognitive control task. Finally, we found
that lower local efficiency of right dorsal ACC during the task was as-
sociated with an earlier age of MDD onset. Because the ACC is an in-
tegrative hub that occupies several IFNs (Margulies et al., 2007; Yeo
et al., 2011), and because of its role in adolescent development
(Lichenstein et al., 2016), we posited that altered development of ACC-
based connectivity underlies core symptoms related to, or that may lead
to, the development of MDD, including suboptimal self-regulation or
cognitive control.

This same cohort of adolescents with and without MDD also un-
derwent diffusion MRI; Tymofiyeva et al. (2017) applied graph theory
and NBS to assess group differences in global and local metrics
weighted by either tractography streamline count or FA (Tymofiyeva
et al., 2017). While we did not find group differences in local or global
graph metrics, we did find, using NBS, that depressed adolescents
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exhibited lower FA-based connectivity centered in the right caudate,
including reduced connectivity with ACC, insula, and frontal gyrus. At
the highest statistical thresholds, the most robust finding was reduced
connectivity between the right caudate and middle frontal gyrus (MFG)
in adolescents with MDD compared to controls. Further, depressed
adolescents with lower right caudate-MFG white matter connectivity
reported, on average, more stressful life events in the past 6 months; in
contrast, the healthy controls exhibited no association between right
caudate-MFG connectivity and number of stressful life events. One in-
terpretation of these data is that stress has an adverse effect only on
white matter fibers that connect caudate-MFG in individuals with
compromised connectivity between these regions (whether it is due to
MDD illness or exposure to greater childhood adversity). While spec-
ulative, these results underscore the need for longitudinal studies and
careful assessments of stressful life events to explore this possibility
more explicitly and systematically.

With the exception of the preliminary study by Jin et al., none of the
studies reviewed above found differences in global graph metrics be-
tween adolescents with and without MDD. One possibility is that me-
trics such as modularity, small-worldness, and rich-clubness are, as
indicated in prior research (Collin and van den Heuvel, 2013; Hagmann
et al., 2012; Thomason et al., 2014; Thomason et al., 2017), founda-
tional neurobiological principles of organization that are established far
earlier in development than adolescence; in this case, therefore, it
would take a psychiatric or neurological insult more extreme than
adolescent-onset MDD to detect major disruptions in global topology.
Another possibility is that, given evidence that MDD and other psy-
chiatric disorders do not have a significant impact on graph metrics,
including small-worldness, above and beyond the effect of maltreat-
ment (Ohashi et al., 2017), it is plausible that adverse effects of early
life stress on network development explain psychopathology-related
network differences that have been reported in graph theoretical ana-
lyses in case-control studies. Unfortunately, however, the majority of
such investigations in clinical samples did not take early life stress
history into account.

We also wish to note that there are key differences in node and edge
calculations from which graph metrics were computed. While both Jin
et al. and Tymofiyeva et al. used the Automated Anatomical Labeling
(AAL) atlas to define 90 cortical and subcortical nodes (Tzourio-
Mazoyer et al., 2002), Sacchet et al. (2016) and Ho et al. (2017) used
functionally defined nodes (although the former used large-scale net-
works as node definitions and the latter used smaller localized nodes)
(Yeo et al., 2011). Jin et al. and Tymofiyeva et al. also applied different
thresholding and/or weighting when constructing edge matrices, which
makes it harder to make interpretable comparisons across these studies.
Future work is needed to replicate these findings using similar and
distinct parcellation and thresholding methods to determine which re-
sults are robust and which findings are sensitive to these factors. Fi-
nally, more independent samples are needed to replicate existing
findings and to compare graph analyses across stress-related disorders
(e.g., PTSD, MDD) to identify convergent and divergent patterns that
may inform the transdiagnostic mechanisms by which stress influences
brain connectivity and development, and to help identify illness-spe-
cific markers.

6. Limitations and caveats

Despite the strengths of graph theory and the results of the reviewed
studies in elucidating stress-related effects on the adolescent develop-
ment of structural and functional connectomes, there are still important
points to consider when applying and interpreting graph metrics. As we
alluded to throughout our review, the first critical decision point is to
select appropriate node and edge definitions.

As Rubinov and Sporns (2010) state, “nodes should ideally represent
brain regions with coherent patterns of extrinsic anatomical or func-
tional connections” and “parcellation schemes that lump

heterogeneously connected brain regions into single nodes may be less
meaningful.” While the AAL atlas is the most commonly used parcel-
lation scheme, there is currently no consensus regarding an optimal set
of criteria for node parcellations, particularly for IFNs (Gordon et al.,
2014; Zalesky et al., 2010). Several of the metrics that reflect funda-
mental organizational properties (e.g., small-worldness, modularity,
clustering, path length, and efficiency) are robust across spatial scales,
but the exact parcellation scheme used to define nodes can significantly
affect graph theory measures (Zalesky et al., 2010). Thus, researchers
aiming to integrate structural and functional networks in a meaningful
way should use the same parcellation schemes across both modalities to
ensure comparability (Honey et al., 2009; Rubinov and Sporns, 2010).
Unfortunately, however, this poses a problem when investigating IFNs
that, by their very nature, encompass several regions that do not con-
tain homogenous signals (Gordon et al., 2014), and may contain sig-
nificant inter-individual variability (Gordon et al., 2017a, 2017b). For
instance, in our recent study of adolescents with and without MDD, we
documented depression-related effects on connectivity calculated with
functionally, but not anatomically, defined nodes (Sacchet et al., 2016).
The selection of biologically meaningful units should therefore be in-
formed by the imaging modality as well as the specific networks of
interest.

As a related point, the computation of edge definitions and the
construction of edge matrices may also significantly affect results. As
we noted earlier in this review (see Section 3), metrics such as mod-
ularity, which have been shown to be robust against parcellation
schemes (Baker et al., 2013; Hagmann et al., 2012; Zhao et al., 2015)
appear to have inconsistent age-related effects in white matter networks
(Chen et al., 2013; Dennis et al., 2013a). These contrary results may
have been driven in part by decisions to threshold and binarize or
weight connection strengths in the respective adjacency matrices.

Another major issue that generalizes beyond graph theoretical
analyses but is of paramount concern to developmental neuroscientists
is the reliability of connectivity measures obtained from MRI scans. In
this regard, graph metrics may be a preferred measure of connectivity,
as multiple studies have found evidence for limited test-retest reliability
when examining resting-state fMRI and IFNs using conventional ana-
lytic approaches (Braun et al., 2012; Wang et al., 2011), although for a
more extensive discussion see also (Grayson and Fair, 2017). The re-
liability of graph metrics is generally good, with metrics calculated
from structural data providing stronger reliability than those calculated
on functional data (Zalesky et al., 2010). In a meta-analysis of 23 stu-
dies examining the reliability of graph metrics, Welton and colleagues
found an average reliability of 0.79 for structural graph theory mea-
sures and 0.67 for functional graph theory measures, although these
appeared to further depend on whether the metric in question was
global or local (Welton et al., 2015).

Among global structural metrics, the reliability of clustering coef-
ficient and characteristic path length were highest (0.76 and 0.78, re-
spectively), while the reliability of small-worldness was lowest (0.55).
Among local structural measures, local efficiency and degree had the
highest reliability (0.87 and 0.84, respectively), while betweenness
centrality was lowest (0.67) (Welton et al., 2015). Factors that im-
proved reliability in structural studies included using larger regions as
nodes (Andreotti et al., 2014; Bassett et al., 2011), using DTI data in-
stead of DSI data (Bassett et al., 2011), using white matter instead of
gray matter regions as nodes (Buchanan et al., 2014; Welton et al.,
2015), and integrating over a range of thresholds when constructing
binarized matrices (Dennis et al., 2013c). For global graph metrics
calculated on resting-state fMRI data (as well as other functional data,
including MEG and fNIRS), small-worldness and global efficiency had
the highest reliability (0.77 and 0.78, respectively), while modularity
had the lowest (0.64). For local functional graph measures, reliability
was lower, with local efficiency having the highest (0.60) and be-
tweenness centrality lowest (0.43) reliability. Factors which improved
reliability among functional studies include low or broad frequency
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ranges (Braun et al., 2012; Deuker et al., 2009) and larger nodes (Cao
et al., 2014), with mixed results when comparing the reliability of short
and long scan intervals (Schwarz and McGonigle, 2011; Wang et al.,
2011), and the impact of global signal regression (Braun et al., 2012;
Liang et al., 2012; Liao et al., 2013).

To date, no studies have specifically examined the reliability of
graph metrics in both structural and functional MRI data in a sample of
children and adolescents, which will be important for identifying me-
trics that are specifically sensitive to the effects of development.

7. Other considerations for future research and recommended
directions

7.1. Sex differences

One important issue that has not been formally addressed in any of
the papers reviewed here concerns the role of sex differences. For ex-
ample, there is compelling evidence of sexual dimorphism in network
connectivity and development (Lopez-Larson et al., 2011; Satterthwaite
et al., 2016; Tyan et al., 2017; van Hemmen et al., 2017), with ado-
lescent and young adult females exhibiting greater small-worldness in
white matter tracts that is driven by greater normalized clustering and,
thus, potentially reflective of greater network segregation (Dennis et al.,
2013a). The reasons for these sex differences are multifaceted; more-
over, the factors that drive these effects are likely to interact in complex
ways. Nevertheless, we highlight two primary factors that we believe
investigators should consider. First, there is a strong possibility that
females and males are exposed to different types of stressors (e.g., in-
terpersonal conflict versus physical violence), particularly in this age
group (Rudolph and Flynn, 2007); differential exposure to number and/
or type of stressors could affect brain development in ways that might
explain sex-specific pathways to disorders that are characterized by
pathological responses to stress (McLaughlin et al., 2009; Rudolph and
Flynn, 2007). Second, pubertal hormones—and the psychosocial con-
sequences of entering puberty and other related factors such as pubertal
timing—likely affect the development of these networks in a sex-spe-
cific manner (Ahmed et al., 2008; Blakemore et al., 2010; Neufang
et al., 2009). Specifically, females undergo puberty earlier than do
males (Ellis, 2004; Negriff et al., 2010); therefore, the escalation in
gonadal hormones may not only underlie sexual dimorphic develop-
ment of certain brain networks but they may also render these networks
more sensitive to the environment (Blakemore et al., 2010). Taken to-
gether, these processes could explain how sex may moderate associa-
tions between adversity and outcomes and for the reported sex differ-
ences in risk to stress-related disorders, such as PTSD and MDD, during
the adolescent period (Ge et al., 2001; Rudolph and Flynn, 2007).

7.2. Type of stress

Another important factor to consider both in terms of interpreting
existing data and of moving forward with new studies in this area is the
impact of the type of stress or trauma on brain connectivity. Indeed, the
theoretical conceptualization of stress as falling along at least two di-
mensions—deprivation (i.e., absence of cognitive and socioemotional
input) and threat (i.e., presence of physically harming input)—is in-
creasingly being highlighted in the field (McLaughlin et al., 2017;
Nemeroff, 2016; Sheridan and McLaughlin, 2014). Empirical studies
have shown that whereas experiences characterized by deprivation tend
to be associated with reductions in cortical thickness in association
cortex and in regions of the PFC (Hanson et al., 2011, 2012; McLaughlin
et al., 2013, 2017), experiences characterized by threat appear to affect
the morphology and connectivity of regions involved in emotional
learning, including hippocampus, amygdala, PFC (Lim et al., 2017;
Teicher et al., 2016), as well as the functional connectivity of regions in
the CEN (Hart et al., 2017). Studies by Teicher and colleagues have
suggested further that different types of threatening experiences yield

different neurobiological effects; specifically, whereas individuals ex-
posed to parental verbal abuse exhibit morphological changes in
structures responsible for processing auditory and linguistic stimuli,
individuals who witnessed domestic violence exhibit morphological
changes in structures responsible for processing higher-order visual
information (Teicher et al., 2016). Long-term mental health outcomes
are also likely dependent on the type of stressors experienced (Kessler
et al., 2010; McLaughlin et al., 2012; Rodgers et al., 2004). Therefore, it
is critical that future studies use valid and reliable measures to assess
the various types of stress individuals could have experienced during
childhood and adolescence to elucidate their diverse effects on network
development.

7.3. Timing of stress

The discrepant findings in the literature reviewed thus far may be
due to differences both in the ages at which stressors were experienced
and in the ages at which brain metrics were obtained. Moreover, it is
becoming increasingly clear that the adolescent brain is shaped not only
by the types of stressors encountered during development, but also by
when in development these stressors were experienced (Andersen and
Teicher, 2008; Krugers et al., 2017; Lupien et al., 2009). Given the role
of these brain structures in regulating stress responses, investigators
have focused in particular on the hippocampus, amygdala, and PFC in
examining the impact of the timing of stress. In one study, researchers
found that income during childhood (age 9), but not during adulthood
(age 24), was associated with impaired emotion regulation, as indexed
by reduced PFC activation and heightened amygdala activation to ne-
gative stimuli (Kim et al., 2013). In another study, researchers found
not only that severity of childhood maltreatment explained amygdala
volumes in adulthood, but also that the severity of maltreatment spe-
cifically during later childhood (age 10–11) was a significant predictor
of amygdala volumes (Pechtel et al., 2014). Finally, in support of our
earlier arguments that sex differences and the type of stressful experi-
ences must also be taken into consideration, one recent study found that
whereas hippocampal volume of young adult males was predicted by
experiences characterized by deprivation and neglect (but not abuse)
through 7 years of age, hippocampal volume of young adult females
was predicted by experiences of threat (i.e., abuse) but not deprivation
at 10, 11, 15, and 16 years of age (Teicher et al., 2017). Interestingly,
there is also evidence to suggest that the type and timing of childhood
adversity differentially predict symptoms of PTSD and depression;
specifically, whereas PTSD may be best predicted by overall severity of
childhood adversity, emotional adversity during childhood (ages 8–9)
appears to be differentially associated with symptoms of depression in
young adults (Schalinski et al., 2016). It is critical, therefore, that future
studies investigating the neurodevelopmental processes affected by
stress carefully measure and test for the unique and potentially inter-
active influences of sex and type and timing of stress on brain con-
nectivity metrics.

7.4. Methodological advancements and future directions

There are also clear methodological advancements for future work
to apply graph theoretical analyses to understand the neurobiological
mechanisms and consequences of stress on the adolescent—and more
generally, the developing—brain. These include conducting long-
itudinal studies that reveal normative trajectories of structural and
functional network development across the lifespan, characterizing
short-term network-level dynamics (e.g., in response to a stressor or a
task probe), and elucidating the correspondence between multimodal
data (e.g., structural versus function, resting-state versus task-evoked).
Several of these applications will depend on advances in related neu-
roimaging methods, such as conducting appropriate statistical models
on longitudinal brain data (Madhyastha et al., 2017), improved cap-
abilities to resolve trial by trial signals (Zeithamova et al., 2017), and
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adequate preprocessing pipelines and mathematical frameworks for
integrating multimodal and multi-scale neuroimaging data (Betzel and
Bassett, 2016; Bolt et al., 2017; Misic et al., 2016). Other current trends
that we anticipate are an increased use of weighted graphs, which ar-
guably contain more biologically relevant information and may deepen
our understanding of the relations among various node connections
(Grayson and Fair, 2017). Finally, large consortia, such as ENIGMA
(Thompson et al., 2014), PING (Jernigan et al., 2015), and more re-
cently, ABCD (Casey et al., 2018), that pool data across multiple sites
and apply harmonized preprocessing protocols for large-scale meta- and
mega-analyses, will also be critical in identifying the most reproducible
and reliable graph metrics associated with normative aging, the effects
of stress (including early life adversity and childhood trauma), and
psychiatric disease.

As we highlighted throughout this review, we recommend that fu-
ture work seek to examine, prospectively, the effects of stress on the
segregation and integration of IFNs during adolescence. Further, it will
be important to determine which aspects of the brain connectome that
are perturbed in psychiatric diseases are due to broad and transdiag-
nostic effects of stress and which are an indicator of a specific illness.
Finally, more work is needed to definitively compute the reliability of
graph metrics so that researchers use appropriate measures when
characterizing normative and disrupted structural and functional de-
velopment.

8. Conclusions

The developmental processes affected by stress exposure and psy-
chiatric illness have predominantly been examined within specialized
circuits; however, these circuits are embedded in larger networks that
are spatially distributed throughout the cortex, and that exhibit so-
phisticated intra and inter-network connectivity. Graph theory provides
a framework amenable to developmental neuroscience by quantifying
metrics of segregation, integration, and regional influence that sum-
marize biologically complex network-level properties. We propose that
these metrics will be useful for understanding the influence of stress on
the adolescent brain and represent an approach that is capable of fa-
cilitating comparisons across multimodal data in order to yield addi-
tional insight into network architecture that may not be adequately
measured otherwise. Our review of the state of the science thus far has
revealed that there is evidence that stress affects processes related to
both segregation and integration. There are also effects of stress on
connectivity of regional hubs, but most of these connections are likely
to be integrative in nature as they cross distinct modules. Current ap-
plications of graph theory to neuroimaging data have yet to reach a
consensus about the appropriate parcellation schemes used for defining
biologically meaningful nodes, about thresholding or weighting edges
for computing graphs, or about the reliability of graph metrics, parti-
cularly for functional data. Outstanding gaps in research directions also
remain, including prospective studies of the effects of stress on children
and adolescents, critical considerations of sex differences, careful ex-
aminations of the effects of stressor type and timing on adolescent brain
development, and comprehensive investigations on which network-
level alterations observed in psychiatric samples can be explained
predominantly by experiences of early life adversity. Multisite efforts to
standardize behavioral and brain measurements combined with meth-
odological advancements in neuroimaging technology and computa-
tional modeling are sure to inspire exciting future work in this area.
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